
Multiagent Planning with Bayesian

Nonparametric Asymptotics

by

Trevor D. J. Campbell

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2013

© Massachusetts Institute of Technology 2013. All

A uthor
Dep n ent of Aeronautics

Certified by

rights reserved.

and Astronautics
August 22, 2013

Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
Thesis Supervisor

/

Accepted by.....................
rofessor Eytan H. Modiano

Professor of eronautics and Astronautics
Chair, Graduate Program Committee

MASSACHUSETTS IENIfE
OF TECHNOLOGY

NOV 12 2013

LIBRARIES

2

Multiagent Planning with Bayesian Nonparametric

Asymptotics

by

Trevor D. J. Campbell

Submitted to the Department of Aeronautics and Astronautics
on August 22, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Autonomous multiagent systems are beginning to see use in complex, changing en-
vironments that cannot be completely specified a priori. In order to be adaptive to
these environments and avoid the fragility associated with making too many a priori
assumptions, autonomous systems must incorporate some form of learning. How-
ever, learning techniques themselves often require structural assumptions to be made
about the environment in which a system acts. Bayesian nonparametrics, on the other
hand, possess structural flexibility beyond the capabilities of past parametric tech-
niques commonly used in planning systems. This extra flexibility comes at the cost
of increased computational cost, which has prevented the widespread use of Bayesian
nonparametrics in realtime autonomous planning systems.

This thesis provides a suite of algorithms for tractable, realtime, multiagent plan-
ning under uncertainty using Bayesian nonparametrics. The first contribution is a
multiagent task allocation framework for tasks specified as Markov decision processes.
This framework extends past work in multiagent allocation under uncertainty by al-
lowing exact distribution propagation instead of sampling, and provides an analytic
solution time/quality tradeoff for system designers. The second contribution is the
Dynamic Means algorithm, a novel clustering method based upon Bayesian nonpara-
metrics for realtime, lifelong learning on batch-sequential data containing temporally
evolving clusters. The relationship with previous clustering models yields a modelling
scheme that is as fast as typical classical clustering approaches while possessing the
flexibility and representational power of Bayesian nonparametrics. The final contri-
bution is Simultaneous Clustering on Representation Expansion (SCORE), which is
a tractable model-based reinforcement learning algorithm for multimodel planning
problems, and serves as a link between the aforementioned task allocation framework
and the Dynamic Means algorithm.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics

3

4

Acknowledgments

There are a number of people who have my utmost appreciation for helping me along

my travels here at MIT. First and foremost, my advisor Jon - it has been, and will

continue to be, a pleasure exploring and developing the world of autonomous planning

with you. Your supervision has been crucial in shaping my research interests, how I

approach problems, and how I communicate my findings to the academic world.

In no uncertain terms do I owe my success in my endeavours to my friends and

family. Mom, Dad, Emily - thank you for keeping me sane, giving me a brief respite

from the fast-paced world of research from time to time, and celebrating with me

when I made breakthroughs. To my group of awesome friends from the University

of Toronto - Sean, Rick, Manan, Jamie, Konstantine, Adam, Sanae, Catherine, Amy,

Angela, and countless more - thanks for sticking with me through thick and thin. To

my new friends here at MIT - Sam, Luke, Buddy, Ian, Dan, Andrew, Kemal, Bobby,

Chris, Jack, Rob, Kane, Miao, Andrew, Nikhil, Vyas, and everyone else - thanks for

making me feel right at home here in Boston. To Brendan, I've had the time of my

life being a student of yours - you've opened my mind to a completely new world

of improvisation, voicings, and keyboard geometry that, until meeting you, I had no

idea existed.

Last, but most certainly not least, I thank my wonderful girlfriend Maria. Your

love and support have been the foundation upon which I have stood, and your per-

severence in your own academics is an inspiration to me.

This work was supported by ONR MURI Grant N000141110688, and a Natural

Sciences and Engineering Research Council of Canada PGS-M grant.

5

For fifteen days I struggled to prove that no functions analogous to those I have since

called Fuchsian functions could exist. I was then very ignorant; every day I sat down at

my work table where I spent an hour or two, tried a great number of combinations and

arrived at no result. One evening, contrary to my custom, I took black coffee. I could not

go to sleep; ideas swarmed up in clouds, and I sensed them clashing until, to put it so, a

pair would hook together to form a stable combination. By morning I had established the

existence of a class of Fuchsian functions, those derived from the hypergeometric series. I

had only to write up the results, which took but a few hours.

Henri Poincare

6

Contents

1 Introduction

1.1 Overview.

1.2 Literature Review and Analysis

1.3 Thesis Contributions and Organization

2 Background

2.1 Overview.

2.2 Bayesian Nonparametrics

2.3 Markov Decision Processes

2.4 Multiagent Task Allocation

3 Multiagent Allocation of Markov Decision Process Tasks

3.1 Overview

3.2 Introduction .

3.3 Problem Statement .

3.4 MDP Task Model .

3.5 Task Sequence Evaluation

3.6 Computing Starting State/Time Distributions

3.7 Algorithm and Complexity Analysis

3.8 Example: Target Identification

3.9 Sum m ary .

4 The Dynamic Means Algorithm

4.1 O verview .

4.2 Introduction .

4.3 Asymptotic Analysis of the DDP Mixture

4.4 The Dynamic Means Algorithm

4.5 A pplications .

7

9

9

11

16

19

19

19

33

38

41

41

42

44

45

46

48

51

52

56

57

57

58

60

64

70

.

.

.

4.6 Summary 74

5 SCORE: Simultaneous Clustering on Representation Expansion 77

5.1 O verview . 77

5.2 Introduction 78

5.3 Simultaneous Clustering On Representation Expansion (SCORE) . . 80

5.4 Experimental Results . 85

5.5 Sum m ary . 87

5.6 A ppendix . 88

6 Conclusions 91

6.1 Summary and Contributions . 91

6.2 Future W ork . 92

References 94

8

Chapter 1

Introduction

1.1 Overview

Autonomous multiagent systems are becoming increasingly prevalent in situations in-

volving complex, changing environments that cannot be completely specified a priori

[1-5]. In such situations, the system must coordinate and make decisions based upon

information gathered from the environment in which it acts. There are a number

of ways to take observed data into account when planning; one of the most popu-

lar techniques is a model-based approach, where observations are used to update a

compact, approximate representation (a model) of the environment, and decisions

are made with respect to that model. Having an accurate model is often paramount

to the success of the autonomous system; however, in realistic missions, an accurate

model generally cannot be obtained with certainty. The observations made by the

system are often noisy, incomplete, and local, leading to uncertainty in which model

best captures the relevant aspects of the environment.

A principled approach of dealing with this uncertainty is to use a probabilistic

model of the environment. Such techniques involve specifying an initial model, which

is then updated using Bayesian posterior inference as observations are made [6-8].

This initial model has, in the vast majority of probabilistic planning literature, fallen

into the class of parametric probabilistic models (e.g. the beta-Bernoulli model [9]).

The use of such parametric models requires the system designer to take a certain leap

9

of faith; parametric models assume the structure of the model, or its number of con-

stituent components, is well-known and fixed. Of course, both of these assumptions

are routinely violated by real-world planning missions; the model structure is rarely

known a priori, and even more rarely is it constant throughout the duration of the

mission.

Bayesian nonparametric models (BNPs), on the other hand, are a class of proba-

bilistic models in which the number of parameters is mutable, and may be modified

during posterior inference [10-15]. BNPs have a flexible structure and, therefore,

are particularly useful in situations where it is not clear what the model structure

should be a priori. The designer is thus free from specifying the model structure,

instead allowing the system to discover it through interactions with its environment.

However, the enhanced flexibility of Bayesian nonparametrics with respect to their

parametric counterparts does not come without a cost. Current inference techniques,

such as Gibbs sampling [16], variational inference [17], stochastic variational inference

[18], and particle learning [19], are not computationally competitive with parametric

inference techniques.

This problem of computational tractability is not unique to the learning compo-

nent of a model-based autonomous system; past approaches to multiagent planning

under uncertainty suffer from similar pitfalls. Markov decision processes (MDPs) are

a natural framework for describing sequential decision-making problems, can capture

rich forms of uncertainty in the evolution of the surrounding environment, and have

been used in a wide variety of applications [20]. However, they suffer from the "curse

of dimensionality": the difficulty of solving the planning problem scales exponentially

with the number of agents in the system. Recent approaches have mitigated this to

an extent, but are still computationally expensive and sacrifice explicit, guaranteed

coordination [21]. Multiagent task allocation approaches, on the other hand, have a

computational cost that scales polynomially in the number of agents, and guarantee

explicit coordination; however, to date, all such methods that account for uncertainty

do not perform model learning based on observations, and require computationally

expensive sampling procedures to evaluate the performance of candidate allocations

10

[22]. The issues of computational cost (both incurred by the learning and plan-

ning procedures) are particularly relevant when considering the computational power

available in current embedded systems, such as those found in many autonomous

multiagent systems.

Thus, the goal of this thesis is the development of a Bayesian nonparametric

model-based multiagent planning system, with a focus on the tractable incorporation

of uncertainty at both the planning and learning stages.

1.2 Literature Review and Analysis

Multiagent Task Allocation Task allocation algorithms generally solve the prob-

lem of deciding, given a list of tasks to do and available resources, an assignment of

resources to tasks that maximizes some notion of overall system performance [23]. The

problem statement most commonly used is that of a general mixed-integer, nonlinear

optimization program. As this mathematical program is intractable to solve exactly,

solution techniques generally involve heuristics (e.g. sequential greedy allocation). Re-

cent advances in this literature have provided polynomial-time, asynchronous, decen-

tralized auctions with guaranteed convergence [24-28], but such advances are designed

to provide assignments when task models have a constant, deterministic state (e.g.

visiting a set of waypoints). These greedy assignment algorithms have, however, been

extended to include the effects of stochastic parameters on the overall task assignment

process, and have considered robust, chance-constrained, and expected performance

metrics [22, 29]. The most successful of these were the chance-constrained approaches;

however, they rely on sampling a set of particles from the distributions of stochastic

parameters and making informed decisions based on those particles, with no notion

of solution quality vs. the number of propagated samples. Further, these approaches

do not incorporate learning to improve the stochastic models over time. Conversely,

there are approaches which do incorporate learning (e.g. the Intelligent Cooperative

Control Architecture (iCCA) [30, 31]) to reduce model uncertainty, but plan using the

expected model and do not actually account for the uncertainty in the model during

11

the allocation procedure itself. Thus, while scalable coordination under uncertainty

has been studied within this framework, the areas of concurrent learning and alloca-

tion under uncertainty, and exact evaluation of assignment score under uncertainty

remain un-addressed.

Markov Decision Processes In the framework of Markov decision processes, ex-

plicit and guaranteed multiagent coordination for general problems is well known to

exhibit exponential computational scaling with respect to the number of agents in

the team [21]. On the other hand, a number of previous studies have explored the

benefits of decomposing MDPs into smaller weakly coupled [32] concurrent processes,

solving each individually, and merging the solutions to form a solution of the larger

problem [33, 34]. Building on that work, several researchers have considered problems

where shared resources must be allocated amongst the concurrent MDPs [32, 35]; gen-

erally, in such problems, the allocation of resources amongst the MDPs determines

which actions are available in each MDP, or the transition probabilities in each MDP.

Some approaches involve solving resource allocation or coordination problems by mod-

elling them within the MDP itself [36, 37]. Assignment based decompositions have

also been studied [38], where cooperation between agents is achieved via coordinated

reinforcement learning [39]. However, none of these approaches have considered the

impact of previous tasks on future tasks. This is of importance in multiagent multi-

assignment planning problems; for instance, if an agent is assigned a task involving

a high amount of uncertainty, that uncertainty should be properly accounted for in

all of its subsequent tasks (whose starting conditions depend on the final state of the

uncertain task). This allows the team to hedge against the risk associated with the

uncertain task, and allocate the subsequent tasks accordingly. Past work has focused

primarily on parallel, infinite-horizon tasks [32, 35], and have not encountered the

cascading uncertainty that is characteristic of sequential bundles of uncertain tasks.

Bayesian Nonparametrics - Learning Several authors have explored BNP tech-

niques within the context of machine learning [10, 11, 13, 15, 40-46]. For example,

12

BNPs have been used for speaker diarization [14], for document classification [11], for

classifying life history data [46], and for classifying underwater habitats [47]. Many

Bayesian nonparametric models exist, such as the Dirichlet process and its hierar-

chical variant [10, 11], the beta process and its hierarchical variant [13], and the

dependent Dirichlet process [12, 48]. The Dirichlet and dependent Dirichlet processes

are the primary BNPs used in this thesis; the reader is encouraged to consult the

references for more complete discussions of the other existing models.

The Dirichlet process mixture model (DPMM) is a powerful tool for clustering data

that enables the inference of an unbounded number of mixture components, and has

been widely studied in the machine learning and statistics communities [17, 19, 49, 50].

Despite its flexibility, it assumes the observations are exchangeable, and therefore that

the data points have no inherent ordering that influences their labeling. This assump-

tion is invalid for modeling temporally/spatially evolving phenomena, in which the

order of the data points plays a principal role in creating meaningful clusters. The de-

pendent Dirichlet process (DDP), originally formulated by MacEachern [48], provides

a prior over such evolving mixture models, and is a promising tool for incrementally

monitoring the dynamic evolution of the cluster structure within a dataset. More

recently, a construction of the DDP built upon completely random measures [12]

led to the development of the dependent Dirichlet process Mixture model (DDPMM)

and a corresponding approximate posterior inference Gibbs sampling algorithm. This

model generalizes the DPMM by including birth, death and transition processes for

the clusters in the model.

While Bayesian nonparametrics are powerful in their capability to capture com-

plex structures in data without requiring explicit model selection, they suffer some

practical shortcomings. Inference techniques for BNPs typically fall into two classes:

sampling methods (e.g. Gibbs sampling [50] or particle learning [19, 51]) and optimiza-

tion methods (e.g. variational inference [17] or stochastic variational inference [18]).

Current methods based on sampling do not scale well with the size of the dataset [52].

Most optimization methods require analytic derivatives and the selection of an upper

bound on the number of clusters a priori, where the computational complexity in-

13

creases with that upper bound [17, 18]. State-of-the-art techniques in both classes are

not ideal for use in contexts where performing inference quickly and reliably on large

volumes of streaming data is crucial for timely decision-making, such as autonomous

robotic systems [53-55]. On the other hand, many classical clustering methods [56-

58] scale well with the size of the dataset and are easy to implement, and advances

have recently been made to capture the flexibility of Bayesian nonparametrics in such

approaches [57-60]. There are also a number of sequential Monte-Carlo methods that

have capabilities similar to the DDP mixture model [61, 62] (of which particle learn-

ing may be seen as a generalization). However, as of yet, there is no algorithm that

captures dynamic cluster structure with the same representational power as the DDP

mixture model while having the low computational workload of classical clustering

algorithms.

Bayesian Nonparametrics - Planning Within the context of planning, BNPs

are just beginning to make a substantial impact. The robotics community has per-

haps made the most use of BNPs so far; however, the attention here has been limited

primarily to Gaussian processes (GPs). GP-based models have been used for regres-

sion and classification [15], for Kalman filtering [63], and for multistep lookahead

predictions [64]. Several authors have also used GPs for planning in the framework

of dynamic programming and reinforcement learning [65, 66], and in motion planning

in the presence of dynamic, uncertain obstacles [67]. The Dirichlet process (DP) has

been combined with the GP to form the DPGP mixture model, which has seen use in

target tracking [68]. Finally, hierarchical Dirichlet processes have seen use in various

Markov systems, such as hidden Markov models [14] and partially observable Markov

decision processes [69]. This lack of substantial BNP research in planning has been

noted in previous studies [70].

