1,865 research outputs found

    Control technology overview in CSI

    Get PDF
    A brief control technology overview is given in Control Structures Interaction (CSI) by illustrating that many future NASA mission present significant challenges as represented by missions having a significantly increased number of important system states which may require control and by identifying key CSI technology needs. The JPL CSI related technology developments are discussed to illustrate that some of the identified control needs are being pursued. Since experimental confirmation of the assumptions inherent in the CSI technology is critically important to establishing its readiness for space program applications, the areas of ground and flight validation require high priority

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Control and structural optimization for maneuvering large spacecraft

    Get PDF
    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment

    Modeling, Analysis, and Optimization Issues for Large Space Structures

    Get PDF
    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design

    Robust model-based controller synthesis for the SCOLE configuration

    Get PDF
    The design of a robust compensator is considered for the SCOLE configuration using a frequency-response shaping technique based on the LQG/LTR algorithm. Results indicate that a tenth-order compensator can be used to meet stability-performance-robustness conditions for a 26th-order SCOLE model without destabilizing spillover effects. Since the SCOLE configuration is representative of many proposed spaceflight experiments, the results and design techniques employed potentially should be applicable to a wide range of large space structure control problems

    Control of large space structures

    Get PDF
    The control of large space structures was studied to determine what, if any, limitations are imposed on the size of spacecraft which may be controlled using current control system design technology. Using a typical structure in the 35 to 70 meter size category, a control system design that used actuators that are currently available was designed. The amount of control power required to maintain the vehicle in a stabilized gravity gradient pointing orientation that also damped various structural motions was determined. The moment of inertia and mass properties of this structure were varied to verify that stability and performance were maintained. The study concludes that the structure's size is required to change by at least a factor of two before any stability problems arise. The stability margin that is lost is due to the scaling of the gravity gradient torques (the rigid body control) and as such can easily be corrected by changing the control gains associated with the rigid body control. A secondary conclusion from the study is that the control design that accommodates the structural motions (to damp them) is a little more sensitive than the design that works on attitude control of the rigid body only

    Control structural interaction testbed: A model for multiple flexible body verification

    Get PDF
    Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment

    Technology for large space systems: A special bibliography with indexes (supplement 03)

    Get PDF
    A bibliography containing 217 abstracts addressing the technology for large space systems is presented. State of the art and advanced concepts concerning interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, solar power satellite systems, and flight experiments are represented

    Simulation capability for dynamics of two-body flexible satellites

    Get PDF
    An analysis and computer program were prepared to realistically simulate the dynamic behavior of a class of satellites consisting of two end bodies separated by a connecting structure. The shape and mass distribution of the flexible end bodies are arbitrary; the connecting structure is flexible but massless and is capable of deployment and retraction. Fluid flowing in a piping system and rigid moving masses, representing a cargo elevator or crew members, have been modeled. Connecting structure characteristics, control systems, and externally applied loads are modeled in easily replaced subroutines. Subroutines currently available include a telescopic beam-type connecting structure as well as attitude, deployment, spin and wobble control. In addition, a unique mass balance control system was developed to sense and balance mass shifts due to the motion of a cargo elevator. The mass of the cargo may vary through a large range. Numerical results are discussed for various types of runs

    SPECIFIED MOTION AND FEEDBACK CONTROL OF ENGINEERING STRUCTURES WITH DISTRIBUTED SENSORS AND ACTUATORS

    Get PDF
    This dissertation addresses the control of flexible structures using distributed sensors and actuators. The objective to determine the required distributed actuation inputs such that the desired output is obtained. Two interrelated facets of this problem are considered. First, we develop a dynamic-inversion solution method for determining the distributed actuation inputs, as a function of time, that yield a specified motion. The solution is shown to be useful for intelligent structure design, in particular, for sizing actuators and choosing their placement. Secondly, we develop a new feedback control method, which is based on dynamic inversion. In particular, filtered dynamic inversion combines dynamic inversion with a low-pass filter, resulting in a high-parameter-stabilizing controller, where the parameter gain is the filter cutoff frequency. For sufficiently large parameter gain, the controller stabilizes the closed-loop system and makes the L2-gain of the performance arbitrarily small, despite unknown-and-unmeasured disturbances. The controller is considered for both linear and nonlinear structural models
    • …
    corecore