24 research outputs found

    Approximation Schemes for Partitioning: Convex Decomposition and Surface Approximation

    Full text link
    We revisit two NP-hard geometric partitioning problems - convex decomposition and surface approximation. Building on recent developments in geometric separators, we present quasi-polynomial time algorithms for these problems with improved approximation guarantees.Comment: 21 pages, 6 figure

    Target Contour Recovering for Tracking People in Complex Environments

    Get PDF
    Recovering people contours from partial occlusion is a challenging problem in a visual tracking system. Partial occlusions would bring about unreasonable contour changes of the target object. In this paper, a novel method is presented to detect partial occlusion on people contours and recover occluded portions. Unlike other occlusion detection methods, the proposed method is only based on contours, which makes itself more flexible to be extended for further applications. Experiments with synthetic images demonstrate the accuracy of the method for detecting partial occlusions, and experiments on real-world video sequence are also carried out to prove that the method is also good enough to be used to recover target contours

    Decomposition of branching volume data by tip detection

    Full text link
    We present an approach to decomposing branching volume data into sub-branches. First, a metric is proposed for evaluating local convexities in volumetric data, and it is a criterion for global selection of tip points. Second, a multi-path growing strategy is adopted to segment the volumes based on a DFS transformation starting from the tips. Experiments show that this approach is capable of generating desirable components and reasonable segmentation boundaries of a volume.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000265921401004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Computer Science, Artificial IntelligenceEngineering, Electrical & ElectronicImaging Science & Photographic TechnologyCPCI-S(ISTP)

    Topology driven 3D mesh hierarchical segmentation

    Get PDF
    International audienceIn this paper, we propose to address the semantic- oriented 3D mesh hierarchical segmentation problem, using enhanced topological skeletons. This high level information drives both the feature boundary computation as well as the feature hierarchy definition. Proposed hierarchical scheme is based on the key idea that the topology of a feature is a more important decomposition criterion than its geometry. First, the enhanced topological skeleton of the input triangulated surface is constructed. Then it is used to delimit the core of the object and to identify junction areas. This second step results in a fine segmentation of the object. Finally, a fine to coarse strategy enables a semantic-oriented hierarchical composition of features, subdividing human limbs into arms and hands for example. Method performance is evaluated according to seven criteria enumerated in latest segmentation surveys. Thanks to the high level description it uses as an input, presented approach results, with low computation times, in robust and meaningful compatible hierarchical decompositions

    Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory

    No full text
    We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling

    Fast Approximate Convex Decomposition

    Get PDF
    Approximate convex decomposition (ACD) is a technique that partitions an input object into "approximately convex" components. Decomposition into approximately convex pieces is both more efficient to compute than exact convex decomposition and can also generate a more manageable number of components. It can be used as a basis of divide-and-conquer algorithms for applications such as collision detection, skeleton extraction and mesh generation. In this paper, we propose a new method called Fast Approximate Convex Decomposition (FACD) that improves the quality of the decomposition and reduces the cost of computing it for both 2D and 3D models. In particular, we propose a new strategy for evaluating potential cuts that aims to reduce the relative concavity, rather than absolute concavity. As shown in our results, this leads to more natural and smaller decompositions that include components for small but important features such as toes or fingers while not decomposing larger components, such as the torso that may have concavities due to surface texture. Second, instead of decomposing a component into two pieces at each step, as in the original ACD, we propose a new strategy that uses a dynamic programming approach to select a set of n_c non-crossing (independent) cuts that can be simultaneously applied to decompose the component into n_c + 1 components. This reduces the depth of recursion and, together with a more efficient method for computing the concavity measure, leads to significant gains in efficiency. We provide comparative results for 2D and 3D models illustrating the improvements obtained by FACD over ACD and we compare with the segmentation methods given in the Princeton Shape Benchmark

    Pairwise Harmonics for Shape Analysis

    Full text link

    Automatic skeletonization and skin attachment for realistic character animation.