Multiple Model-based Reinforcement Learning This thesis employs model-

based reinforcement learning (RL) to capture systems that exhibit an underlying

multiple-model (or multimodel) structure, i.e. those that can be described as a col-

14

lection of distinct models with some underlying mechanism for switching between

them. Generally speaking, the model-based RL paradigm involves building an accu-

rate model of a MDP from observed interactions [71, 72]. There is a vast body of prior

literature on model-based reinforcement learning methods, such as classical methods

(e.g. Dyna [71, 73, 74]), Bayesian methods (e.g. BOSS [75], BEETLE [76]), methods

with statistical error bounds (e.g. R-Max [77], KWIK [78]), among others. However,

these techniques do not incorporate the aforementioned multimodel structure, result-

ing in a learned model that is the average over the set of underlying models. Early

work on controlling systems with multiple models that does take advantage of the

structure, such as MOSAIC [79] and MPFIM [80], used a softmax mixture of control

experts where weights are determined by predictive likelihood. Multiple model-based

reinforcement learning (MMRL) [81], built upon these methods, involves using a

mixture of experts for the model representation, where the weighted experts are used

for updating value functions, models, and deciding which action to take. MOSAIC-

MR [82] extends MMRL and MOSAIC to the case where changes in the reward

function are unobservable, and does not pair controllers a priori with fixed predictors

of dynamics and reward. One major drawback of approaches such as MOSAIC-MR is

that the number of models is fixed and known a priori, as is the chosen representation;

this limits the capability of such approaches to handle situations where the number

of models is unknown a priori, in addition to their individual complexity. Outside of

the domain of reinforcement learning, a number of Bayesian nonparametric methods

exist that learn an unknown number of underlying models within a single system. For

example, the sticky HDP-SLDS-HMM and HDP-AR-HMM [83] learn a set of linear

or autoregressive dynamical systems, where the switching between the models is con-

trolled by a hidden Markov model with an unknown number of states. However, the

structure of each underlying model is fixed and does not adapt to better capture the

data. The DPGP [68] is a good example of a BNP that learns an underlying multiple

model structure; the number of models is unknown, and each Gaussian process (GP)

model adapts to fit the data assigned to it. However, using the original DPGP (and

indeed, most Bayesian nonparametric inference techniques [17-19]) in an RL setting

15

is impractical due to the complexity of inference.

1.3 Thesis Contributions and Organization

The rest of this thesis proceeds as follows. Chapter 2 provides a technical background

in Bayesian nonparametric modelling, Markov decision processes, and multiagent task

allocation. Chapters 3, 4, and 5 highlight the three major contributions of this thesis:

9 Chapter 3 presents the development of a multiagent task allocation framework

for tasks specified as Markov decision processes. This framework extends past

work in multiagent allocation under uncertainty by incorporating the generality

of Markov decision processes, allows exact distribution propagation instead of

sampling, and provides an analytic solution time/quality tradeoff for system

designers. Empirical results corroborate the theoretical results, demonstrating

that this method remains tractable in the presence of a large number of agents

and uncertain tasks. The discussion in this chapter makes the assumption that

all system models are well-known.

9 Chapter 4 introduces the tool that will serve to relax the assumption that the

system models are well known: the Dynamic Means algorithm, a novel clustering

method based upon Bayesian nonparametrics for real-time, lifelong learning on

batch-sequential data containing temporally evolving clusters. This algorithm is

developed by analyzing the low-variance asymptotics of the dependent Dirichlet

process mixture model, and is guaranteed to converge in a finite number of

iterations to a local optimum in a k-means-like cost function. Empirical results

demonstrate that the Dynamic Means algorithm is faster than typical classical

hard and probabilistic clustering approaches, while possessing the flexibility and

representational power of Bayesian nonparametrics.

* Chapter 5 discusses a reinforcement learning framework, the Simultaneous Clus-

tering on Representation Expansion (SCORE) algorithm, that links the con-

cepts in Chapters 3 and 4. By combining the strengths of representation expan-

16

sion and hard clustering, this algorithm provides a method for fast, model-based

reinforcement learning when the planning problem is large and exhibits an un-

derlying multiple-model structure. The algorithm is guaranteed to terminate

in a finite number of iterations to a local optimum in a combined clustering-

expansion cost function. Empirical results on a simulated domain demonstrate

that this method remains tractable for large state-spaces and outperforms con-

temporary techniques in terms of both the sample and time complexity of learn-

ing.

The three aforementioned contributions together form a full toolset for combined

planning and learning, which operates in real-time and has the flexibility of Bayesian

nonparametrics.

Finally, Chapter 6 concludes the thesis and provides future directions for further

investigation.

17

18

Chapter 2

Background

2.1 Overview

This chapter provides a comprehensive review of the background material required

to understand this thesis. It covers the basics of Bayesian nonparametric modeling

and inference (and in particular, the Dirichlet and dependent Dirichlet processes),

Markov decision processes, and multiagent task allocation.

2.2 Bayesian Nonparametrics

Bayesian modelling and inference generally involves using measurements to improve

a probabilistic model of an observed phenomena. The two major components of

a Bayesian probabilistic model are the likelihood and the prior distributions: The

likelihood p(yl0) is a distribution that represents the probability of the observed

data y given a set of parameters 0, while the prior p(O) represents the probability

distribution over those parameters (sometimes referred to as latent variables) before

any observations are made. As measurements become available, the prior is combined

with the likelihood of those measurements using Bayes' rule, resulting in a posterior

distribution p(O1y) over the parameters 0:

P(Y) = Y O) (2.1)
p(y)

19

Where the posterior may be thought of as an updated distribution over 0 that takes

into account all information contained in the observations y.

If the posterior p(Oly) is of the same family of distributions as the prior p(0), when

using a particular likelihood p(y 10), the prior is said to be conjugate to that likelihood.

For example, if yj1 - .(0, a2), then 0 ~ M(pt, F
2) is a conjugate prior that results

in the posterior distribution Oly M P + (4 I) , where fi(a, b) is a normal

distribution with mean a and variance b. In other words, a normal prior is conjugate

to a normal likelihood. The use of conjugate priors leads to an ability to perform

closed-form, exact posterior inference, rather than relying on approximate methods;

in this case, the hyperparameters (parameters of the prior p(O)), p and T, can be

updated analytically to M' = P + Y and T' 1 1 This capability becomes
T2 U 2

very important when dealing with complex Bayesian models, where the closed-form

conjugate updates constitute part of a larger inference algorithm [16].

Typically, a Bayesian model is specified in terms of a generative model, which

is a conceptual process by which the observations are assumed to be created. The

generative model defines the likelihood(s) and prior(s) for use in inference. As a brief

illustrative example, say there is a database of N images yi of K objects, where the

object in each image is unlabelled. In order to label the images in terms of the object

they contain, the images must be grouped into K bins, one for each object. An

appropriate generative model for this situation might be as follows:

1. For each bin k 1, ... , K, sample a set of parameters Ok - H

2. For each i = 1, ... , N, roll a weighted K-sided die and observe the outcome zi

3. For each i = 1, . . , N, sample the image y ~ A'(0zi, U2)

If written mathematically, this can be expressed as:

7rla ~ Dir(ai, .. , aK)

ziJ7 ~ Categorical(7r), i 1,..., N
(2.2)

Oy ,) k= ,...,

yi Izi, ~ , z1U2).

20

K N

Figure 2-1: Dirichlet mixture graphical model

where the latent variables of the generative model are as follows:

0 7r = (7r1 , . . K, -rK Zk 7rk = 1 are a set of positive weights that sum to 1 (the

probabilities of the weighted K-sided die),

0 {zi}'i 1 , zi E {1,. . . , K} are the bin index labels for each image,

0 0 = (01,... , 6K) are the parameters that govern the appearance of each object.

The hyperparameters of the prior are a:, .. . , aK > 0, and represent imaginary counts

of rolls from the weighted K-sided die before the experiment begins. For example,

setting a 1 = 100, and ak = 0.1, k = 2, ... , K creates a high prior certainty on side 1

of the die being heavily weighted (as if a die were rolled 100 times and landed on the

1 side every time), while setting ak = 100, k = 1, ... , K creates a high prior certainty

that the die is fair (as if a die were rolled 100K times, and landed on each side 100

times). The ak may be selected by hand, in which case a larger set of a:,.. . , aK > 0

yields a stronger prior that requires more data to overcome, and vice versa for smaller

aQ,...,aK > 0-

This particular generative model has a name: the Dirichlet mixture model [84].

Of course, this is not how the images were actually created; it is simply a conceptual

process in order to derive appropriate likelihood and prior distributions over the

data and latent variables. Here, the prior distributions are the Dirichlet-Categorical

distribution over 7r and zi, and the multivariate Gaussian distribution over 0; and the

likelihood is the Gaussian distribution over yi. As measurements become available,

the estimates of 7r and 0 can be improved via Bayesian inference.

Equation (2.2) is an example of a parametric Bayesian model. In such models,

21

the number of parameters or latent variables in the model are fixed a priori (in

this case, the K mixing probabilities and parameters), and are often chosen through

expert judgment. Bayesian nonparametric models, in contrast, do not require the

expert specification of the number of parameters; instead, the number of parameters

in such models is infinite, while a finite quantity of observed data is assumed to

be generated using only a finite subset of those parameters. This allows Bayesian

inference techniques to learn the number of latent variables in a model, in addition

to their values.

Table 2.1 presents a list of standard and recently developed Bayesian nonparamet-

ric models [85]. The Gaussian process (GP) is perhaps the most well known example

of a BNP in the planning community, and is typically used as a model for continuous

functions. GP-based models have been used for regression and classification [15], for

Kalman filtering [63], and for multistep lookahead predictions [64]. Several authors

have also used GPs for planning in the framework of dynamic programming and rein-

forcement learning [65, 66], in motion planning in the presence of dynamic, uncertain

obstacles [67], and in predicting pedestrian motion [86]. The Dirichlet process (DP)

and beta process (BP), on the other hand, are well-known nonparametric models in

the machine learning community [10, 14, 17, 85], but have seen very few applications

in planning and control, despite their ability to robustly capture the complexity of

a system solely from observations [68, 87]. The DP and BP also serve as building

blocks for other Bayesian nonparametric priors, such as the dependent Dirichlet pro-

cess (DDP) [12], the hierarchical Dirichlet process (HDP) [11], and the hierarchical

Beta process (HBP) [13].

This thesis is focused on the applications and advantages of the DDP and models

based thereupon in planning systems. As such, the DP and DDP will be explained in

detail in the following; citations for the other common Bayesian nonparametrics may

be found in the list of references.

22

Table 2.1: Typical BNPs with applications [85]

Model Typical Application
GP Learning continuous functions
DP Data clustering, unknown # of static clusters

BP Latent feature models, unknown # of features

DDP Data clustering, unknown # of dynamic clusters
HDP Topic modeling, unknown # topics, words
HBP Shared latent feature models, unknown # features

2.2.1 The Dirichlet Process

Recall that the Dirichlet distribution in the earlier mixture model example (2.2) is a

prior over unfair K-sided dice, and is used in mixture models with K components.

One might naturally wonder whether the mixture model can be relaxed, such that K

can be learned from the data itself without expert specification. As mentioned in the

previous section, this might be accomplished by assuming that K -+ o (in a sense),

and then taking advantage of the fact that a finite quantity of data must have been

generated by a finite number of components.

Proceeding based on this notion, let the k- dimensional unit simplex be defined as

the set of vectors 7r = (71, ... , 7rK) E RK such that EZ 1ri = 1, and 7ri ;> 0 for all i.

Then, the Dirichlet distribution is a probability distribution over this K-dimensional

unit simplex whose density is given by:

p(7r) =() ,(2.3)

where F(-) is the Gamma function, and oz (ai, ... , QaK) is a parameter vector. If one

sets (aa, ... , cK) = , ..., for some a > 0, taking the limit as K -+ oc creates a
K K

Dirichlet distribution whose draws contain an infinite number of components that sum

to 1. This is the intuitive underpinning of the Dirichlet process (DP). The definition

of a Dirichlet process is as follows (developed formally in [44]):

Definition 2.2.1 [44] Let H be a probability measure on a space X, and let a > 0 be

a real number. Then G ~ DP(a, H) is a probability measure drawn from a Dirichlet

process if for any finite partition {B 1, ..., BN} of X (i.e. Bi flB = 0 for all i -p j

23

N
and U Bi = X),

i=1

(G(B1), ..., G(BN))IH, a ~ Dir(aH(B1), ..., aH(BN))- (2.4)

This definition illustrates the fundamental difference between the conceptual "infi-

nite Dirichlet distribution" described earlier and a Dirichlet process: samples from

the former are oo-dimensional vectors, while samples from the latter are probability

measures on some space X. Further, it can be shown that E [G(B)] = H(B), and

that V [G(B)] = H(B)(1 - H(B))/(a + 1) for any B C X [10]. This provides a sense

of how H and a influence G: H, called the base measure, is essentially the mean

of G; and a, called the concentration parameter, controls its variance. Occasionally,

one may use the notation G ~ DP(p), where p is a measure on X that does not

necessarily sum to 1. In this case, it is understood that a = fx dy, H = t/a.

The definition of the Dirichlet process is admittedly rather hard to draw any

useful conclusion from at first glance. However, it can be shown that G is discrete

with probability 1, and has the following form [88]:

o
G = Zrioi, (2.5)

i=1

where the weights ri satisfy E ri = 1, 6, is an atom at x E X, and Oi ~ H are the

locations of the atoms. A representation of G is shown in Figure 2-2. This provides

a mental picture of what a DP is: it can be thought of as a distribution, which, when

sampled, yields another probability distribution G having a countably infinite number

of atoms on a space X. Each atom has independent and identically distributed (i.i.d.)

location within X with distribution H (with a slight abuse of notation , we use H to

both refer to the measure and its related continuous distribution), where the weights

7ri on the atoms can be thought of as being drawn from an infinite dimensional

Dirichlet distribution.

In order to sample G from a DP, the stick breaking construction is typically

used [14]. The stick breaking construction (sometimes denoted 7 - GEM(a)) pro-

24

H

G T1
12 T14 113 TE1 12 1131 4 0-

'"Ii iI I I fill'

Figure 2-2: G ~ DP(a, H). Figure 2-3: Stick breaking procedure

vides an iterative procedure for sampling the weights of (2.5), given by:

i-1

7ri = #i H(1 #) (2.6)
j=1

where /3 ~ Beta(1, a) are sampled from the beta distribution. As shown in Fig. 2-

3, this corresponds to taking a stick of unit length, repeatedly breaking off beta

distributed pieces, and assigning them to locations 0, in X. Thus, to sample a draw

from a DP, we simply alternately sample 0% from H, and calculate the corresponding 7i

by sampling O3. Of course, there are theoretically an infinite number of (7ri, O) pairs,

but the stick breaking process can be terminated to obtain an approximation after

a finite number of steps by re-normalizing the weights to sum to 1, or by assigning

whatever remaining probability mass there is to the last 0%.

Posterior inference for the Dirichlet process prior shares strong connections to

posterior inference for the Dirichlet distribution. Consider once again the parametric

mixture model in (2.2); it was not stated earlier, but the Dirichlet distribution is

the conjugate prior of the categorical (or more generally, multinomial) likelihood. In

other words, if one wishes to learn the outcome probabilities on a K-sided unfair die,

one may observe N outcomes zi of the die, and then apply Bayes' rule:

7 ~ Dir(OZ1,, aK)

{zi} - Multinomial(7r) (2.7)

7rJ.{zi} 1 ~ Dir(ai + ni,... , aK+ nK)

where nk = i = k], and the posterior 7rI{zi} I 1 is another Dirichlet distribution

due to conjugacy.

The fact that samples from a Dirichlet process are similar to samples from an oo-

25

dimensional Dirichlet distribution hints that the Dirichlet process is also conjugate

to the categorical/multinomial likelihoods. Indeed this is the case; the posterior of a

Dirichlet process after observing N samples 0, drawn from G ~ DP is

G DP(a, H)

{ 1 ~ G (2.8)

G1{ } 1~ DP a, a H 1
a+N a +N _

where the old base measure H is replaced by a weighted combination between H and

the observed atoms o, with the weighting determined by a. However, as with the

Dirichlet distribution, the Dirichlet process is most useful as a prior over mixture

models where the Oi themselves are not measured directly, but rather some noisy

measurements yi that depend on 0%. Thus, while this description of the posterior

Dirichlet process is illustrative mathematically, something more is required, practi-

cally speaking.

Towards this goal, a probabilistic model which is closely related (this relation

will be elucidated shortly) to the Dirichlet process is the Chinese Restaurant process

(CRP) [101. This stochastic process models a sequence of data Oi as being generated

sequentially, and upon generation of each data point, it is assigned a random label

zi. Suppose a finite subset of such a sequence as been observed, and k unique labels

have been assigned; then,

pAzn.+1=jilzi,...Z')= , Vj <ka + n (2.9)
p(zn+1 = k + llzi,..., zn) a + n

where nr = 1 [zi = j]. The name of the CRP comes from an analogy often used to

describe it, which is illustrated in Fig. 2-4. If we consider a restaurant with an infinite

line of tables, where customers enter and either sit at a previously selected table with

probability proportional to the number of customers already sitting at that table, or

start a new table with probability proportional to a, the table assignments are said

26

n+1

p(Zn+1=lla,Zi...n)c 5 p(zn+ 1=2Ia,zi...Oc 3 p(zn+1=3|a,zi)...O a

Figure 2-4: A pictorial representation of the CRP.

to be drawn from a Chinese Restaurant Process.

