4,688 research outputs found

    Switching Noise in 3D Power Distribution Networks: An Overview

    Get PDF

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    Optically reconfigurable 1 x 4 remote node switch for access networks

    Get PDF
    In this paper we demonstrate an optically controlled 1 x 4 remote node switch, based on membrane InP switches bonded to a silicon-on-insulator circuit. We show that the switch exhibits cross talk better than 25 dB between the output ports, and that the switch operates without receiver sensitivity penalty. Furthermore, the proposed switch architecture allows for optical clock distribution as a means to avoid the need for clock recovery at the receiver side. This is demonstrated in a proof-of-principle experiment where data and clock are sent through a single membrane InP switch

    On the nature and effect of power distribution noise in CMOS digital integrated circuits

    Get PDF
    The thesis reports on the development of a novel simulation method aimed at modelling power distribution noise generated in digital CMOS integrated circuits. The simulation method has resulted in new information concerning: 1. The magnitude and nature of the power distribution noise and its dependence on the performance and electrical characteristics of the packaged integrated circuit. Emphasis is laid on the effects of resistive, capacitative and inductive elements associated with the packaged circuit. 2. Power distribution noise associated with a generic systolic array circuit comprising 1,020,000 transistors, of which 510,000 are synchronously active. The circuit is configured as a linear array which, if fabricated using two-micron bulk CMOS technology, would be over eight centimetres long and three millimetres wide. In principle, the array will perform 1.5 x 10 to the power of 11 operations per second. 3. Power distribution noise associated with a non-array-based signal processor which, if fabricated in 2-micron bulk CMOS technology, would occupy 6.7 sq. cm. The circuit contains about 900,000 transistors, of which 600,000 are functional and about 300,000 are used for yield enhancement. The processor uses the RADIX-2 algorithm and is designed to achieve 2 x 10 to the power of 8 floating point operations per second. 4. The extent to which power distribution noise limits the level of integration and/ or performance of such circuits using standard and non-standard fabrication and packaging technology. 5. The extent to which the predicted power distribution noise levels affect circuit susceptibility to transient latch-up and electromigration. It concludes the nature of CMOS digital integrated circuit power distribution noise and recommends ways in which it may be minimised. It outlines an approach aimed at mechanising the developed simulation methodology so that the performance of power distribution networks may more routinely be assessed. Finally. it questions the long term suitability of mainly digital techniques for signal processing

    Fast synchronization 3R burst-mode receivers for passive optical networks

    Get PDF
    This paper gives a tutorial overview on high speed burst-mode receiver (BM-RX) requirements, specific for time division multiplexing passive optical networks, and design issues of such BM-RXs as well as their advanced design techniques. It focuses on how to design BM-RXs with short burst overhead for fast synchronization. We present design principles and circuit architectures of various types of burst-mode transimpedance amplifiers, burst-mode limiting amplifiers and burst-mode clock and data recovery circuits. The recent development of 10 Gb/s BM-RXs is highlighted also including dual-rate operation for coexistence with deployed PONs and on-chip auto reset generation to eliminate external timing-critical control signals provided by a PON medium access control. Finally sub-system integration and state-of-the-art system performance for 10 Gb/s PONs are reviewed

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes
    corecore