    Get PDF
    The realism of character animation is associated with a number of tasks ranging from modelling, skin defonnation, motion generation to rendering. In this research we are concerned with two of them: skeletonization and weight assignment for skin deformation. The fonner is to generate a skeleton, which is placed within the character model and links the motion data to the skin shape of the character. The latter assists the modelling of realistic skin shape when a character is in motion. In the current animation production practice, the task of skeletonization is primarily undertaken by hand, i.e. the animator produces an appropriate skeleton and binds it with the skin model of a character. This is inevitably very time-consuming and costs a lot of labour. In order to improve this issue, in this thesis we present an automatic skeletonization framework. It aims at producing high-quality animatible skeletons without heavy human involvement while allowing the animator to maintain the overall control of the process. In the literature, the tenn skeletonization can have different meanings. Most existing research on skeletonization is in the remit of CAD (Computer Aided Design). Although existing research is of significant reference value to animation, their downside is the skeleton generated is either not appropriate for the particular needs of animation, or the methods are computationally expensive. Although some purpose-build animation skeleton generation techniques exist, unfortunately they rely on complicated post-processing procedures, such as thinning and pruning, which again can be undesirable. The proposed skeletonization framework makes use of a new geometric entity known as the 3D silhouette that is an ordinary silhouette with its depth information recorded. We extract a curve skeleton from two 3D silhouettes of a character detected from its two perpendicular projections. The skeletal joints are identified by down sampling the curve skeleton, leading to the generation of the final animation skeleton. The efficiency and quality are major performance indicators in animation skeleton generation. Our framework achieves the former by providing a 2D solution to the 3D skeletonization problem. Reducing in dimensions brings much faster performances. Experiments and comparisons are carried out to demonstrate the computational simplicity. Its accuracy is also verified via these experiments and comparisons. To link a skeleton to the skin, accordingly we present a skin attachment framework aiming at automatic and reasonable weight distribution. It differs from the conventional algorithms in taking topological information into account during weight computation. An effective range is defined for a joint. Skin vertices located outside the effective range will not be affected by this joint. By this means, we provide a solution to remove the influence of a topologically distant, hence highly likely irrelevant joint on a vertex. A user-defined parameter is also provided in this algorithm, which allows different deformation effects to be obtained according to user's needs. Experiments and comparisons prove that the presented framework results in weight distribution of good quality. Thus it frees animators from tedious manual weight editing. Furthermore, it is flexible to be used with various deformation algorithms