Perhaps the most useful fact about the CRP is that the labels zi are exchangeable:

Definition 2.2.2 A sequence of random variables z 1 , z2 ,... is exchangeable if for

any finite collection zil, zi 2, ... , ZiN7

p(zilzi2 , ..., iN)==P(zkz 1 Zk2 ... zkN) (2.10)

for all permutations {ki, k2 , . .. , kN} of ii, i 2 ,. - -, iN}.-

The fact that the observations zi in (2.9) are exchangeable is clear because the dis-

tributions only depend on the number of times previous labels have been observed,

and not their order. The reason why this is so important is due to de Finetti's the-

orem [10]; informally, this theorem states that if a sequence of random variables is

exchangeable, then there exists an underlying distribution which explains the data

as if it were sampled i.i.d. from that distribution. Using de Finetti's theorem, the

CRP and the DP can be shown to be equivalent - As each sequential data point is

observed, it is impossible to tell whether it was sampled i.i.d. from the distribution

G - DP(a, H) or whether it was generated from the sequential cluster assignment

rules of the CRP.

Thus, approximate posterior inference for the DP can be conducted using the

distributions provided by the CRP. This will be discussed further in the following.

The reader is encouraged to consult [10] for further discussion of the Dirichlet process.

27

2.2.2 The Dependent Dirichlet Process

The major strength of the Dirichlet process as a prior over mixture models is that it

infers K, the number of components in the model, directly from the data in a Bayesian

framework. While this level of functionality is sufficient for a wide variety of applica-

tions (from topic modeling [89] to trajectory pattern clustering [68]), in the context

of planning it has a major weakness. The Dirichlet process is a static model that

assumes that the data was generated from an unchanging set of mixture components.

Autonomous planning systems often operate in dynamic environments where condi-

tions are constantly changing, and even perhaps adapting to the system's behavior.

Thus, it is important for a model to have the flexibility to deal with changing, novel,

and disappearing characteristics in the environment. The assumption that mixture

parameters are static is a hinderance to the DP's use in such environments. Further,

this assumption has the unfortunate effect that all the data must be processed in

batch during inference, leading to ever-increasing computational costs as time goes

on and more data is collected.

The dependent Dirichlet process (DDP) [48] is a BNP model that extends the

DP and remedies the aforementioned problems. The fundamental notion of the DDP

is that it is essentially a Markov chain of DPs, where the transitions between DPs

allows mixture components to change, disappear, or to be newly created. This gives

the DDP additional flexibility over the DP that is required in many autonomous

planning system environments. Further, the Markov property of the system allows

inference to consider data in a batch-sequential framework, where only small subsets

of the total dataset ever need to be stored or processed at once.

There are a number of equivalent definitions of the DDP, but perhaps the most

illustrative one (and the one upon which a large portion of the present work is built)

is based on Poisson processes [12]:

Definition 2.2.3 Let X be a measure space, and let 4 : X -+ [0, oo) be an integrable

intensity function on X, where T(B) = fB 4 is the mean measure for all measurable

B C X. A Poisson process P - HIP(I) on X is a random countable subset of X

28

such that the number of points in B C X, N(B) = IFn BI is a random number with

a Poisson distribution N(B) ~ po('I(B)).

Suppose that a Poisson process is defined over some space X x [0, oo) (also known

as a Gamma process or compound Poisson process). Then each atom i of the point

process consists of a point Oi E X and a point 7Tr E R+ that may be thought of as a
ir'

weight on 0%. If the weights are then normalized, such that 7ri = ,the new pointzi rr
process G with the normalized weights is a Dirichlet process G DP(oZ, H) with

a = T (X x [0, oo)) and H is proportional to 4 with the part over the positive reals

integrated out. This is referred to as a Poisson process construction of the Dirichlet

process.

The reason why this construction is of particular importance is because a Poisson

process can be probabilistically mutated in a number of ways such that the resulting

point process is still a Poisson process. Thus, if a Dirichlet process is formulated

in terms of its underlying Poisson process, such operations are performed on the

underlying process, and then the weights are renormalized to be a Dirichlet process

once again, one can think of the entire procedure simply as operations upon Dirichlet

processes that preserve Dirichlet processes. The following operations preserve Poisson

processes [901:

Proposition 2.2.4 Superposition: Let P ~ UP(I), Q ~ HP(Q) be Poisson pro-

cesses. Then P U Q ~ HP(T + D).

Proposition 2.2.5 Subsampling: Let P ~ UP(I) be a Poisson process on X

with mean measure 4' and corresponding intensity V', let q : X -+ [0,1], and let

bi ~ Be(q(0i)) be a Bernoulli trial for every 0, E P. Then Q = {0 E P : bi = 1} is a

Poisson process, where Q - UlP(4) and 1(B) = fB q.

Proposition 2.2.6 Transition: Let P ~ HP(P) be a Poisson process on X with

mean measure I and corresponding intensity 4. Then suppose T : X x X -> R+,

where T(.0) is a probability distribution on X. For every 04 E P, let 0; ~ T(0{|0j).

Then Q = {0} ~- H P(1) is a Poisson process with intensity $ fx T(0'j0)V'(0).

29

When the basic operations on Poisson processes are ignored and the operations are

formulated entirely on Dirichlet processes, superposition is denoted U, subsampling

with the function q is denoted Sq, and transition with the function T is denoted T.

The dependent Dirichlet process is then constructed as a Markov chain Dt ~ DP as

follows:

Do ~ DP(ao, Ho)

Dt+ = T (S (Dt)) U G, (2.11)

G, ~ DP(a,, H,)

which has the aforementioned desired properties. Mixture components 0 can be re-

moved via Sq, move via T, and can be newly added via Gi,. Because at each time step

t the model evolves using only operations that preserve the required properties of a

Dirichlet process, it can be used as a prior over evolving mixture models. Further-

more, at each timestep, the illustration in Fig. 2-3 retains its accuracy in depicting

the point process itself.

The posterior process of the dependent Dirichlet process given a collection of

observations of the points is similar to (2.8), except that old mixture components

from previous time steps need to be handled correctly. Given the observations of old

transitioned points T7, new points X, and points that were observed in past timesteps

but not at timestep t, Ot, the posterior is

GtTI, Nr, O - DP v + E qotcotT(. 10) + Z(cot + not)6o + 1: not6o (2.12)
oEot OEt EA~t

where vt is the measure for unobserved points at time step t, cot - not E N

is the number of observations of 0 from previous time steps, not E N is the number

of observations of 0 at timestep t, and got E (0,1) is the subsampling weight on 0

at timestep t. This posterior has a connection to the CRP that is similar to that

between the DP and the CRP; both of which are exploited in the development of

approximate inference techniques below.

30

2.2.3 Approximate BNP Inference

As mentioned earlier, conducting Bayesian inference amounts to solving (2.1) for the

posterior distribution. On the surface this seems like a trivial exercise - however, even

in simple cases, the denominator p(y) = f p(yJ0)p(0) can be intractable to compute.

Furthermore, p(O) may not even be available in closed form. This is the case with

many Bayesian nonparametric models; for example, in (2.8), there is no closed form

for p(G). Therefore, approximate inference techniques that circumvent these issues

are required.

The most common inference procedures involving BNPs are Markov Chain Monte-

Carlo (MCMC) methods, such as Gibbs sampling and the Metropolis-Hastings algo-

rithm [16]. Although it can be hard to tell if or when such algorithms have converged,

they are simple to implement, are guaranteed to provide samples from the exact pos-

terior, and have been successfully used in a number of studies [14]. This is presently

an area of active research, and other methods such as variational Bayesian infer-

ence [17] and particle learning [19] are currently under development. Due to the

simplicity, popularity and generality of Gibbs sampling, this approximate inference

technique will be discussed here; the reader is encouraged to consult the references

for discussions of the other techniques.

The basic idea of Gibbs sampling is straightforward: given access to the condi-

tional distributions of the latent parameters, sampling from their joint distribution

may be approximated by iteratively sampling from each parameter's conditional dis-

tribution. For example, for a model with three parameters 01,02,03 with the poste-

rior p(01, 02, 0 31Y) given the data y, posterior samples may be obtained by sampling

p(O1Iy, 02, 0 3), p(02Iy, 01, 0 3), and p(0 31y, 01, 0 2) iteratively. By doing this, a Markov

chain whose equilibrium probability distribution is that of the full joint probability

distribution is created. Practically speaking, one must first let the Markov chain

reach its equilibrium distribution by sampling from the conditional distributions T

times without recording any of the samples, and then take a sample every T2 itera-

tions from the algorithm to be a sample from the joint distribution. Then, given the

31

approximate joint distribution samples, one can estimate whatever statistics are of

interest, such as the mean or variance of the distribution.

In the world of Bayesian nonparametrics, Gibbs sampling solves the issue of not

having a closed-form prior p(G). For mixture models, one expresses the latent variable

G in terms of the parameters 0 k and data label assignments zi, and iteratively samples

the conditional distributions p(k J-k, z, y) and p(zi0, z_i, y) to get samples from

p(0, zly).

For the Dirichlet process mixture model (shown with a normal likelihood), the

procedure is quite simple, as the CRP provides us with the required probability

distributions:

nk V(yi ; 00 k < K
p(zi = ky, z-i, {) oc N + a - 1

a f f(y; 9k)H(Ok)dOk k = K + 1 2.13N +a-1 (-.1)

p(Ok y, z, 0_)C 171 [f(yi 10)] H(Ok)
ilzi=k

where H is the prior over the parameters. Setting H to a normal distribution yields

a conjugate prior, and the integral has a closed-form solution. In the case of non-

conjugate priors, the Metropolis-Hastings [16] algorithm, a generalization of Gibbs

sampling, may be used.

Gibbs sampling for the dependent Dirichlet process mixture is slightly more com-

plex. Once again, the CRP provides the required distributions; however, one must

keep track of which mixture components fall into a number of bins:

* New components (fit) are ones which were sampled from G, the innovation

process. There must be at least one datapoint assigned to the cluster.

" Old, instantiated components (7) are ones which were previously observed in

an earlier time step, and now have at least one datapoint assigned to them in

the current time step. This means they must have survived subsampling via Sq,

and were transitioned via T for however long they were not observed.

" Old, uninstantiated components (0t) are ones which were previously observed

32

in an earlier time step, and have no observations assigned to them in the current

time step. It is uncertain whether they were subsampled out via Sq, or whether

there are just no datapoints that are assigned to them.

Taking these different types of label assignment into account, the two steps of Gibbs

sampling for the dependent Dirichlet process are:

p(Akt lyt, zt) Cx

at f A(yit, Okt)H (Okt d~kt

(Ckt + nkt)Af(Yit, Okt)

qktCkt V(Yit, Ok(t-Atk))

il [A/(yitlOkt)] P(Okt)
i:zit=k

(2.16)P(Okt) Oc J T(Okt IOk(t-Atk))P(Ok(t-Atk))dOk(t-Atk)
0

k(t- aik)

and where p(Ok(t-Atk)) is incrementally updated by keeping track of the sufficient

statistics of each cluster created by the algorithm.

2.3 Markov Decision Processes

Markov decision processes (MDPs) are a general framework for solving sequential

decision-making problems, and are capable of representing many different planning

problems involving uncertainty. They find application in a wide variety of fields,

ranging from robotics and multiagent systems[91] to search, queueing, and finance[20].

A thorough description of MDPs and related algorithms may be found in [92].

2.3.1 Markov Chains

In order to discuss the MDP framework and their properties that are useful in the

context of this thesis, Markov chains must first be mentioned:

33

k = K +1

nkt > 0

nkt = 0

where

(2.14)

(2.15)

Definition 2.3.1 A Markov chain is a tuple (S, P) where S is a set of states, and

P : S x S -+ [0,11 is a transition model defining the probability P(s'ts) of transitioning

from a state s E S to another state s' E S in a single step, conditionally independent

of all states previous to the chain being in state s.

When a Markov chain is realized, it generates a sequence of states si, s2,. .. that

follow the transition probabilities in P. Due to the definition of Markov chains,

however, the joint probability of a sequence can be decomposed in a particular way:

n

p(s1, S2, -.. ,sn) = p(si) Hp(si Isi_1) (2.17)
i=2

where p(si) is the probability distribution over the starting state si. This decompo-

sition is often helpful in avoiding exponential complexity growth when marginalizing

over the sequence of states in the realization of a Markov chain.

Since P is parameterized by two states, it can be written as a matrix P, where

Pij is the probability from transitioning from state i to state j. This is useful when

propagating a state distribution through a Markov chain for a certain number of

steps:

St = (PT)tso (2.18)

where st is the distribution over the state of the Markov chain at time step t.

There are many classifications and properties of Markov chains; one such kind

that is of particular importance to this thesis is defined as follows:

Definition 2.3.2 An absorbing Markov chain is one in which there exists a set of

states Sabs C S such that when the Markov chain enters any state s E Sabs, it remains

in s for all future time steps, and it is possible to go from any state s' 0 Sabs to a

state s E Sabs in a finite number of steps.

In absorbing Markov chains, the matrix P may be written as follows:

Q R (2.19)
0 I

34

where I is the identity matrix for all the rows corresponding to states s E Sabs, and

0 is the zero matrix.

2.3.2 Markov Decision Processes (MDPs)

Markov decision processes (MDPs) extend Markov chains by adding in the concept of

actions and rewards. In each state, a decision-maker can select which action to take in

order to maximize some quantity related to the overall future reward gathered by the

system. Defining this precisely, a Markov decision process is a tuple (S, A, P, R, y)

where: S is a set of states; A is a set of actions; P : S x A x S -* [0, 1] is a transition

model defining the probability of entering state s' E S given a previous state s E S

and an action a E A; R : S x A x S -+ R is a reward function; and - E (0, 1) is a

discount factor for the rewards.

A deterministic policy for an MDP is a mapping 7r : S -* A. Any policy induces

a value function V' on the states of the MDP,

V7(so) = E [ZYtR(st, 7r(st), stej) 7r, so , (2.20)
t=O

which is equal to the expectation of the 'y-discounted reward received when executing

the policy 7r over an infinite horizon, starting from state so. Note that given a fixed

policy, an MDP is reduced to a Markov reward process (MRP), a Markov chain with

a stochastic state-dependent reward received at each time step.

Maximizing the value function of an MDP with respect to the actions taken is

the fundamental problem of planning in the MDP framework. Many algorithms

exist to solve this problem, such as exact methods (e.g. value iteration and policy

iteration[92]), approximate dynamic programming (e.g. UCT [93]), and reinforcement

learning (e.g. Dyna [73]). While MDP solvers generally have worst-case polynomial

time solutions in the number of states and actions, most methods suffer the "curse of

dimensionality" [921: when used for systems with high dimension (such as multiagent

systems), the state space grows in size exponentially with the number of dimensions,

and thus the worst-case solution time grows exponentially as well. This issue forms

35

one of the core motivations of this thesis.

2.3.3 Linear Function Approximation

Many planning problems formulated as MDPs have very large state spaces S, and

it is impractical to use an exact description of S (e.g. a tabular representation) due

to memory and computational limitations. For example, a very simple multiagent

system with Na agents, where each agent exists on a 10 x 10 grid, has 1 0 2Na states;

for Na ~~ 4 this system becomes too large for a tabular representation on currently

available hardware. Instead, for large state spaces, a function q is used to map the

state space into a lower-dimensional feature space, and then one performs operations

in the new smaller space. Linear function approximation is a common approach to

take [73, 94-96], where 4 : S -+ R maps each state to m feature values. Using this

mapping, any scalar field f : S -+ R (e.g. the reward function R) can approximated

by @fD in the feature space, where f, E Rm:

T T

= [(si) .. -- (Sisi) , fe ~ f [f(si) - f(ss)]T. (2.21)

2.3.4 Model Learning

The model of an MDP is defined as its dynamics P and its reward R. In many

planning scenarios, these quantities are not well-known a priori; for example, consider

a glider motion planning problem where the reward R in each state is the observed

altitude increase. A pilot may not know the locations of thermal updrafts a priori

(i.e. R is not well-known), and must explore the airspace to find them in order to

stay aloft longer. This paradigm of observing samples from an MDP, using them

to update the model, and planning based on the updated model is called model-

based reinforcement learning [73]. In this thesis, model learning only occurs given

a fixed policy; consequently, A is removed from consideration (yielding an MRP

instead of an MDP). This situation occurs as a subcomponent of many approximate

planning algorithms, such as the policy evaluation step of policy iteration [73, 97].

36

Further, model learning in this thesis is restricted to learning an unknown scalar

field f : S -+ IR (e.g. the reward model R, or perhaps a state-dependent uncertain

parameter in P [97]) for simplicity of exposition. However, it is straightforward to

extend this work to the case of learning P and R, including the variation over the

actions A, without any partial knowledge.

Given the linear feature matrix b, the approximation f ~I f4 can be found

by minimizing the squared norm between f and 4f,, weighted by the stationary

probability of each state:

f= argmin IE(f - 2w)Il| - f= (@TI Tf (2.22)

where E is the diagonal matrix representation of the stationary distribution on S.

