64,920 research outputs found

    A framework for simultaneous task allocation and planning under uncertainty

    Get PDF
    We present novel techniques for simultaneous task allocation and planning in multi-robot systems operating under uncertainty. By performing task allocation and planning simultaneously, allocations are informed by individual robot behaviour, creating more efficient team behaviour. We go beyond existing work by planning for task reallocation across the team given a model of partial task satisfaction under potential robot failures and uncertain action outcomes. We model the problem using Markov decision processes, with tasks encoded in co-safe linear temporal logic, and optimise for the expected number of tasks completed by the team. To avoid the inherent complexity of joint models, we propose an alternative model that simultaneously considers task allocation and planning, but in a sequential fashion. We then build a joint policy from the sequential policy obtained from our model, thus allowing for concurrent policy execution. Furthermore, to enable adaptation in the case of robot failures, we consider replanning from failure states and propose an approach to preemptively replan in an anytime fashion, replanning for more probable failure states first. Our method also allows us to quantify the performance of the team by providing an analysis of properties such as the expected number of completed tasks under concurrent policy execution. We implement and extensively evaluate our approach on a range of scenarios. We compare its performance to a state-of-the-art baseline in decoupled task allocation and planning: sequential single-item auctions. Our approach outperforms the baseline in terms of computation time and the number of times replanning is required on robot failure

    Verified multi-robot planning under uncertainty

    Get PDF
    Multi-robot systems are being increasingly deployed to solve real-world problems, from warehouses to autonomous fleets for logistics, from hospitals to nuclear power plants and emergency search and rescue scenarios. These systems often need to operate in uncertain environments which can lead to robot failure, uncertain action durations or the inability to complete assigned tasks. In many scenarios, the safety or reliability of these systems is critical to their deployment. Therefore there is a need for robust multi-robot planning solutions that offer guarantees on the performance of the robot team. In this thesis we develop techniques for robust multi-robot task allocation and planning under uncertainty by building on techniques from formal verification. We present three algorithms that solve the problem of task allocation and planning for a multi-robot team operating under uncertainty. These algorithms are able to calculate the expected maximum number of tasks the multi-robot team can achieve, considering the possibility of robot failure. They are also able to reallocate tasks when robots fail. We formalise the problem of task allocation and robust planning for a multi-robot team using Linear Temporal Logic to specify the team's mission and Markov decision processes to model the robots. Our first solution method is a sampling based approach to simultaneous task allocation and planning. Our second solution method separates task allocation and planning for the same problem using auctioning for the former. Our final solution lies midway between the first two using simultaneous task allocation and planning in a sequential team model. We evaluate all solution approaches extensively using a set of tests inspired by existing benchmarks in related fields with a focus on scalability

    Multiagent planning with Bayesian nonparametric asymptotics

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 95-105).Autonomous multiagent systems are beginning to see use in complex, changing environments that cannot be completely specified a priori. In order to be adaptive to these environments and avoid the fragility associated with making too many a priori assumptions, autonomous systems must incorporate some form of learning. However, learning techniques themselves often require structural assumptions to be made about the environment in which a system acts. Bayesian nonparametrics, on the other hand, possess structural flexibility beyond the capabilities of past parametric techniques commonly used in planning systems. This extra flexibility comes at the cost of increased computational cost, which has prevented the widespread use of Bayesian nonparametrics in realtime autonomous planning systems. This thesis provides a suite of algorithms for tractable, realtime, multiagent planning under uncertainty using Bayesian nonparametrics. The first contribution is a multiagent task allocation framework for tasks specified as Markov decision processes. This framework extends past work in multiagent allocation under uncertainty by allowing exact distribution propagation instead of sampling, and provides an analytic solution time/quality tradeoff for system designers. The second contribution is the Dynamic Means algorithm, a novel clustering method based upon Bayesian nonparametrics for realtime, lifelong learning on batch-sequential data containing temporally evolving clusters. The relationship with previous clustering models yields a modelling scheme that is as fast as typical classical clustering approaches while possessing the flexibility and representational power of Bayesian nonparametrics. The final contribution is Simultaneous Clustering on Representation Expansion (SCORE), which is a tractable model-based reinforcement learning algorithm for multimodel planning problems, and serves as a link between the aforementioned task allocation framework and the Dynamic Means algorithmby Trevor D. J. Campbell.S.M

    A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids

    Get PDF
    This work focuses on the development of optimization-based scheduling strategies for the coordination of microgrids. The main novelty of this work is the simultaneous management of energy production and energy demand within a reactive scheduling approach to deal with the presence of uncertainty associated to production and consumption. Delays in the nominal energy demands are allowed under associated penalty costs to tackle flexible and fluctuating demand profiles. In this study, the basic microgrid structure consists of renewable energy systems (photovoltaic panels, wind turbines) and energy storage units. Consequently, a Mixed Integer Linear Programming (MILP) formulation is presented and used within a rolling horizon scheme that periodically updates input data information

    A greedy heuristic approach for the project scheduling with labour allocation problem

    Get PDF
    Responding to the growing need of generating a robust project scheduling, in this article we present a greedy algorithm to generate the project baseline schedule. The robustness achieved by integrating two dimensions of the human resources flexibilities. The first is the operators’ polyvalence, i.e. each operator has one or more secondary skill(s) beside his principal one, his mastering level being characterized by a factor we call “efficiency”. The second refers to the working time modulation, i.e. the workers have a flexible time-table that may vary on a daily or weekly basis respecting annualized working strategy. Moreover, the activity processing time is a non-increasing function of the number of workforce allocated to create it, also of their heterogynous working efficiencies. This modelling approach has led to a nonlinear optimization model with mixed variables. We present: the problem under study, the greedy algorithm used to solve it, and then results in comparison with those of the genetic algorithms
    • …
    corecore