1,808 research outputs found

    Consistent Map Building Based on Sensor Fusion for Indoor Service Robot

    Get PDF

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    Graph Optimization Approach to Range-based Localization

    Full text link
    In this paper, we propose a general graph optimization based framework for localization, which can accommodate different types of measurements with varying measurement time intervals. Special emphasis will be on range-based localization. Range and trajectory smoothness constraints are constructed in a position graph, then the robot trajectory over a sliding window is estimated by a graph based optimization algorithm. Moreover, convergence analysis of the algorithm is provided, and the effects of the number of iterations and window size in the optimization on the localization accuracy are analyzed. Extensive experiments on quadcopter under a variety of scenarios verify the effectiveness of the proposed algorithm and demonstrate a much higher localization accuracy than the existing range-based localization methods, especially in the altitude direction

    Data-Driven Predictive Modeling to Enhance Search Efficiency of Glowworm-Inspired Robotic Swarms in Multiple Emission Source Localization Tasks

    Get PDF
    In time-sensitive search and rescue applications, a team of multiple mobile robots broadens the scope of operational capabilities. Scaling multi-robot systems (\u3c 10 agents) to larger robot teams (10 – 100 agents) using centralized coordination schemes becomes computationally intractable during runtime. One solution to this problem is inspired by swarm intelligence principles found in nature, offering the benefits of decentralized control, fault tolerance to individual failures, and self-organizing adaptability. Glowworm swarm optimization (GSO) is unique among swarm-based algorithms as it simultaneously focuses on searching for multiple targets. This thesis presents GPR-GSO—a modification to the GSO algorithm that incorporates Gaussian Process Regression (GPR) based data-driven predictive modeling—to improve the search efficiency of robotic swarms in multiple emission source localization tasks. The problem formulation and methods are presented, followed by numerical simulations to illustrate the working of the algorithm. Results from a comparative analysis show that the GPR-GSO algorithm exceeds the performance of the benchmark GSO algorithm on evaluation metrics of swarm size, search completion time, and travel distance

    Multiple UAV systems: a survey

    Get PDF
    Nowadays, Unmanned Aerial Vehicles (UAVs) are used in many different applications. Using systems of multiple UAVs is the next obvious step in the process of applying this technology for variety of tasks. There are few research works that cover the applications of these systems and they are all highly specialized. The goal of this survey is to fill this gap by providing a generic review on different applications of multiple UAV systems that have been developed in recent years. We also present a nomenclature and architecture taxonomy for these systems. In the end, a discussion on current trends and challenges is provided.This work was funded by the Ministry of Economy, Industryand Competitiveness of Spain under Grant Nos. TRA2016-77012-R and BES-2017-079798Peer ReviewedPostprint (published version

    2007 Annual Report of the Graduate School of Engineering and Management, Air Force Institute of Technology

    Get PDF
    The Graduate School\u27s Annual Report highlights research focus areas, new academic programs, faculty accomplishments and news, and provides top-level sponsor-funded research data and information

    Optimization of swarm robotic constellation communication for object detection and event recognition

    Get PDF
    Swarm robotics research describes the study of how a group of relatively simple physically embodied agents can, through their interaction collectively accomplish tasks which are far beyond the capabilities of a single agent. This self organizing but decentralized form of intelligence requires that all members are autonomous and act upon their available information. From this information they are able to decide their behavior and take the appropriate action. A global behavior can then be witnessed that is derived from the local behaviors of each agent. The presented research introduces the novel method for optimizing the communication and the processing of communicated data for the purpose of detecting large scale meta object or event, denoted as meta event, which are unquantifiable through a single robotic agent. The ability of a swarm of robotic agents to cover a relatively large physical environment and their ability to detect changes or anomalies within the environment is especially advantageous for the detection of objects and the recognition of events such as oil spills, hurricanes, and large scale security monitoring. In contrast a single robot, even with much greater capabilities, could not explore or cover multiple areas of the same environment simultaneously. Many previous swarm behaviors have been developed focusing on the rules governing the local agent to agent behaviors of separation, alignment, and cohesion. By effectively optimizing these simple behaviors in coordination, through cooperative and competitive actions based on a chosen local behavior, it is possible to achieve an optimized global emergent behavior of locating a meta object or event. From the local to global relationship an optimized control algorithm was developed following the basic rules of swarm behavior for the purpose of meta event detection and recognition. Results of this optimized control algorithm are presented and compared with other work in the field of swarm robotics
    • …
    corecore