Since f is not known, the model learning problem is to deduce f given a set of

observation episodes from the MRP. Let the set of observed episodes be {yi }', where

yi = {(s21, fl), . . . , (sirT, fiTr), fij is a noisy unbiased estimate of f(si3), and # (sij) =

Oij for brevity. Then the problem of minimizing the sum of squared differences Ifij -

fjoij 12 over all the observed samples is solved via

f4) ij T Oi fj(2.23)- -1iji

where the sums are over the range j E {1,. . . , T} Vi E {1, . .. , N}. As N increases,

the solution to (2.23) approaches the solution to (2.22). To replace f with learning P

and R (as mentioned earlier), simply replace f with R directly (as they are both SI-

dimensional vectors), and add P by considering feature prediction errors and swapping

vector norms for Frobenius norms where required. For a more thorough discussion

of single model-based RL with a linear representation, the reader is directed to the

analysis by Parr et al. [94].

37

2.3.5 Adaptive Linear Representation

The q function defines the subspace in which fD is represented. It is often diffi-

cult to know a priori what choice of # yields a compact representation of S, while

still preserving its major structure. Thus, methods that adapt # based on samples

observed from an MDP/MRP are useful when performing model learning, as they

provide an automated tradeoff between representational quality and computational

expense. There are a number of different representation expansion algorithms; this

thesis primarily uses the batch incremental Feature Dependency Discovery algorithm

(Batch-iFDD) [72]. Given a binary representation 1 E {0, 1}1s1xm, each column of

D corresponds to the value of specific feature for all states. During each iteration,

Batch-iFDD inspects the binary conjunction of all pairs of columns of 4 and appends

a conjunction 0* to (P according to

0* =argmax JOj=1 ,1 (2.24)
OEcolpair()

in which colpair(P) is the set of conjunctions of pairs of columns of P, Oij is the

conjunction feature value for state sij, and Eij is some predictive error related to a

quantity of interest. In the original work, Batch-iFDD was used to approximate the

value function, hence cij was the temporal differences on step j of episode i [72].

This thesis utilizes Batch-iFDD to expand a representation used to capture an MDP

model, and thus Eij is the prediction difference 6ij = fij - feoiy

2.4 Multiagent Task Allocation

Multiagent task allocation (or assignment) problems generally involve a group of

agents coordinating to complete a set of tasks, such that there are no conflicts in the

assignments of tasks to agents. It is typically beneficial for agents not to plan myopi-

cally by selecting one task at a time, and instead to take on more than one task in

an assignment. Therefore, the allocation problem considers maximizing performance

given sequences of tasks for each agent, referred to as their path or task sequence.

38

Multiagent task allocation problems tend not to pose the curse of dimensionality is-

sues that Markov decision processes do; this is because task allocation problems are

typically formulated at a much higher level, focusing on coordination between agents

rather than focusing on selecting individual, detailed actions.

In this work, multiagent task allocation is formulated as a mathematical program:

Na Nt

max E] Fi (pi, r) xij (2.25)
i=1 j=1

s.t. H(x, -r) < d

x E {O, 1}NaxNt, T E {R+ U 0 }NaxN

where x is a set of Na x Nt binary decision variables, xij, which are used to indi-

cate whether or not task j is assigned to agent i; pi is the path which represents

the order in which agent i services its assigned tasks; -r is the set of variables Tij

indicating when agent i will service its assigned task j (where rij = 0 if task j is

not assigned to agent i); Fi is the score function for agent i servicing task j given

the path and service times; and H = [hi,... , hN]T, with d = [di,... , dNc]T, define

a set of N, possibly nonlinear constraints of the form hk(x, r) < dk that capture

transition dynamics, resource limitations, etc. This generalized problem formulation

can accommodate several different design objectives and constraints commonly used

in multiagent decision making problems. One could of course solve this mixed integer

nonlinear program generally with a combinatorial optimization algorithm. An im-

portant observation is that, in (2.25), the scoring and constraint functions explicitly

depend on an agent's ordered sequence of task assignments, as well as those task ser-

vice times (pi and -r, respectively). This property makes the general mixed-integer

programming problem very difficult to solve (NP-hard) exactly due to the inherent

system interdependencies [98].

This motivates approximate solution techniques for the multiagent task allocation

problem. One such technique that is of particular relevance to this thesis is the

sequential greedy allocation algorithm, shown in Alg. 1. This algorithm works by

building up the agents' task sequences one task at a time. In each iteration, it inserts

39

Algorithm 1 Sequential Greedy

Input: Set of tasks T, agents Z

1: Vi E Z : pi <- {}, Ji,prev +- 0
2: while T#f 0 do
3: for i E Z,j E 7,k E pi do
4: Jijk +-EVALTASKSEQ(pi EIk j)
5: end for

6: i, j, k +- arg max Jik - Ji,prev
7: T +- T\j, J;,prev 4- Jik, Pt 4- Pt 'EEk j
8: end while
9: return pi Vi E Z

every remaining unassigned task j into every possible slot in every agent's current

task sequence (insertion at index k is denoted E). Testing each insertion is done

via the function EVALTASKSEQ, which evaluates the task sequence. Finally, the best

task/agent/index combination is selected based on the marginal gain in score, and the

iteration loops until all tasks have been assigned. It is easy to show that this algorithm

is polynomial in the number of agents and tasks, and decentralized formulations

of this algorithm have been created that mimic its greedy solutions and provide

performance guarantees under a wide variety of conditions [24]. Furthermore, while

the original version of these algorithms have assumed deterministic task sequence

evaluation schemes, they have been extended to generate plans that are robust to

various forms of uncertainty [22, 29, 99].

40

Chapter 3

Multiagent Allocation of Markov

Decision Process Tasks

3.1 Overview

Producing task assignments for multiagent teams often leads to an exponential growth

in the decision space as the number of agents and objectives increases. One approach

to finding a task assignment is to model the agents and the environment as a sin-

gle Markov decision process, and solve the planning problem using standard MDP

techniques. However, both exact and approximate MDP solvers in this environment

struggle to produce assignments even for problems involving few agents and objec-

tives. Conversely, problem formulations based upon mathematical programming typi-

cally scale well with the problem size at the expense of requiring comparatively simple

agent and task models. This chapter presents a combination of these two formula-

tions by modeling task and agent dynamics using MDPs, and then using optimization

techniques to solve the combinatorial problem of assigning tasks to agents. The com-

putational complexity of the resulting algorithm is polynomial in the number of tasks

and is constant in the number of agents. Simulation results are provided which high-

light the performance of the algorithm in a grid world mobile target surveillance

scenario, while demonstrating that these techniques can be extended to even larger

tasking domains.

41

This chapter is based on the paper "Multiagent Allocation of Markov Decision

Process Tasks" [100], which was presented at the 2013 American Controls Conference

in collaboration with L. Johnson and J. How.

3.2 Introduction

The goal of autonomous planning for teams of agents is to achieve mission objectives

while satisfying all problem-specific constraints. Task assignment algorithms for mul-

tiagent teams thus require two components: 1) a model that describes how agents

and tasks interact in a possibly stochastic world, and 2) an objective function that

specifies which assignment combinations are most beneficial to the fleet and guides

the task allocation process.

Prior work of particular interest to solving this problem exists in both the fields

of mathematical programming-based task allocation algorithms and Markov decision

process (MDP) planning algorithms. Some mathematical programming-based task

allocation formulations are designed to provide assignments when task models have

a constant, deterministic state (e.g. visiting a set of waypoints) [27, 28]. Recent ap-

proaches have solved a similar problem for distributed multiagent multiassignment

environments efficiently by using sequential greedy algorithms [25]. These greedy

assignment algorithms have also been extended to include the effects of stochastic

parameters on the overall task assignment process [29]. The approach in [29] relies on

sampling a set of particles from the distributions of stochastic parameters and mak-

ing informed decisions based on those particles. Thus, while scalable coordination for

multiagent teams with stochastic parameters has been addressed within this frame-

work, more formal problem statements involving generalized stochastic interactions

between agents and tasks have not.

In the framework of Markov decision processes, explicit and guaranteed multiagent

coordination for general problems is well known to exhibit exponential computational

scaling with respect to the number of agents in the team [21]. On the other hand,

a number of previous studies have explored the benefits of decomposing MDPs into

42

smaller weakly coupled [32] concurrent processes, solving each individually, and merg-

ing the solutions to form a solution of the larger problem [33, 34]. Building on that

work, several researchers have considered problems where shared resources must be

allocated amongst the concurrent MDPs [32, 35]; generally, in such problems, the

allocation of resources amongst the MDPs determines which actions are available in

each MDP, or the transition probabilities in each MDP. Some approaches involve

solving resource allocation or coordination problems by modelling them within the

MDP itself [36, 37]. Assignment based decompositions have also been studied [38],

where cooperation between agents is achieved via coordinated reinforcement learn-

ing [39]. However, none of these approaches have considered the impact of previous

tasks on future tasks. This is of importance in multiagent multi-assignment plan-

ning problems; for instance, if an agent is assigned a task involving a high amount

of uncertainty, that uncertainty should be properly accounted for in all of its sub-

sequent tasks (whose starting conditions depend on the final state of the uncertain

task). This allows the team to hedge against the risk associated with the uncertain

task, and allocate the subsequent tasks accordingly. Past work has focused primarily

on parallel, infinite-horizon tasks [32, 35], and have not encountered the cascading

uncertainty that is characteristic of sequential bundles of uncertain tasks.

An insight can be made by exploiting the natural structure of task allocation

problem formulations. Often in these environments, given a conflict-free assignment

of tasks to agents, agents engaged in different tasks operate independently; simi-

larly, subsets of tasks often evolve independently from one another. Approximate

mathematical programming-based solvers are adept at utilizing such independence

to plan efficiently and tractably in scenarios involving large numbers of agents and

tasks, while MDPs are able to explicitly formulate task and agent models with un-

certainty in a precise and general form. This chapter combines the strengths of these

two approaches and considers the problem of multiagent distributed task allocation

with generalized stochastic task models, where each agent may be assigned a list of

sequential tasks.

43

3.3 Problem Statement

An important property exploited in this work is that there are few restrictions on the

function Fi in the task allocation problem defined in (2.25). In particular, evaluating

Fi may involve the manipulation of probability distributions, sampling from them,

or the computation of their statistics. If a distribution over Fi itself is provided or

can be easily computed given pi and -r, uncertainty may be accounted for in the

allocation scheme [22]. However, computing such a distribution is often difficult and

relies on problem-specific algorithms.

Markov decision processes, on the other hand, provide an evaluation scheme for

complex tasks with uncertain outcomes that can be generalized across a wide variety of

scenarios. An insight that is useful here is that each individual task can be formulated

as an MDP, rather than formulating the entire problem as a single MDP. By doing so,

a valid score function Fi can be constructed for each agent i and task j pair using the

discounted sum of rewards in the corresponding MDP (given the starting conditions

of the task). Thus, the task allocation optimization problem may be rewritten as

follows:

Na Nt

max E 1 E [Vr(sij, ij)Ip] Xij (3.1)
Xp i=1 j=1l

X E {O, 1 1NaxNt

where sij and rij are random variables defining the starting state and time of agent

i servicing task j. V7 is the value function for the MDP in which agent i services

task j, which provides a valid score function for a realized state and time pair. This

mathematical program makes the complexity of the problem formulation explicit.

A solution algorithm requires a method to compute the value functions for all task

and agent pairs, a method to compute the distribution over each sij, 7ij pair, and a

combinatorial optimization algorithm to maximize the multiagent team performance.

Not all MDP formulations are inherently adapted for use in this task allocation

framework, and there are issues with their direct inclusion. While the value function

44

V' is a natural scoring mechanism for infinite-horizon MDPs, tasks will have a finite,

stochastic duration. Furthermore, the uncertain outcomes of earlier tasks affect the

performance of the team on later tasks. These issues will be addressed in the following

sections.

3.4 MDP Task Model

The general definition of MDPs has insufficient structure to use them as a model

for individual tasks. Thus, in order to use task allocation algorithms with an MDP-

based task model, a more restricted class of MDPs will be defined, called Markov

decision process tasks. This formulation captures the important structure of tasks in

task assignment problems, such that MDPs may be utilized to efficiently compute

allocations.

An MDP task for task j and agent i is a tuple (Ay, gi, A, Pi, Qij, RIj, 7) where:

" D3 is a set of task states for task j,

* gi is a set of agent states for agent i, (let Sij = 9i x Dj),

* Ai is a set of actions that agent i may take,

" Pi : Sij x Ai x Sij -- [0, 1] is a transition model Pi(s'la, s) over s' E Sij given

s E S3 and a E Ai for when the task is being executed by the agent,

" Qi* : Sij x Dj -+ [0, 1] is a transition model over d' E Dj given s E Sij for before

the execution occurs,

" Rj. : Sij x Aij x Sij -+ R is a reward function,

* -y E (0, 1) is a reward discount factor,

* D,abs C Dj is a nonempty set of reachable, absorbing terminal states (let

Sij,abs gi X Dj,abs),

" and if the optimal policy 7rij : Sij -+ A for the MDP task is executed, the

expected time to reach a terminal state is finite (i.e. tasks must end)

45

MDP tasks are set apart from typical MDPs by the requirement that the state

space is decomposed into agent and task states, the absorbing nature of tasks, and

the prior-to-execution dynamics Qij. With respect to the absorbing condition, if the

combined state of an agent and task ever enters s E Sij,abs, it will (conceptually)

remain in Sij,abs for all future timesteps, and thus the task is said to be completed.

Furthermore, the requirement that an optimal policy results in an absorbing Markov

chain means that the expected completion time for each task is finite [101]. These

two requirements together enforce that it must be possible to complete each task,

and that an agent executing the task optimally is expected to complete the task in

finite time. The prior-to-execution dynamics Qij are required because the task state

might depend on the agent state prior to execution of that task, and the behavior

prior to execution might differ from the behavior during execution. It is not used

in the computation of a policy for agent i executing task j, just in the during the

evaluation of the score of task j.

3.5 Task Sequence Evaluation

In this section, the evaluation of the objective in (3.1) given a candidate x and p is

considered. In this work we make three important assumptions about how the agents

and tasks interact:

1. The rewards received by different agents are independent given a task assign-

ment x. This means that the scores each agent receives for completing tasks

are not dependent on the behavior of any other agent, and allows each agent to

evaluate its task sequence without requiring information from other agents.

2. Policies 7r {7rij} are provided for all combinations of agent i and task j before

the assignment algorithm starts. This is not unreasonable, because the size of a

single combined task-agent state space is likely small and does not depend on the

number of tasks or agents in the assignment problem, only the number of unique

task and agent types. Even if the agents are indeed heterogeneous, obtaining a

46

policy for all task and agent combinations has polynomial complexity O(Na]t)

in the number of unique task types Ae and agent types Na.

3. Agents focus on one task at a time. During an individual task execution, the

policy executed does not take into account the objectives of any future tasks.

With these assumptions, the goal is to compute the value of a sequence of tasks

for a single agent, where that later tasks depend on the outcomes of previous tasks.

Given that this section considers the sequence of a single agent, agent indices i are

dropped from quantities, and the task indices j are replaced with their positions k in

the sequence pi. Let sk = Siik E Sijk be the starting state for agent i servicing task

Jk, where task jk is the kth task in its sequence. Let Tk- = rijk E Z be the timestep at

which that agent begins to service that task. Let the sequence of tasks be of length

n, i.e. k E {0, . .. , n - 1}. Finally, let rt be the reward received by agent i at timestep

t. Referring to the optimization problem statement (3.1), the proposed evaluation

function for a sequence of tasks for a given agent is the sum of the expected values of

its tasks. If this evaluation function is to be used, this should correspond to the value

of the overall Markov process describing the entire sequence of tasks. Indeed it does;

consider the expected sum of discounted rewards over a single agent's task sequence,

00 -n-1 Tk+i-1

E ytrt so, To = E ytrT so, To (3.2)
t=TO .. k=O t=Trk

Equation (3.2) makes the breakdown of the rewards received into each individual task

explicit; the kth task in the sequence is responsible for the rewards received in the

time interval [Tk, rk+1 - 1]. While so and ro are known precisely, sk and Tk for k > 1

in general are stochastic due to the uncertainty in the outcomes of previous tasks.

