426 research outputs found

    Cyclic prefix assisted block transmission for low complexity communication system design

    Get PDF
    This thesis presents new results on cyclic prefix (CP) assisted block transmission for low complexity communication system design. Two important aspects are studied: the CP based low-complexity schemes for channel equalization and channel estimation. Specifically, based on the simple frequency domain equalization, a low complexity joint receiver is proposed for CP-CDMA system, which is a special application of block transmission. And in this work the finite impulse response (FIR) model is used for the unknown communication channels. To identify an unknown FIR channel, a novel channel estimation method is proposed by exploiting the cyclic prefix technique. Compared to a conventional method, the proposed method delivers the similar estimation accuracy, yet at much lower system overhead and lower computational complexity. In order to minimize the channel total mean square error in channel estimation, the criteria and solutions to optimal training sequence design are also presented. Finally, the performance study is carried out on the proposed channel estimation scheme for BPSK block transmission system as well as CP-CDMA system using simulation along with analysis

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e ComputadoresThe forthcoming generation of mobile communications, 5G, will settle a new standard for a larger bandwidth and better Quality of Service (QoS). With the exploding growth rate of user generated data, wireless standards must cope with this growth and at the same time be energy efficient to avoid depleting the batteries of wireless devices. Besides these issues, in a broadband wireless setting QoS can be severely affected from a multipath dispersive channel and therefore be energy demanding. Cross-layered architectures are a good choice to enhance the overall performance of a wireless system. Examples of cross-layered Physical (PHY) - Medium Access Control (MAC) architectures are type-II Diversity Combining (DC) Hybrid-ARQ (H-ARQ) and Multi-user Detection (MUD) schemes. Cross-layered type-II DC H-ARQ schemes reuse failed packet transmissions to enhance data reception on posterior retransmissions; MUD schemes reuse data information from previously collided packets on posterior retransmissions to enhance data reception. For a multipath dispersive channel, a PHY layer analytical model is proposed for Single-Carrier with Frequency Domain Equalization (SC-FDE) that supports DC H-ARQ and MUD. Based on this analytical model, three PHY-MAC protocols are proposed. A crosslayered Time Division Multiple Access (TDMA) scheme that uses DC H-ARQ is modeled and its performance is studied in this document; the performance analysis shows that the scheme performs better with DC and achieves a better energy efficiency at the cost of a higher delay. A novel cross-layered prefix-assisted Direct-Sequence Code Division Multiple Access (DS-CDMA) scheme is proposed and modeled in this document, it uses principles of DC and MUD. This protocol performs better by means of additional retransmissions, achieving better energy efficiency, at the cost of higher redundancy from a code spreading gain. Finally, a novel cross-layered protocol H-ARQ Network Division Multiple Access (H-NDMA) is proposed and modeled, where the combination of DC H-ARQ and MUD is used with the intent of maximizing the system capacity with a lower delay; system results show that the proposed scheme achieves better energy efficiency and a better performance at the cost of a higher number of retransmissions. A comparison of the three cross-layered protocols is made, using the PHY analytical model, under normalized conditions using the same amount of maximum redundancy. Results show that the H-NDMA protocol, in general, obtains the best results, achieving a good performance and a good energy efficiency for a high channel load and low Signal-to-Noise Ratio (SNR). TDMA with DC H-ARQ achieves the best energy efficiency, although presenting the worst delay. Prefix-assisted DS-CDMA in the other hand shows good delay results but presents the worst throughput and energy efficiency

    IB-DFE receivers with space diversity for CP-assisted DS-CDMA and MC-CDMA systems

    Get PDF
    Multi-Carrier Code Division Multiple Access (MC-CDMA), currently regarded as a promising multiple access scheme for broadband communications, is known to combine the advantages of an Orthogonal Frequency Division Multiplexing (OFDM)-based, Cyclic Prefix (CP)-assisted block transmission with those of CDMA systems. Recently, it was recognised that DS-CDMA (Direct Sequence) implementations can also take advantage of the benefits of the CP-assisted block transmission approach, therefore enabling an efficient use of Fast Fourier Transform (FFT)-based, chip level Frequency-Domain Equalisation (FDE) techniques. When employing a linear FDE with both MC-CDMA and DS-CDMA, the FDE coefficients can be optimised under the Minimum Mean Squared Error (MMSE) criterion, so as to avoid significant noise enhancement. The residual interference levels can be very high, especially for fully loaded scenarios, since the FDE/MMSE does not perform a perfect channel inversion. This paper deals with CP-assisted DS-CDMA systems and MC-CDMA systems with frequency-domain spreading. We consider the use of Iterative Block Decision Feedback Equalisation (IB-DFE) FDE techniques as an alternative to conventional, linear FDE techniques, and derive the appropriate IB-DFE parameters in a receiver diversity context. Our performance results show that IB-DFE techniques with moderate complexity allow significant performance gains in both systems, with bit error rate (BER) that can be close to the single-code matched filter bound (MFB) (especially for the CP-assisted DS-CDMA alternative), even with full code usage. Copyright © 2007 John Wiley & Sons. Ltd

    Performance Analysis of Multicarrier Code Division Multiple Access (MC-CDMA) Systems

    Get PDF
    A thesis presented to the faculty of the College of Science and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Pravinkumar Patil on August 11, 2008

    Frequency-domain multiuser detection for CP-assisted DS-CDMA signals

    Get PDF
    In this paper we consider the use of CP-assisted (cyclic prefix) DS-CDMA schemes (direct sequence code division multiple access) in broadband wireless systems. We present an iterative, frequency-domain MUD (multiuser detection) receiver for the uplink transmission that combines IB-DFE (iterative block decision feedback equalization) principles with serial interference cancellation. It is shown that the performance proposed receiver can be close to the single-user MFB (matched filter bound), even for fully loaded systems, in severely time-dispersive channel and/or in the presence of strong interfering signals

    A turbo FDE technique for reduced-CP SC-based block transmission systems

    Get PDF
    For conventional cyclic-prefix (CP)-assisted block transmission systems, the CP length is selected on the basis of the expected maximum delay spread. With regard to single-carrier (SC)-based block transmission implementations, a full-length CP is recommendable, since it allows good performances through the use of simple frequency-domain equalization (FDE) techniques. In this letter, a soft-decision-directed correction (SDDC)-aided turbo FDE technique is presented for reduced-CP SC-based block transmission systems using conventional frame structures. The relations with some already known iterative FDE techniques are established, and a set of performance results is reported and discussed. The advantages of the proposed approach are emphasized, namely, the possibility of approximately achieving (besides the obvious bandwidth efficiency gain) the maximum power efficiency gain that a strong CP reduction allows.Fundação para a Ciencia e Tecnologia (FCT), Centro de Análise e processamento de Sinais (CAPS

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Discrete Wavelet Transform Based Wireless Digital Communication Systems

    Get PDF
    • …
    corecore