    On some interactive mesh deformations

    Get PDF
    Techniques devoted to deform 3D models are an important research field in Computer Graphics. They can be used in differentstages: the modelling phase, the animation process and also during some special simulations. Additionally, some applications may require the manipulation of 3D models under certain restrictions to preserve the volume of the modified object. Hence, thepresent PhD Dissertation explores new algorithms to perform flexible, robust and efficient 3D deformations. Apart from this, it also researches on a new methodology to restrict these deformations so that the volume of the manipulated model remains constant. Some of the most used methods to achieve smooth deformations are those included in the Cage-Based Deformation paradigm. Cage-based deformations enclose the model to be deformed in a coarse polyhedron, the cage. Then, they usually rely on Generalized Barycentric Coordinates to relate the model with the vertices, and other geometric elements, of this cage, which are the control points or the deformation handles. Finally, every time that one of these handles is dragged, the model is deformed accordingly. Although this paradigm is simple, elegant and performs efficient deformations, some cage-free space deformation techniques have recently appeared. They increase the flexibility of the deformation handles, which do not need to be connected, and define powerful tools that make the deformation process more versatile and intuitive. In this context, the Dissertation introduces new Generalized Barycentric Coordinate systems specially designed to be used in a cage-free environment. Any user who wants to use the presented schemes only needs to locate a set of control points in the vicinity of the model that he or she wants to deform. These handles can be placed wherever he or she considers mode suitable and the only requirement is that the model has to be enclosed in their convex hull. Up to now, there are few techniques to produce volume-preserving space deformations. However, in recent years there has been a growing interest in performing constrained deformations due to their more realistic and physically plausible results. Our contribution to this research line consists in a deformation framework that preserves the volume of the 3D models by means of its gradient and a control surface to restrict the movement of the handles. Moreover, the proposed methodology is not restricted to the cage-based schemes, but it can also be used in a cage-free environment. Finally, our research can be specially useful for spatial deformations of biological and medical models. This kind of models represent real organs and tissues, which are often soft and lack an internal rigid structure. In addition, they are elastic and incompressible. Any application designed to deal with this group of models and to train or assist doctors must be flexible, robust, efficient and user-friendly. The combination of the proposed cage-free systems with the presented volume-preserving deformation framework satisfiesLes deformacions de models 3D s'utilitzen en diverses etapes de la generació de continguts digitals: durant la fase de modelatge, durant el procés d'animació i en alguns tipus de simulacions. A més a més, hi ha aplicacions que necessiten que la manipulació dels models 3D es faci tenint en compte certes restriccions que permeten la conservació del volum de l'objecte modificat. Tot plegat fa que les tècniques de deformació 3D siguin un camp d'estudi molt important dins del món dels Gràfics. Per aquesta raó, aquesta Tesi Doctoral estudia nous algorismes que permetin realitzar deformacions 3D de manera flexible, robusta i eficient i que, a més a més, permetin conservar el volum dels objectes modificats. Un dels paradigmes més utilitzats per tal de realitzar deformacions suaus és el conegut amb el nom de Deformacions Basades en un Poliedre Englobant. Aquesta família de mètodes embolcalla el model que es vol deformar, normalment representat com una malla de triangles, dins d'un poliedre simple, amb poques cares. Un cop fet això, estableix un sistema de Coordenades Baricèntriques Generalitzades per tal de definir els vèrtexs del model a partir dels vèrtexs del poliedre englobant, els quals s'anomenen punts de control o controls de la deformació. D'aquesta manera, cada cop que s'arrossega o es modifica un d'aquests punts de control, el model que es troba dins del poliedre englobant es deforma segons el sistema de coordenades que s'ha definit. Tot i que aquest paradigma és simple, elegant i eficient, des de fa ja uns anys han començat a aparèixer noves tècniques que no necessiten el poliedre englobant per tal de realitzar la deformació. El seu principal objectiu és augmentar la flexibilitat dels controls de la deformació i definir eines que facin que el procés de deformació sigui més versàtil i intuïtiu. Tenint en compte aquest factor, aquesta Tesi també estudia sistemes de Coordenades Baricèntriques Generalitzades dissenyats per realitzar deformacions sense la necessitat de definir el poliedre englobant. D'aquesta manera, qualsevol usuari que vulgui utilitzar els mètodes que es presenten en aquesta Dissertació només s'ha d'encarregar de definir un conjunt de punts de control al voltant del model que vol deformar, podent-los posar allí on consideri més oportú segons la deformació que vulgui obtenir. L'únic requeriment necessari és que el model ha de quedar dins de l'envolupant convexa d'aquests punts de control. Actualment existeixen pocs mètodes que realitzin deformacions 3D amb preservació del volum. No obstant això, d'un temps ençà ha augmentat l'interès per realitzar deformacions subjectes a certes restriccions que fan que el resultat sigui més realista i físicament versemblant. La contribució d'aquesta Tesi dins d'aquesta línia de recerca consisteix en un sistema de deformació que preserva el volum dels objectes 3D gràcies a còmput del seu gradient i a una superfície de control que restringeix el moviment dels punts de control. Aquest mètode es pot aplicar tant als sistemes de deformació que necessiten un poliedre englobant com als que no el necessiten. Finalment, i ja per acabar, la recerca realitzada pot ser especialment útil per tal de realitzar deformacions de models mèdics i biològics. Aquests tipus de models poden representar òrgans i teixits reals, els quals, normalment, són tous, mancats d'una estructura rígida interna, elàstics i incompressibles. Qualsevol aplicació dissenyada per treballar amb aquest tipus de models i per entrenar i donar assistència a usuaris mèdics hauria de ser flexible, robusta, eficient i fàcil d'utilitzar. La combinació dels mètodes de deformació proposats conjuntament amb el sistema de preservació de volum satisfà totes aquestes condicions. Per aquesta raó es creu que les contribucions realitzades poden esdevenir eines importants per produir deformacions mèdiques.Postprint (published version
    corecore