This stochasticity may be made clear by rearranging (3.2) as follows:

n-1 Tk-+1-1 n-1 Tk+1v1

E E yrt so, To = E Y'yrt so, To (3.3)
k=O t=T-k k=O t=Tk I

n-1 Tk+1

EZ (r k, sk 1o, so)E 7ytrt Sk , Tk (3.4)
k=O sk,Tk _ t=Tk I

47

n-1

= : 1: (Tkr, sk I O, so)-y' si' () (3.5)
k=O sk,Tk

where the value function for the policy of agent i executing task j starting at time

0 is V7(sk) : S + I R. It is noted that (3.5) follows from (3.4) because the kth task

enters an absorbing state once it terminates, and (conceptually) provides 0 reward for

all future time; thus, the sum over [rk, rk+1 - 1] is replaced by a sum over [Tk, oo] and

the definition of the value function from (2.20) may be used with to = 0. Therefore,

the objective in (3.1) equals the expected value of the discounted sum of rewards,

and the value of a sequence of tasks may be constructed from the value functions for

the individual tasks given stationary policies for those tasks.

3.6 Computing Starting State/Time Distributions

In general task allocation scenarios, the computation of p(sk, Tk ISO, To) is intractable

due to the exponentially increasing number of outcomes of previous tasks. However,

because of the Markov property of the framework presented herein, this distribution

can be computed efficiently by propagating distributions forward in time one step at

a time, using low-cost iterative updates.

Let sk = (gk, dk), where gk, dk are the agent, task component of Sk, respec-

tively. Assume that p(sk, Tk) (with conditional quantities implicit for brevity) has

been computed, and that p(sk+1, Tk+1) must now be computed. There are two types

of propagation udpates that are required given p(sk, Tk): 1) An update that deter-

mines the distribution over agent starting state 9k+1 and time Tk+1 for the k + Ith

task by using the policy for the kth task; and 2) An update that determines the dis-

tribution over dk+1 so that it may be combined with gk+1 to form sk+1, and complete

the iteration. These two updates will be referred to as the "on-execution update"

and "prior-to-execution update", respectively.

48

3.6.1 The On-Execution Update

Suppose the distribution p(sk, Tk) is known, and stored as a discrete distribution p(rk)

and a distribution p(skITk) (denoted sTk if expressed as a vector) for each element in

the support of p(rk). Since p(Tk) has theoretically infinite support, suppose it is

truncated to the Kr values with the highest probability. The following section will

show how to compute p(9k+1 rk+1) (denoted gk,, if expressed as a vector) and p(Tk+1).

Define the state distribution:

srk[t] = p(sjt = t' + Tk, Sk) = (PT)srk (3.6)

where t E N and Pk is the Markov transition matrix corresponding to the kth MDP

task combined with its policy. This gives a state distribution parametrized by time

for every value in the support of Tk. For a feasible computation the domain of s It]

must be truncated from t E N. Let v E (0,1) be a threshold probability, and compute

Sk [t] for increasing t until the probability of having completed the kth task is at least

v. In other words, the iteration in (3.6) is computed until at iteration N

N

Y P(>k+] = t + TkITk) > v. (3.7)
t=o

Next define a task completion probability vector for task k as Ck InonabsPklabs,

where Inonabs is the identity matrix modified to have diagonal Os in all rows corre-

sponding to absorbing states, and labs is a column of Is modified to have Os in all

rows corresponding to nonabsorbing states. The indicies of this vector correspond to

the states in Sk, and each element represents the probability of transitioning from a

non-absorbing state to an absorbing state in one time step. Ck takes the value of 0

for all absorbing states. The probability distribution for Tk+1 given Tk can then be

written as:

p(k+l = t + k 1k) = Cs, [t - 1], t E N (3.8)

49

Tk can then simply be marginalized out to create the distribution:

p(Tk+1) = p(Tk)CTs,[Tk+l - Tk - 1]. (3.9)

Similarly, the agent state distribution at task completion can be computed using

gkC 0 S-k+ - Tk - 1 p Tk1) (3.10)
d rk

where o refers to element wise multiplication, p(TkITk+1) can be computed with Bayes'

rule, and Ed marginalizes out all of the task components of the states.

Once these computations are completed till the threshold v is reached for each Tk

in the support of p(Tk), the distributions p(Tk+1) and grk, must be truncated to a

support of size K, and renormalized.

3.6.2 The Prior-To-Execution Update

Suppose that the current on-execution update is computing grk,, and p(Tk+1). Then

for all tasks in the sequence with index m > k, there are dynamics (using Qgj as

discussed in section 3.4) that must be propagated forward during this update. Let

dmk be the task state of the task at position m in the sequence at time Tk, i.e. at the

start of task k. Then p(dm(k+1)ITk+1) can be computed from p(dmkITk) (matrix form

dmk), as follows:

d-k [0] = dmk (3.11)
dr7k[t±+ 1] =QTfk[t]

where fk [t] = (Ed sTk [t], d, [t]) is obtained by marginalizing the task component out

of s, [t] and combining the resulting agent state g, [t] distribution with drk [t], Q is

the prior-to-execution transition matrix for the mth task,

50

This recursion allows the computation of the task state distribution

dm(k+1) Z 1 d,[Tk+1 - Tk]p(Tk ITk+1). (3.12)
Tk

Finally, note that if the m'h task is independent of the agent prior to its execution,

this simplifies considerably to

d T_" = (QT)"' dmo. (3.13)

3.7 Algorithm and Complexity Analysis

This task sequence evaluation scheme leads directly to the development of a task

assignment algorithm based on a sequential greedy procedure. The MDP task al-

location procedure in Algorithm 2 operates by inserting candidate tasks into the

possible positions (denoted Ek in the algorithm block) along each agent's task se-

quence, evaluating those sequences, and selecting the best possible combination of

agent/task/insertion index until all tasks have either been assigned or no longer

increase the agent's expected reward. This process can be decentralized using an

algorithm such as CBBA [24], which provides similar convergence and performance

guarantees to centralized sequential greedy algorithms such as Algorithm 2. The inner

loop task sequence evaluation procedure in Algorithm 3 is responsible for evaluating

candidate sequences.

3.7.1 Policy Computation Complexity

As discussed earlier, policies must be precomputed for all NaSt combinations of Na

unique agent types and St unique task types prior to running Algorithms 2 and 3.

A relatively straightforward and well-known way to solve the planning problem for

each of these combinations is to use value iteration with a tabular representation; in

51

this case, the complexity of finding an -optimal policy for all combinations is [102]

(' l)atSI maxIAlmax ,(11) (3.14)

where ISImax, lAlmax are the maximum state and action space sizes for any combina-

tion. As this is a one-time precomputation, it does not affect the time to replan for

new scenarios involving the same types of task and agent. Naturally, feature or ba-

sis function representations [103] and approximate methods [93] may be used during

the computation of 7rw to reduce memory usage and computational complexity; this

extends the scope of this approach to scenarios with a much larger IS~max than those

which may be handled with value iteration and a tabular representation.

3.7.2 Allocation Complexity

The worst-case complexity of Algorithms 2 and 3 combined is polynomial in Nt and

constant in Na:

NISmaxKT log 1 -1t) (log , (3.15)

where A* = arg maxAEeig(p):iji<1 JAl is the eigenvalue of P with maximum magnitude

less than 1. The Nt term arises from an O(Nt) number of task insertions, with O(Nt)

on/prior-to-execution updates per insertion. The A* term captures the convergence

rate of Zt- p(Tk+1 = t + TTk) to a number larger than Vth during on-execution

updates.

3.8 Example: Target Identification

The MDP task allocation algorithm was tested on a multiagent multitarget surveil-

lance scenario in a 10 x 10 gridworld environment with Na agents and Nt targets. A

basic version of this problem with 2 agents and 3 targets (the algorithm was tested

on much larger problem sizes than this) is illustrated in Figure 3-1. In this example,

52

Algorithm 2 MDP Task Allocation

Input: Set of tasks T, agents Z
1: Vi E Z : pi <- {}, Ji,prev <- 0
2: while T # 0 do
3: for i c Z,j c T,k c pi do
4: Jijk <-EVALTASKSEQ(pi (@k i)
5: end for
6: z, j, I <- arg max Jijk - Ji,prev
7: T T\J, Jprev <- Ji3i, Pz <- R' Gk 1
8: end while
9: return p2Vi E Z

Algorithm 3 EVALTASKSEQ

Input: so, To, pi = {jo, .. . ,jn-1}
1: V <- 0

2: for k = 0 - r - 1 do
3: V +- V + ESk,Tk [_Ykg (sk

4: (grk+1, p(Tk+1)) <-ONEXECUPDATE(sk, p(Tk))

5: for i = k + 1 -+ n - 1 do
6: dr <-PRIOREXECUPDATE(dys, syk, {Jp() }'=1)
7: end for
8: STrk+1 - (rk+17 drk+1)
9: end for

10: return V

the goal for the fleet of agents was to capture images of as many targets as possible

in the surveillance region. If an agent was in the same cell as a target it had an 80%

chance of acquiring an image; if the target was in an adjacent cell of the agent it had

a 20% chance of acquiring an image. Capturing an image of a target removed the

target from the scenario and provided a reward of 10 to the agents, where rewards

were discounted into the future using a factor of -y = 0.9. Targets moved stochasti-

cally with a dynamical model that was provided to the agents, and targets were able

to leave the domain permanently, preventing agents from taking an image of them.

Agents were capable of moving within a 5 x 5 square of cells around their current

location, while targets were capable of moving within a 3 x 3 square of cells around

their current location.

53

4- A

A _:A

F.I IX I

d

____* I--~
__ _- 4-

I
I_____

ZZ.1iflhI[]f-T
(a) Simple Scenario (b) Candidate Task Allocation

Figure 3-1: Simple scenario consisting of two agents (blue A) deciding how to pursue

three targets (red o), which highlights the effect of the growth in target position

uncertainty over time. It is noted that the MDP task allocation algorithm addresses

the full Na agent and Nt task problem.

In this scenario, the multiagent MDP was transformed into a list of available tasks

for the MDP task allocation algorithm by specifying each target as a single task. By

specifying the tasks in this way, agents were able to explicitly coordinate with one

another such that no two agents ever pursued the same target. Further, such tasks

were guaranteed to satisfy the absorbing requirement for MDP tasks, as each target

would eventually leave the scenario or be imaged by an agent.

This scenario was run in a Monte Carlo simulation consisting of 196 trials, each

with randomized initial conditions, for every combination of Na = {1, 5, 9} and

Nt = {1, . . ., 36}. The main result of these tests is shown in Figures 3-2a-3-2b. Figure

3-2a demonstrates that the mean of the computation time for planning grows subex-

ponentially with respect to the number of tasks, and generally remains constant with

larger number of agents. The examination of Algorithm 3 refines this experimental

estimate and yields a worst case quintic complexity with respect to the total number

of tasks. Further, while it may seem counterintuitive that an increasing number of

agents (going from 5-9) does not increase the solution time, this is caused by the fact

54

10, 90
---- 1 agent

80 - 5 agents

102 70

60

o. 40

-- 1 Agent 30
102 -5 Agents 20

-9 Agents
10

0 10 20 30 40 0 10 20 30 40
Tasks Tasks

(a) (b)

Figure 3-2: (3-2a): Logarithmic plot of mean (solid) and worst-case (dashed) time
performance as a function of the number of tasks. Both the mean and worst-case
computational time scale polynomially. (3-2b) Plot of mission scores as a function of
number of tasks.

that the most computationally expensive portion of the task allocation algorithm is

the propagation of probability distributions. With an increased number of agents,

these distributions are generally propagated through shorter task sequences, as each

agent is required to do fewer tasks. It is noted that a full computation time for this

algorithm would include the computation of policies for each of the MDP tasks; but

as these are only computed once before the algorithm is run for each type of task, they

do not affect the scaling of computation time with the number of agents or tasks. In

the scenario run above the policy computation took about 3 seconds per task type.

Figure 3-2b demonstrates that the mission score behaves intuitively as the number of

agents and tasks are varied. With a fixed number of agents and increasing number of

tasks, the score increases until it reaches an upper bound, illustrating the number of

tasks at which the team becomes fully occupied. As the number of agents increases,

that upper bound increases correspondingly.

If modelled as a multiagent MDP, this surveillance scenario has a state-action

space size of approximately X2Nt+2Nay2Na (this is approximate because targets have

an extra state for having left the domain, and agents have some movement actions re-

stricted in certain grid cells). For example, in the largest surveillance scenario tested

55

during the Monte Carlo simulation, this corresponds to a state-action space of cardi-

nality ~ 10102. This exponential complexity in the number of agents and tasks is well

known [21] in decision-making problems involving uncertainty, and causes solutions

to such problems to become computationally intractable as the number of agents and

tasks increases. Recent work has made efforts to reduce this complexity [104]; how-

ever, the complexity only becomes polynomial given certain key assumptions, and in

the general case it remains exponential. As demonstrated in Figure 3-2a, the present

MDP task allocation framework mitigates this issue and yields a complexity which is

polynomial for general stochastic multiagent decision-making scenarios.

3.9 Summary

This work developed a multiagent task allocation algorithm for general stochastic

tasks based on Markov decision processes. This algorithm is scalable to situations

involving a large number of agents and tasks, while capable of incorporating the

generality of MDP models of those tasks. Results showed the feasibility of using

these methods in realistic mission scenarios with a large number of agents and tasks.

56

Chapter 4

The Dynamic Means Algorithm

4.1 Overview

A key assumption in MDP task allocation is that the models of the MDP tasks are

well-known; this assumption is required both in finding the policies for each task,

and in propagating the state distributions along task paths for each agent to evaluate

bundle scores. To remove this assumption, a model learning procedure that is flexible

enough to capture an unknown number of task types (e.g. for a target tracking task,

different target behaviors), but fast enough to be run in real-time (in order to quickly

model/identify different types of task while they are being performed) is required.

Parametric modeling techniques are not well-suited to this endeavor, as they can-

not capture the different task types that exist without knowing how many exist a

priori. Bayesian nonparametrics, on the other hand, possess this flexibility and are

well-suited for task model learning; in particular, because the model learning problem

involves an unknown number of task types, a Dirichlet process-based model is a natu-

ral choice. Of this class of models, the dependent Dirichlet process (DDP) is perhaps

the best candidate: It captures an unknown number of evolving models, which allows

it to adapt to changing environments; and inference algorithms for it do not grow in

complexity over time (despite streaming data) due to periodic compression of data

into sufficient statistics.

However, inference procedures for the DDP do not operate on the timescales

57

required for real-time multiagent planning [105]. Thus, this chapter presents a novel

algorithm, based upon the dependent Dirichlet process mixture model (DDPMM),

for clustering batch-sequential data containing an unknown number of temporally

evolving clusters. The algorithm is derived via a low-variance asymptotic analysis

of the Gibbs sampling algorithm for the DDPMM, and provides a hard clustering

with convergence guarantees similar to those of the k-means algorithm. Empirical

results from a synthetic test with moving Gaussian clusters and a test with real

ADS-B aircraft trajectory data demonstrate that the algorithm provides a clustering

accuracy comparable to other similar algorithms, while posing a significantly lower

computational burden.

This chapter is based on the paper "Dynamic Clustering via Asymptotics of the

Dependent Dirichlet Process Mixture" [106], which was submitted to the 2013 Neural

Information Processing Systems Conference in collaboration with M. Liu, B. Kulis,

and J. How.

4.2 Introduction

The Dirichlet process mixture model (DPMM) is a powerful tool for clustering data

that enables the inference of an unbounded number of mixture components, and has

been widely studied in the machine learning and statistics communities [17, 19, 49, 50].

Despite its flexibility, it assumes the observations are exchangeable, and therefore that

the data points have no inherent ordering that influences their labeling. This assump-

tion is invalid for modeling temporally/spatially evolving phenomena, in which the

order of the data points plays a principal role in creating meaningful clusters. The de-

pendent Dirichlet process (DDP), originally formulated by MacEachern [48], provides

a prior over such evolving mixture models, and is a promising tool for incrementally

monitoring the dynamic evolution of the cluster structure within a dataset. More

recently, a construction of the DDP built upon completely random measures [12]

led to the development of the dependent Dirichlet process Mixture model (DDPMM)

and a corresponding approximate posterior inference Gibbs sampling algorithm. This

58

model generalizes the DPMM by including birth, death and transition processes for

the clusters in the model.

The DDPMM is a Bayesian nonparametric (BNP) model, part of an ever-growing

class of probabilistic models for which inference captures uncertainty in the both the

number of parameters and their values. While these models are powerful in their

capability to capture complex structures in data without requiring explicit model

selection, they suffer some practical shortcomings. Inference techniques for BNPs

typically fall into two classes: sampling methods (e.g. Gibbs sampling [50] or particle

learning [19]) and optimization methods (e.g. variational inference [17] or stochastic

variational inference [18]). Current methods based on sampling do not scale well with

the size of the dataset [52]. Most optimization methods require analytic derivatives

and the selection of an upper bound on the number of clusters a priori, where the

computational complexity increases with that upper bound [17, 18]. State-of-the-

art techniques in both classes are not ideal for use in contexts where performing

inference quickly and reliably on large volumes of streaming data is crucial for timely

decision-making, such as autonomous robotic systems [53-55]. On the other hand,

many classical clustering methods [56-58] scale well with the size of the dataset

and are easy to implement, and advances have recently been made to capture the

flexibility of Bayesian nonparametrics in such approaches [59]. However, as of yet

there is no classical algorithm that captures all the processes (cluster birth, death,

and movement) that the DDP mixture can capture within data posessing a dynamic

cluster structure.

This chapter discusses the Dynamic Means algorithm, a novel hard clustering al-

gorithm for spatio-temporal data derived from the low-variance asymptotic limit of

the Gibbs sampling algorithm for the dependent Dirichlet process Gaussian mixture

model. This algorithm captures the scalability and ease of implementation of clas-

sical clustering methods, along with the representational power of the DDP prior,

and is guaranteed to converge to a local minimum of a k-means-like cost function.

The algorithm is significantly more computationally tractable than Gibbs sampling,

particle learning, and variational inference for the DDP mixture model in practice,

59

while providing equivalent or better clustering accuracy on the examples presented.

The performance and characteristics of the algorithm are demonstrated in a test

on synthetic data, with a comparison to those of Gibbs sampling, particle learning

and variational inference. Finally, the applicability of the algorithm to real data

is presented through an example of clustering a spatio-temporal dataset of aircraft

trajectories recorded across the United States.

4.3 Asymptotic Analysis of the DDP Mixture

The dependent Dirichlet process Gaussian mixture model (DDP-GMM) serves as the

foundation upon which the present work is built. The generative model of a DDP-

GMM at time step t is

{JOt, 7ketl'1 ~ DP(pt)

{zit}Qt ~ Categorical({7rkt} 1) (4.1)

where Okt is the mean of cluster k, 7rkt is the categorical weight for class k, yit is a

d-dimensional observation vector, zit is a cluster label for observation i, and wt is the

base measure from (2.12). Throughout the rest of this chapter, the subscript kt refers

to quantities related to cluster k at time step t, and subscript it refers to quantities

related to observation i at time step t.

The Gibbs sampling algorithm for the DDP-GMM iterates between sampling la-

bels zit for datapoints yit given the set of parameters {Okt, and sampling parameters

0 kt given each group of data {yit : zit = k}. Assuming the transition model T

is Gaussian, and the subsampling function q is constant, the functions and distri-

butions used in the Gibbs sampling algorithm are: the prior over cluster param-

eters, 0 - A(O, pI); the likelihood of an observation given its cluster parameter,

Yit -)A(Okt, 9); the distribution over the transitioned cluster parameter given its

last known location after Atk time steps, Okt ~ .(Ok(t-tk), Atk I); and the sub-

60

sampling function q(O) = q E (0, 1). Given these functions and distributions, the

low-variance asymptotic limits (i.e. oa - 0) of these two steps are discussed in the

following sections.

4.3.1 Setting Labels Given Parameters

In the label sampling step, a datapoint yit can either create a new cluster, join a

current cluster, or revive an old, transitioned cluster. Using the distributions defined

previously, the label assignment probabilities are

at(27r(o + p))-d/2 exp - +) 0

(Ckt + nkt)(27Ta) -/2 exp (- Okt)2

(It -- Ok(t-Atk)1
qktckt(27r(a + At))-d/2 exp 2 + Atk)

k -K + I

nkt > 0

rlkt - 0

1 - q

where qkt = q Atk due to the fact that q(O) is constant over Q, and at = I 1 -1 I- - q

where a,, is the concentration parameter for the innovation process, Ft. The low-

variance asymptotic limit of this label assignment step yields meaningful assignments

as long as a, , and q vary appropriately with a; thus, setting ay, , and q as follows

(where A, T and Q are positive constants):

(4.2)

yields the following assignments in the limit as a -+ 0:

zit = argmin {J} ,
k

yit - Okt 1|2

where Jk = QAtk + I|Nit - Ok(t-Atk) 11

TAtk + 1

A

if 0 k instantiated

if Ok old, uninstantiated

if Ok new

61

(4.3)

(4.4)

(I + plg)dl = Ta, q = exp 2o,
exp

2a(- A

p(zit = kJl . ..) oc

In this assignment step, QAtk acts as a cost penalty for reviving old clusters that

increases with the time since the cluster was last seen, TAtk acts as a cost reduction

to account for the possible motion of clusters since they were last instantiated, and

A acts as a cost penalty for introducing a new cluster.

4.3.2 Setting Parameters given Labels

In the parameter sampling step, the parameters are sampled using the distribution

P(Oktlfyit : zit = k}) xc p({yit : zt = k}1Okt)p(Okt) (4.5)

There are two cases to consider when setting a parameter Okt. Either Atk = 0 and

the cluster is new in the current time step, or Atk > 0 and the cluster was previously

created, disappeared for some amount of time, and then was revived in the current

time step.

New Cluster Suppose cluster k is being newly created. In this case, 0 kt ~ JA(4, p).

Using the fact that a normal prior is conjugate a normal likelihood, we have a closed-

form posterior for Okt:

Okt Yit zit = k} ~ (Opost, upost)

0 post = post ~ + , 7p it Ipostz (4.6)

Then letting u -+ 0 yields

Ok (Zi= Yit) def mt(4.7)
nkt

where nkt is the number of observations in cluster k in the current timestep, and mkt

is the mean of the observations in cluster k in the current timestep.

Revived Cluster Suppose there are Atk time steps where cluster k was not ob-

served, but there are now nkt data points with mean mkt assigned to it in this time

62

step. In this case,

P(Okt) = T(OktIO)p(O) dO, 0 ~ .(O', 9'). (4.8)

Again using conjugacy of normal likelihoods and priors,

Okt Iyt : Zit = k} ~ (post, 0)post

O' Eink yit 1 nkt ~1 (4.9)
6post =post '+ Y post -

Similarly to the label assignment step, let -=Fu. Then as long as a' = u/w, w > 0

(which holds if (4.9) is used to recursively keep track of the parameter posterior),

taking the asymptotic limit of this as u -+ 0 yields:

Oi -'(W 1 + AtkTr) 1 + nktmkt (4.10)
(w- 1 + AtkT) 1 + rkt

that is to say, the revived 0 kt is a weighted average of estimates using current timestep

data and previous timestep data. T controls how much the current data is favored -

as -r increases, the weight on current data increases, which is explained by the fact

that the uncertainty in where the old 0' transitioned to increases with T. It is also

noted that if T = 0, this reduces to a simple weighted average using the amount of

data collected as weights. This makes sense, as the = 0 case implies that there is no

movement in the cluster centres, and so no reduction in old parameter weight occurs

(equivalently, all past information collected is retained).

Combined Update Combining the updates for new cluster parameters and old

transitioned cluster parameters yields a recursive update scheme:

'Ykt ((wk(t-Atk)) 1 + AtkT)
0 k0 = mko Ok(t-AtkY)kt + nktmkt (4.11)

0
kt -- (.)

WkO = nkO 7kt + rkt

Wkt 7kt + nkt

63

where time step 0 here corresponds to when the cluster is first created. An interesting

interpretation of this update is that it behaves like a standard Kalman filter, in which

w-Q serves as the current estimate variance, T serves as the process noise variance,

and nkt serves as the inverse of the measurement variance.

4.4 The Dynamic Means Algorithm

In this section, some further notation is introduced for brevity:

yt = ~ {yN} 1, Zt = Zit}I N
j= i=1(4.12)

/Ct = {(At, Wkt) : nkt > 0}, Ct = (Atk, Okat-tk) 7t Wkat-tktay

where Yt and Zt are the sets of observations and labels at time step t, IQ is the set

of currently active clusters (some are new with Atk = 0, and some are revived with

Atk > 0), and Ct is the set of old cluster information.

4.4.1 Algorithm Description

As shown in the previous section, the low-variance asymptotic limit of the DDP Gibbs

sampling algorithm is a deterministic observation label update (4.4) followed by a de-

terministic, weighted least-squares parameter update (4.11). Inspired by the original

k-means[56] algorithm, applying these two updates iteratively yields an algorithm

which clusters a set of observations at a single time step given cluster means and

weights from past time steps (Algorithm 4). Applying Algorithm 4 to a sequence of

batches of data yields a clustering procedure that is able to track a set of dynamically

evolving clusters (Algorithm 5), and allows new clusters to emerge and old clusters

to be forgotten. While this is the primary application of Algorithm 5, the sequence

of batches need not be a temporal sequence. For example, Algorithm 5 may be used

as an any-time clustering algorithm for large datasets, where the sequence of batches

is generated by selecting random subsets of the full dataset.

The ASSIGNPARAMS function is exactly the update from (4.11) applied to each

64

Algorithm 4 CLUSTER

Input: Yt, Ct, Q, A, T

1C, +-- 0, Z, -- 0, Lo +-- oc
for n = 1 -- oo do

(Zt, I) <-ASSIGNLABELS(Yt, Zt, Ct, Ct)
(KCt, L,) +-ASSIGNPARAMS(Yt, Zt, Ct)
if Ln - L,_ 1 then

return IQ, Zt, L,
end if

end for

k E K. Similarly, the ASSIGNLABELS function applies the update from (4.4) to each

observation; however, in the case that a new cluster is created or an old one is revived

by an observation, ASSIGNLABELS also creates a parameter for that new cluster based

on the parameter update (4.11) with that single observation. The UPDATEC function

is run after clustering observations from each time step, and constructs Ct+1 by setting

Atk 1 for any new or revived cluster, and by incrementing Atk for any old cluster

that was not revived:

Ct+1 = f{(At +1, 0 k(t-Atk), Wk(t-Atk)) : k E Ct, k V Kt} U{(1, Okt, Wkt) : k E IQ } (4.13)

An important question is whether this algorithm is guaranteed to converge while

clustering data in each time step. Indeed, it is; Theorem 4.4.1 shows that a particular

cost function Lt monotonically decreases under the label and parameter updates (4.4)

and (4.11) at each time step. Since Lt > 0, and it is monotonically decreased by Al-

gorithm 4, the algorithm converges in a finite number of iterations by Corollary 4.4.2.

Note that the Dynamic Means is only guaranteed to converge to a local optimum,

similarly to the k-means [56] and DP-Means [59] algorithms.

Theorem 4.4.1 Each iteration in Algorithm 4 monotonically decreases the cost func-

65

Algorithm 5 Dynamic Means

Input: {t} ti, Q, A, r

C1 <- 0
for t = 1 -+ tf do

(Kit, Zt, Lt) +-CLUSTER(Yt, Ct, Q, A, -r)
Ct+1 +-UPDATEC(Zt, /Ct, Ct)

end for
return {Kt, Zt, Lt} L 1

tion Lt, where

New Cost Revival Cost Weighted-Prior Sum-Squares Cost

Lt A[Atk=0] + Q~tk +-yktIIOkt -Ok(t-Atk)I112 ± : 11 HYit 12
kEKt Yitcyt

zit=k

(4.14)

Proof This proof proceeds by showing that each step of Dynamic Means (parameter

assignment and label assignment) individually do not increase Lt. Thus, when these

steps are iterated, Lt is monotonically decreasing.

The first step considered is the parameter update. During this update, the portion

of Lt attributed to A and Q does not change, as the cluster labels are held constant.

Therefore, the only portion of Lt that needs to be considered is the weighted sum

square cost. Taking the derivative of this with respect to 0
kt, and setting it equal to

0 yields

0 = 7kt(Okt - Ok(t-Atk)) + (Okt - yit) (4.15)

zit=k

(7kt + nkt)Okt = 7kt~k(t-Atk) + Yit (4.16)
Zit=k

Okt = Nktk(t-Atk) nktmkt (417)
-Ykt + nkt

and since this portion of the cost function is convex in 0
kt, this is the minimizing 0 kt

for cluster k, and thus this portion of the cost function is reduced. Note that if k is a

newly created cluster in timestep t, -ykt= 0 and thus Okt is set to the current sample

66

mean, mkt.

The second step considered is the label update. Here, there are a number of

cases: 1) the update moves an observation from a currently active cluster to another

currently active cluster; 2) the update creates a new cluster; 3) the update revives

an old cluster; and 4) the observation was the last in its group, and the cluster is

destroyed. Each case will be considered separately. Note that the amount that an

observation y in cluster k contributes to the cost function prior to reassignment is

IIY - Okt12.

1. Suppose the observation y in cluster k becomes assigned to a currently active

cluster j. Since the cluster was already active, the observation now contributes

y - Ot 112 to the cost, and fly - O.t1 2 < y - 6kt112 because the label assignment

step chose the minimum of these two. Thus, the cost does not increase.

2. Suppose the observation y in cluster k is assigned to a brand new cluster K

with cost A (the new ||y - OKt 112 cost is 0, since OKt is set to OKt = y when a

new cluster is created). Then we know that A + fly - OKt 112 = A < lI - Okt 1f2

due to the label assignment step choosing the minimum of these two, and thus

the cost does not increase.

3. Suppose the observation y in cluster k revives an old cluster j. Then

Iy - Oj(t-tk)112 + QAtj I IY - Okt 11 (4.18)
At 3 T + 1

and further, using the parameter update (4.11),

Ojt - Oj(tAtk)jt + (4.19)
9Yjt + 1

rearranging the above yields two relations:

2

If jt - y2 (1 + 2t)2 1Oj(t-At) - yj12 (4.20)

2- yfi = _yt||6j - 9j(t-At) 112 (4.21)

67

where yjt ((Wj(t-Atj))- 1 + AtjT)'. Placing these terms in a weighted least-

squares-like configuration yields

IIO5t - yfl l + 'ystIIO5 - j(tAtj) =12 (1 + _Y-)IIIOjt -- y112 (4.22)

(1 + -) jt - y12 (4.23)
(1 - 't) 2

3 2

- 1 Oj(tt) - y112 (4.24)
1 +73

and subbing in for the 'yjt term,

t - - y11 + 7 9jt II| t - oj(t-Atj)I 1 + (w _ (tt3) ' + - 112

(4.25)

< j(t-At3) - 2 (4.26)
1 + AtjT

Therefore, if the DDP k-means algorithm instantiates an old cluster,

110i - Y112 7jtlojt oj~_Atj 112+ Q~j <IIly - Oj(t-A.tk) 112 j(.7

< Iy -- Y Yt 212 (4.28)

and the new contribution to the cost is less than the old contribution.

4. Suppose the observation y in cluster k was the last observation in its cluster

prior to reassignment, and y became assigned to a different cluster. If y was

previously part of a newly created cluster in this time step, the cost decreases

by A after y is reassigned; likewise, if y was previously part of a revived cluster,

the cost decreases by QAtk+YktlOkt -Ok(t-tj) 12. Thus, the removal of a cluster

that becomes empty after reassignment does not increase the cost.

N

Corollary 4.4.2 Algorithm 4 terminates at a local cost optimum after a finite num-

ber of iterations.

68

Proof This result is trivial given Theorem 4.4.1. Since Lt is monotonically decreas-

ing, and bounded below by 0, Lt converges. Further, there are a finite number

of possible data labellings. Thus, after a finite number of iterations, the labelling

reaches a fixed point, and the algorithm terminates.

The cost function is comprised of a number of components for each currently active

cluster k E /Ct: A penalty for new clusters based on A, a penalty for old clusters based

on Q and Atk, and finally a prior-weighted sum of squared distance cost for all the

observations in cluster k. It is noted that for new clusters, Okt = 9
k(t-Atk) since

Atk = 0, so the least squares cost is unweighted. The ASSIGNPARAMS function

calculates this cost function in each iteration of Algorithm 4, and the algorithm

terminates once the cost function does not decrease during an iteration.

4.4.2 Reparameterizing the Algorithm

In order to use the dynamic means algorithm, there are three free parameters to

select: A, Q, and T. While A represents how far an observation can be from a cluster

before it is placed in a new cluster, and thus can be tuned intuitively, Q and T are not

so straightforward. The parameter Q represents a conceptual added distance from

any data point to a cluster for every time step that the cluster is not observed. The

parameter T represents a conceptual reduction of distance from any data point to a

cluster for every time step that the cluster is not observed. How these two quantities

affect the algorithm, and how they interact with the setting of A, is hard to judge.

Instead of picking Q and T directly, the algorithm may be reparameterized by

picking NQ, k, E R+, NQ > 1, k, ;> 1, and given a choice of A, setting

Q =A/NQ T NQ(kT - 1) 1 (4.29)
NQ -1

If Q and r are set in this manner, NQ represents the number (possibly fractional)

of time steps a cluster can be unobserved before the label update (4.4) will never

revive that cluster, and krA represents the maximum squared distance away from a

cluster center such that after a single time step, the label update (4.4) will revive

69

that cluster. As NQ and k, are specified in terms of concrete algorithmic behavior,

they are intuitively easier to set than Q and r.

4.5 Applications

4.5.1 Synthetic Gaussian Motion Data

In this experiment, moving Gaussian clusters on [0, 1] x [0, 1] were generated syntheti-

cally over a period of 100 time steps. In each step, there was some number of clusters,

each having 15 data points. The data points were sampled from a symmetric Gaus-

sian distribution with a standard deviation of 0.05. Between time steps, the cluster

centers moved randomly, with displacements sampled from the same distribution. At

each time step, each cluster had a 0.05 probability of being destroyed.

This data was clustered with Dynamic Means (with 3 random assignment ordering

restarts), DDP-GMM Gibbs sampling, variational inference, and particle learning on

a computer with an Intel i7 processor and 16GB of memory. First, the number of

clusters was fixed to 5, and the parameter space of each algorithm was searched for

the best possible performance in terms of cluster label accuracy (taking into account

label consistency across time steps). For the Dynamic Means algorithm the space

(A, TQ, k,) E [0, 0.16] x [0, 10] x [1, 6] was tested, while for the comparison algorithms

the space (log(a), q) E [-4, 2] x [0,1] was tested, with 50 trials at each parameter

setting. The results of this parameter sweep for the Dynamic Means algorithm are

shown in Figures 4-1a - 4-1c. Figures 4-la and 4-1b show how the average clustering

accuracy varies with the parameters after fixing either k, or TQ to their values at

the maximum accuracy parameter setting over the full space. The Dynamic Means

algorithm had a similar robustness with respect to variations in its parameters as

the comparison algorithms, when considering parameter deviations in terms of per-

centages of the maximum accuracy parameter setting. The histogram in Figure 4-1c

demonstrates that the clustering speed is robust to the setting of parameters.

Using the best parameter setting with respect to mean cluster label accuracy for

70

K
6W

5

4

3

2

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
A

(a)

-j.I -. 0 -I.A -
l0 10 seconds

(c)

-3

-4

_0

-2.4 -2.2

5

0.160

5-

3.

2

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.(

(b)

1.4

SGibbs
1.2 VB

SPIL
1.0 - M DynMeans

0.8

0.6

0.4

0.2

0.0

-0.2

-nAi

10
Clusters

5 10
Clusters

(d)

15 20

15 20

(e)

Figure 4-1: (4-la - 4-1c): Accuracy contours and CPU time histogram for the Dy-
namic Means algorithm. (4-id - 4-le): Comparison with Gibbs sampling, variational
inference, and particle learning. Shaded region indicates 1- interval; in (4-1e), only
upper half is shown.

71

200-

150-

100-

50-

-94

Gibbs
VB

M PL
M DynMeans

ZI

~

C
CL

B

CL

r
0

each algorithm, the data as described above were clustered in 50 trials with a varying

number of clusters present in the data. For the Dynamic Means algorithm, parameter

values A = 0.04, TQ = 6.8, and k, = 1.01 were used, and the algorithm was again

given 3 attempts with random labelling assignment orders, where the lowest cost so-

lution of the 3 was picked to proceed to the next time step. For the other algorithms,

the parameter values a = 1 and q = 0.05 were used, with a Gaussian transition dis-

tribution variance of 0.05. The number of samples for the Gibbs sampling algorithm

was 5000 with one recorded for every 5 samples, the number of particles for the par-

ticle learning algorithm was 100, and the variational inference algorithm was run to

a tolerance of 10-0 with the maximum number of iterations set to 5000.

In Figures 4-1d and 4-le, the labelling accuracy and clustering time (respectively)

for the algorithms is shown. Note that the sampling algorithms (Gibbs and PL)

were handicapped to generate Figure 4-1d; the best posterior sample in terms of la-

belling accuracy was selected at each time step, which required knowledge of the true

labelling. This example demonstrates that the Dynamic Means algorithm outper-

forms other standard inference algorithms in terms of label accuracy, while having

the benefit of fast convergence to a solution. Note that the label accuracy compu-

tation included enforcing consistency across timesteps, to allow tracking individual

cluster trajectories. If this is not enforced (i.e. accuracy considers each time step

independently), the other algorithms provide accuracies more comparable to those of

the Dynamic Means algorithm.

4.5.2 Aircraft Trajectory Clustering

In persistent surveillance missions, the ability to autonomously recognize anomalous

situations and behaviors allows the intelligent allocation of resources to best address

those anomalies. In the case of monitoring mobile agent trajectories, characterizing

typical spatial and temporal patterns in their motions is an important step towards the

detection of such anomalies. In this experiment, the Dynamic Means algorithm was

used to find the typical spatial and temporal patterns in the motions of commercial

aircraft, a domain in which anomaly detection is safety-critical.

72

(a)

....... mm mb+ ..- 0"= = 41 .ms .-- a- = =....- - ..----- e -- - -

-~~~~~~a -din oom" i-.m m. i n

IMNW* ,* nm "440 1*n- I -4120$4.4 - I. MIP ... 1

t - -d-o s .m - ni-sam m . + m ;.m + U-U.U.I0 - 4-
4WRVW*I5 -44m4N" 4--I- 4*f-1-qI =a wU 4 .-#4 -AW *friI -.0 We*n 9 4 414 + go -4f -4 4

'40 ..a m mP ..in. Nima 4 US-in --.- 1un .*ninI 4OH

4* ~ ~ ~ ~ ~ ~ ~ N 4IW6 4- -W4 I4IF*I 6 .l 44

Fri Sat Sun Mon Tue Wed Thu Fri
UTC Date

(b)

Figure 4-2: Results of the GP aircraft trajectory clustering. (4-2a): A map (labelled

with major US city airports) showing the overall aircraft flows for 12 trajectories, with

colors and lo, confidence ellipses corresponding to takeoff region (multiple clusters per

takeoff region), colored dots indicating mean takeoff position for each cluster, and lines

indicating the mean trajectory for each cluster. (4-2b): A track of plane counts for

the 12 clusters during the week, with colour intensity proportional to the number of

takeoffs at each time.

Automatic dependent surveillance-broadcast (ADS-B) data, including plane iden-

tification, timestamp, latitude, longitude, heading and speed, was collected from all

transmitting planes across the United States during the week from 2013-3-22 1:30:0 to

2013-3-28 12:0:0 UTC. The following procedure was used to create feature vectors for

clustering the data. First, individual ADS-B messages were connected together based

on their plane identification and timestamp to form trajectories, and erroneous tra-

jectories were filtered based on reasonable spatial/temporal bounds, yielding 17,895

unique trajectories. Then, for each trajectory, a Gaussian process was trained using

the latitude and longitude of each ADS-B point along the trajectory as the inputs

and the North and East components of plane velocity at those points as the outputs.

Next, the mean velocity from the Gaussian process was queried for each point on a

73

regular lattice across the USA with 10 latitudes and 20 longitudes, and used to create

a 400-dimensional feature vector for each trajectory. Finally, the resulting 17,895 fea-

ture vectors were clustered using the Dynamic Means algorithm, DP-Means algorithm

(run on the entire dataset in a single batch), and the DDPGMM Gibbs sampling al-

gorithm (50 sampling iterations total per time step) for all plane take-offs occuring

in a sequence of half hour time windows.

The clustering results of this exercise from the Dynamic Means algorithm are

shown in Figure 4-2. Over 10 trials, the Dynamic Means algorithm took an average

of 4.9s to process all the feature vectors, the DP-Means algorithm took an average

of 72.3s, while the DDP Gibbs sampling algorithm took an average of 5426.1s. The

DP-Means algorithm provided a model with about twice as many clusters (mostly

near duplicates of other clusters) due to the inability to capture slight variations

through cluster transition processes and the inability to remove erroneous clusters by

modeling cluster death processes. The DDP Gibbs sampling algorithm did not give

reliable results and proved to be very difficult to tune on this dataset, due to the high

dimensionality of the feature vectors and the high runtime of the algorithm on the

available hardware. The Dynamic Means algorithm, on the other hand, successfully

identified the major flows of commercial aircraft across the United States along with

their temporal patterns (the 12 most popular of which are shown in Figure 4-2) in

orders of magnitude less time than both the DP-means and DDP mixture Gibbs

sampling algorithms.

4.6 Summary

This chapter presented the Dynamic Means algorithm, a clustering algorithm for

batch-sequential data containing temporally evolving clusters. This algorithm was

derived from a low-variance asymptotic analysis of the Gibbs sampling algorithm for

the dependent Dirichlet process mixture model. Synthetic and real data experiments

demonstrated that the algorithm can provide a hard clustering with labelling accuracy

comparable to similar algorithms, while posing a significantly lower computational

74

burden than those algorithms in practice. The speed of inference coupled with the

convergence guarantees provided yield an algorithm which is suitable for use in time-

critical applications, such as online model-based task allocation systems.

75

76

Chapter 5

SCORE: Simultaneous Clustering

on Representation Expansion

5.1 Overview

In the preceding chapters, two new tools were developed: Markov decision process

task allocation [100], and the Dynamic Means algorithm [106]. The first provides a

mechanism for coordinating multiple autonomous agents under uncertainty, making

the assumption that the stochastic model of the environment is fully known to the

agents. The second provides a way to perform realtime, lifelong learning of such a

model with the flexibility of Bayesian nonparametrics. Thus, the next, and final,

portion of this thesis is dedicated to the development of a technology that bridges

the gap between these two methods.

This chapter considers learning the model of a Markov decision process task that

has an unknown number of realizations. For example, a target tracking task may

involve a hostile, neutral, or evasive target, and this set of target types is unknown

to the planning system a priori. The generalization of this problem, addressed by

this chapter, is model learning in a Markov decision process (MDP) that exhibits an

underlying multiple model structure. In particular, each observed episode from the

MDP has a latent classification that determines from which of an unknown number

of models it was generated, and the goal is to determine both the number and the pa-

77

rameterization of the underlying models. The main challenge in solving this problem

arises from the coupling between the selection of a low-dimensional representation of

the domain and the separation of observations into groupings. Present approaches

to multiple model learning involve computationally expensive probabilistic inference

over Bayesian nonparametric models. We propose Simultaneous Clustering on Rep-

resentation Expansion (SCORE), an iterative scheme based on classical clustering

and adaptive linear representations, which addresses this codependence in an efficient

manner and guarantees convergence to a local optimum in model error. Empirical

results on simulated domains demonstrate the advantages of SCORE when compared

to contemporary techniques with respect to both sample and time complexity.

This chapter is based on the paper "Simultaneous Clustering on Representation

Expansion for Learning Multimodel MDPs" [107], which was accepted in the 2013

Multidisciplinary Conference on Reinforcement Learning and Decision Making, writ-

ten in collaboration with R. Klein, A. Geramifard, and J. How.

5.2 Introduction

A key component of model-based Reinforcement Learning (RL) techniques is to build

an accurate model of a Markov Decision Process (MDP) from observed interac-

tions [71, 72]. This chapter considers the problem of model learning in an MDP

that exhibits an underlying multiple model structure. In particular, each of the un-

known number of latent models contains a complete description of the transition

dynamics and reward of the MDP, and each observed episode (or "trajectory") has a

latent classification that determines from which model it was generated. An example

of such a scenario is a pursuit task, where an agent seeks to capture a target whose

movement model can be neutral (e.g. random walk) or defensive (e.g. avoiding the

agent), and where the agent does not know about these behaviors a priori. Such

missions are of great interest to the autonomous planning community: For example,

in mobile robot path planning problems the models can describe various types of ter-

rain, or for aircraft routing problems the models can describe the evolution of various

78

weather patterns.

Linear function approximation has scaled model-based RL techniques to larger

problems using fixed bases [73, 76] and adaptive bases [97], yet these techniques

have not incorporated the aforementioned decomposition of the underlying model.

Because they do not exploit the decomposed structure, they often require a large

number of samples to find an accurate model, and yield suboptimal policies that arise

from averaging over all the underlying models. Multiple-model approaches [79, 80]

explicitly incorporate the decomposition assumption into their modeling structure,

yet they assume the number of model classes are known a priori, and assume a rigid

model component structure that cannot grow over time like adaptive linear function

approximation. Past work in Bayesian nonparametrics [68, 83] has addressed the

problem of determining both the structure of the individual models and the number

of models, but as of yet these methods are not practical in an RL setting as their

inference procedures do not scale well to the large quantities of data typically observed

in RL problems.

A successful model-based RL approach in multimodel problems must use a col-

lection of observed trajectories to infer both the number of models and their param-

eterization, with which the agent can generate a collection of policies. There are two

major challenges posed by this problem formulation. The first is that of simultaneous

model distinction and learning: In order to learn the models, the algorithm must first

separate the trajectories into groupings based on their latent classifications, but in

order to separate the trajectories into such groupings, the algorithm must have a good

parameterization of the models. The second is that model distinction depends on the

representation: Since learning exact models is infeasible, a lower-dimensional repre-

sentation is required, but the ability to separate trajectories into groupings depends

on the chosen representation.

The main contribution of this chapter is the introduction of the simultaneous clus-

tering on representation expansion (SCORE) architecture, to solve these two problems

using a combination of clustering and linear representation adaptation. Given a fixed

representation, the clustering algorithm is used both for the identification of model

79

classes and fitting the parameter of each individual class, while the representation

adaptation algorithm ensures that the learned classes are not simply an artifact of a

poor representation. Connections to the classical clustering literature lead to theoret-

ical convergence guarantees. Finally, empirical results on a benchmark MDP scenario

are presented, demonstrating the advantages of our proposed method compared to

current state-of-the-art methods.

5.3 Simultaneous Clustering On Representation Ex-

pansion (SCORE)

5.3.1 Problem Formulation

The problem considered in the present work extends the traditional MRP learning

scenario by allowing an unknown number of models to be responsible for generating

the observations. More precisely, suppose there is a set T {fk}'Q' of scalar fields

of unknown cardinality ITI defined on S, each associated with an MRP. Given a

collection of N observed trajectories, each trajectory having been generated by one

of the MRPs, the goal is to infer the set F, i.e. both ITI and fk V k = 1,.. ., .

As it is often intractable to learn the full representation of f for even just a single

system, a linear feature representation of the system is used to reduce the problem

to learning FD = {f} . However, the capability to distinguish MRPs based on

observed data is intimately linked to the particular chosen linear representation; thus,

(D itself must also be inferred in order to find the best grouping of the trajectories.

Based on the standard formulation of MRP model learning, the natural exten-

sion to the case with multiple models is a minimization of the sum of the squared

predictive errors over all the trajectories from each MRP with respect to fAk. Let

zi E {1,... , I|1} be the label denoting the index of the MRP from which episode yj

80

was generated. Then the squared predictive error of trajectory i in MRP k is

Ti

6' (i, k) = Z(f o - fe'k'kij) 2 . (5.1)
j=1

Finally, define J(D to be the number of features (columns) in 1. Then, the overall

goal of multimodel learning is to solve the optimization problem

min A JT4, + qI l + E [VIf1k2 + E (i, k) , (5.2)
ee{ if=1 k=1 i:zi=k.

where A Il (with A > 0) is a cost penalty on the complexity of the learned model,

14I (with 7 > 0) is a cost penalty on the complexity of the representation, and

vIf'k 112 (with v > 0) is a regularization term. This problem formulation shares a

strong connection to past single-model MRP learning techniques. If I.F4 = 1 is fixed,

it reduces to model learning with an adaptive linear feature representation. If 14I is

fixed as well, it reduces to a least squares model estimation problem. The introduction

of the penalties AI.FDJ and i14| is motivated by the desire to keep both the number

of MRPs and the dimensionality of the representation small; indeed, without these

penalties, the solution to the optimization is found trivially by setting 4 to the tabular

representation, and assigning each trajectory to its own MRP. The particular selection

of a penalty proportional to IFe D is based upon past literature in the classical limits of

Bayesian nonparametric clustering [59], while the penalty proportional to J@D arises

from the implicit cost function minimized by many state-of-the-art representation

adaptation algorithms, such as iFDD [103] and BEBFs [108], if they are modified to

include an error reduction threshold for representation expansion. The optimization

problem (5.2) is a mixed integer nonlinear program, with complexity that is nonlinear

in the amount of data N for both exact and heuristic methods [109, 110] even given

fixed IFF 7 and II. Thus, finding an efficient heuristic method for this optimization

problem is the focus of the present work.

A key insight that can be made about this problem formulation is that it shares a

strong connection to the k-means problem [56]. In both the k-means problem and the

81

Batch SCORE

ReceivRe ReC~TR AATw WTRHeject 4

Accept <D

Figure 5-1: Algorithm block diagram.

optimization in equation (5.2), the goal is to simultaneously assign observations to

clusters and to choose a parameter for each cluster that minimizes a sum of squared

errors within that cluster. Drawing upon this insight an algorithmic architecture,

simultaneous clustering on representation expansion (SCORE), that iterates between

assigning trajectories to MRPs, finding the best parameter for each MRP, and adapt-

ing the linear representation is proposed. Then, the theoretical properties of SCORE

are examined, and empirical results on a benchmark domain are presented.

5.3.2 Batch SCORE

The batch SCORE algorithm, shown in Figure 5-1, is an iterative algorithm for

minimizing the objective (5.2). It starts by using the CLUSTER algorithm (5.3) to

find an initial clustering of the data given an initial representation <b. This yields

a set of initial labels zi Vi C 1, . .. , N} and models f<>k Vk E {1, , K}. Then,

the ADAPT algorithm expands the representation using the predictive error for each

observation with respect to its assigned cluster. If the expansion results in a decrease

in (5.2), the expansion is accepted and the loop begins again. If it does not (due to

the rq penalty), the CLUSTER algorithm is run in an attempt to build a new clustering

in the new representation. If that clustering yields an overall reduction in (5.2), the

expansion is accepted and the loop begins again. If (5.2) is still not reduced, the

algorithm terminates and returns F4, <b, and {zi 'i. The mathematical details of

the three major steps are as follows:

Cluster

i ijoz(k S i>zk (5.3)
i~j~zi~k ,j zi=k

82

6 2 (i, k) k E {1, .. ,K}
zi +-- argmin Y(5.4)

k A+VIIf4k 112 +6(ik) k=K+1

Adapt

O* +- iFDD [72] (5.5)

+- I (P * 1(5.6)

The parameters of Batch SCORE are A, 7, v E R+, where A controls the addition

of new clusters, q controls the addition of new features, and v is the regularization

parameter. K is defined as the number of clusters currently instantiated by the

algorithm, and a new cluster is only created when the label update selects K +

1 as the minimum cost index; thus, increasing A reduces the number of clusters

created. Note that 6 (i, K + 1) is equal to the distance from an observation yi to the

parameter found by solving for f~b(K+1) using only the data from that observation;

this term is required to account for the fact that the best possible parameter for

yi has a nonzero error (unlike clustering problems in vector spaces). In particular,

the 6 (i, K + 1) term compensates for representational distance (i.e. distance due to

poor representation, rather than actual model discrepancy) and the varying length

of trajectories (i.e. distance due to noise accumulating along longer trajectories),

preventing the creation of unnecessary clusters. The regularization, v, is present due

to the possibility that the data within a single cluster does not visit sufficiently many

unique states to make E o5#jOT nonsingular. The per-iteration complexity of batch

SCORE is dominated by the O(D|@|2 +KDf3) parameter update step in (5.3), where

D = ENI Ti is the total number of transitions observed.

The CLUSTER and ADAPT steps may be viewed as modified version of the DP-

means [59] and iFDD [103] algorithms, respectively. The close relationship to these

algorithms guarantees that Batch SCORE finds a local minimum in (5.2), and termi-

nates in a finite number of iterations. These properties are demonstrated by Theorem

5.3.1 and Corollary 5.3.2:

83

Theorem 5.3.1 Batch SCORE monotonically decreases the objective in (5.2).

Proof It is sufficient to show that each individual update in (5.3)-(5.6) is guaranteed

not to increase the cost. The model update in (5.3) is the solution of the minimization

fek= argminf, u'IfeI 2 + 62 (i, k), so given any fixed 4D and {zj!i 1, (5.3) finds

the lowest cost possible, and cannot increase (5.2). Likewise, the label update in (5.3)

changes zi from k to k': If k' < K + 1 then 62 (i, k') < 62 (i, k), and otherwise, A +

V1If-K+1 2 +6 (i, K +1) 5 (i, k); in either case the cost objective (5.2) decreases.

Finally, the update (5.6) will not introduce a new feature (and incur a penalty of

r7) unless the sum of 5 (i, k) across the dataset decreases by at least r7; thus, the

adaptation update decreases (5.2). As all of the individual updates monotonically

decrease the cost objective, the theorem follows.

Corollary 5.3.2 Batch SCORE finds a local optimum in (5.2) and terminates in a

finite number of iterations.

Proof The maximum number of linearly independent columns generated by applying

the conjunction operator on the columns of a matrix is bounded. Given Theorem 5.3.1

and the finite number of possible data labelings the corollary follows. Note that while

the algorithm may find multiple labelings with the same cost, it will not oscillate

between them; it only makes a change to a label if the cost strictly decreases.

Remark Based on the proofs of Theorem 5.3.1 and Corollary 5.3.2, it can be seen

that any combination of clustering algorithm and representation adaptation algorithm

that are both guaranteed not to increase (5.2) and only introduce a finite number of

new features will yield a convergent variant of Batch SCORE.

5.3.3 Incremental SCORE

Building from the connection from Batch SCORE to the DP-means [59] algorithm,

one can create an analogous incremental version of SCORE from Dynamic Means.

Incremental SCORE can be used in place of batch SCORE once the dataset grows to

a size that is computationally intractable to process in a single group. This algorithm

is not discussed here for brevity, but is covered in the Appendix.

84

5.4 Experimental Results

In this simulation experiment, we used SCORE to capture the effects of thermal

updrafts on an unmanned aerial vehicle(UAV). The domain was a two-dimensional

grid world with dimensions varied between 25 x 25, 40 x 40, and 50 x 50. The UAV

could take actions selected from {t, 4, <-, -+, -}. Each state s had a mean updraft

strength selected from Pk(S) = {2,4,6,8, 10}, with K = 3 different latent mean

updraft strength fields, and k E {1,... , K}. At the start of each episode, a label

z - UNIFORM(1, K) was sampled, and in each step t the UAV was given an altitude

boost of rt ~ A(1 (st), o = 0.25). The goal of the experiment was: 1) To learn

the latent updraft fields pl(s) from a set of training data (collected with a uniform

random policy); 2) To create a Q(s, a) function for each learned field; and 3) To

take actions by keeping track of the likelihood of each latent field given altitude

boost observations, weighting the different Q(s, a) functions accordingly, and acting

greedily with respect to the weighted Q(s, a) function (a QMDP approach [111]).

We compared four approaches: SCORE (Batch SCORE), clustering with a tabular

representation (Tab. Clus.), no clustering with iFDD (iFDD), and no clustering with

a tabular representation (Tab.). The initial representation for the approaches with

feature expansion consisted of an indicator function for each value of the two axes in

the plane (e.g. 50 features for the 25 x 25 grid). The tabular representation had an

indicator function feature for each grid cell (e.g. 625 features for the 25 x 25 grid).

The results are plotted in Figures 5-2a-5-2f. Figures 5-2a, 5-2c, and 5-2e show

the true mean squared error (MSE) of altitude boost prediction and computational

time (in seconds) required to converge (with 95 % confidence intervals after 30 trials).

Each plotted point along each line represents an increment in the dataset size of 100

datapoints. Figures 5-2b, 5-2d, and 5-2f show the mean plan performance (with 95

% confidence intervals from 10 trials) using the model obtained after 1 minute of

learning on the 25 x 25 domain, and after 10 minutes of learning on the 40 x 40 and

50 x 50 domains.

There are a number of points that can be made about these results. First and

85

3.0

2.5

2.0

0.5

0.0

3.0

2.5

2.0

1.5

1.0

0.5

0.0

2.1

2.A

L!

iFDD

Tab. Tab.Clus.

.Batch SCORE

0 560 160 -1500 200 23' 00 3000 3500 4000
Time(s)

(e) 50 x 50

Tbb

-

Batch SCORE

Tab. Clus.

0 20 40 60 0s 100 120 140 160
Time(s)

(a) 25 x 25

-iFD

- Tab.

Batch SCORE

0 500 1000 1500 2000 2500
Time(s)

(C) 40 x 40

600

500

S400

300

200

100 I
Tab.
Clus.

I I'"
IWO Batch

SCORE

Tab.

(f) 50 x 50

Figure 5-2: Model error (left column) and plan performance (right column) of batch

SCORE (Batch SCORE), batch clustering with a tabular representation (Tab. Clus.),
no clustering with a tabular representation (Tab.), and no clustering with feature

expansion (iFDD). (5-2a-5-2b): 25 x 25 domain, (5-2c-5-2d): 40 x 40 domain, (5-2e-

5-2f): 50 x 50 domain.

86

90

70.

60-

W 40

30

20

10

01
Tab. iFDD Batch Tab.
Clus. SCORE

(b) 25 x 25

800

700

600.

500

400

300

200

100

01
Tab. iFDD Batch Tab.
Clus. SCORE

(d) 40 x 40

n

1.1

0.5

Ta b.

foremost, the approaches that do not account for the underlying multiple model

structure (i.e. Tab./iFDD) fail to adequately predict altitude boost across the state-

space (as evidenced by the high MSE at convergence), resulting in poor planning

performance regardless of the problem size. Next, the naive approach that does

consider the multiple model structure (using a tabular representation with clustering)

does well in terms of both modeling and planning for small state-spaces, but as the size

of the problem increases, its performance degrades rapidly. This degradation occurs

both in terms of sample and time complexity, due to the rapidly increasing size of

the representation. Based on the data for iFDD and Tabular without clustering, the

computational complexity increase of Tab. Clus. is largely due to the clustering step

with a high-dimensional representation (in particular, the O(K1IbPI) matrix inversion

cost). SCORE, on the other hand, outperforms all of the other techniques with

respect to the time and sample complexity of modeling. This results in a fast model-

based reinforcement learning system in the presence of a problem with an underlying

multiple-model structure.

5.5 Summary

This work addressed the problem of model learning in a Markov decision process

(MDP) that exhibits an underlying multiple model structure using the Simultane-

ous Clustering on Representation Expansion (SCORE) algorithm. SCORE addresses

the codependence between representation selection and observation clustering, and

guarantees convergence to a local optimum in model error. Empirical results on a

simulated benchmark domain demonstrated the advantage of this approach when

compared to state-of-the-art tehcniques with respect to both sample and time com-

plexity.

87

5.6 Appendix

While simple to implement and theoretically promising, the batch algorithm becomes

computationally intractable as N grows. One can, however, limit the amount of data

considered at a time by processing smaller batches of size Nt < N in a sequence t =

1, 2,... (either by partitioning a fixed dataset, or by considering windows of size Nt

in an online setting), reducing the per-iteration complexity of SCORE to O(Dl 12+

K14D13) where Dt < D. Doing so requires a modification to the optimization (5.2);

the information about TF and P learned from one batch t must carry forward to the

next batch at t +1, and so on. In other words, if a model f4kt is present in batch t, and

was most recently present in a batch Atk steps earlier, denoted fek(t-Atk), there must

be a way of transferring the learned information about f4k(t-Atk) to fDkt. Likewise,

representational errors present in one batch with respect to 1 must be carried forward

to the next batch in some way.

The Incremental SCORE algorithm accomplishes these goals with modified ver-

sions of the steps in (5.3) - (5.6). In this section, define f fm(t-Atk), D 'Ot-Atk,

(D _ Dt, and fek fhkt for notational brevity. When comparing fok with fok, fok is

the knowledge of past data projected onto ', and all knowledge of past data in the

subspace orthogonal to V has been lost. Therefore, the difference between the old

and new parameters is only compared in the old 4V subspace. This allows fhk to vary

freely to fit the data within the new portion of the D subspace, and provides a prior

using the old parameter fik within the old subspace. Thus, let the error between the

old and new parameters be

3b (k) =HE (f.k - (D' T M'1 I TZEfk) I

where E is a diagonal matrix with entries equal to the stationary distribution over the

states in the Markov system (in practice, the stationary distribution is approximated

sparsely using observed samples). Further, define Ct = {fgk, Wk(t--Atk) , AtkICtI to be

the set of old parameters f4k, their ages Atk and positive weights Wk(t-Atk), and nkt

to be the sum over all transitions in all trajectories assigned to cluster k in batch t.

88

Finally, to transfer information about the errors with respect to 1, the E, in (2.24)

is taken over all transitions observed in all received batches of data. One can update

the objective incrementally by adding to the numerator and denominator each time

a new batch of data is received.

Given the above modifications, the following steps constitute Incremental SCORE,

shown in the architecture in Figure 5-1:

Cluster

kt (Wk(t--tk)) + Atk T)

0

A IT ' B _ '.D'

f<t -YktAB- 1A T + +
i,j:zit=k

J2 (i, k)

zit - argmin vI|f<k112 + J2 (i, k)
k

A vflfk |2+(Y

k < ICtI

k > |CtJ

(5.7)

+ Ykt 6 J(k)

ik)

f4') + E fiisii)
i,j:zit=k

nkt > 0

nkt = 0, k < ICt|

nkt = 0, k > iCtI

Adapt

0* <- iFDD (see [72])

-H ' 0* 1

Update Ct

Wkt < ^}kt + nkt

Atk {
1

ZAtk+lI

(5.9)

(5.10)

(5.11)
nkt > 0

nkt = 0

The parameter -r > 0 controls how quickly the weight of old information decays

(increasing r causes old information to decay faster). The algorithm differs from

89

(5.8)

joT)ij 1kA

Batch SCORE most noticeably in the CLUSTER step. The parameter -Ykt is set at

the beginning of each CLUSTER step, and controls the weight on prior information

in (5.7). During the label assignment step, the incremental algorithm can "revive"

an old cluster; here, 6' (k) is the error between f-Ikt and f<>k(t-Atk) after using only

observation yit to compute the parameter update in (5.7). Once both CLUSTER and

ADAPT terminate without making changes to the representation or clusters, Ct is

updated, a new batch of data Yt is received, and the loop repeats.

This algorithm may be seen as a modified version of Dynamic Means [106]. Due to

the connection to this classical clustering method, incremental SCORE is guaranteed

to converge in a finite number of iterations:

Theorem 5.6.1 For each batch of data Yt, the inner clustering/representation ex-

pansion loop of Incremental SCORE monotonically decreases the following objective:

r/11D + A [Atk = 0] + yAt6 (k) + vIlf1DktJJ2 + 6' (i, k) (5.12)
k:nkt>0 i:zit=k

Corollary 5.6.2 For each batch of data Yt, Incremental SCORE finds a local opti-

mum in (5.12) and terminates in a finite number of iterations.

Remark The proofs of Theorem 5.6.1 and Corollary 5.6.2 follow the same logic as

those of Theorem 5.3.1 and Corollary 5.3.2. Note that the objective in (5.12) is closely

related to that in (5.2), as one reduces to the other when -Ykt = 0 and Atk = 0 for all

clusters (i.e. when processing just one batch of data).

90

Chapter 6

Conclusions

6.1 Summary and Contributions

This thesis addressed the problem of tractable, fast multiagent learning and plan-

ning under uncertainty in a dynamic, evolving environment. Three core tools were

developed.

The first was MDP task allocation, a polynomial-time algorithm for coordination

between autonomous agents completing stochastic tasks modelled as Markov decision

processes. This algorithm does not require particle sampling (in contrast to past

approaches), and is scalable to situations involving a large number of agents and

tasks, while capable of incorporating the generality of MDP models of those tasks. A

complexity analysis provided a theoretical solution quality/computational workload

tradeoff that will find use in the design of autonomous systems employing this ap-

proach. Empirical results for a problem of a size much larger than what is currently

manageable by state-of-the-art approximate MDP planning techniques demonstrated

the computational advantages of this approach, and verified the findings in the theo-

retical analysis.

The second was the Dynamic Means algorithm, a realtime clustering algorithm

for batch-sequential data containing temporally evolving clusters. This algorithm

was derived from a low-variance asymptotic analysis of the Gibbs sampling algorithm

for the dependent Dirichlet process mixture model (DDPMM). A synthetic test on

91

moving Gaussian data, and a test on real ADS-B aircraft data across the United States

of America, illustrated the low computational cost of the algorithm (in comparison to

state-of-the-art Bayesian nonparametric inference techniques for the DDPMM), and

the robustness of its label accuracy output to its parameter settings. The speed of

inference using this algorithm, coupled with the theoretical analysis demonstrating

the guaranteed convergence to a local cost optimum, yield an algorithm which is

suitable for use in time-critical applications, such as the MDP task allocation system

developed earlier.

The final contribution was Simultaneous Clustering on Representation Expansion

(SCORE), a reinforcement learning paradigm that bridges the gap between the first

two tools by combining classical clustering with feature expansion to discover the

underlying multiple-model structure of Markov decision processes. SCORE addresses

the codependence between representation selection and observation clustering, and

guarantees convergence to a local optimum in model error. Empirical results on a

simulated benchmark domain demonstrated the advantage of this approach when

compared to nonclustering or nonexpanding methods, with respect to both sample

and time complexity.

6.2 Future Work

Future work on MDP tak allocation includes: the formulation of a subclass of MDPs

for which the value of a sequence of MDP tasks is submodular (enabling more ef-

ficient sequential greedy allocation algorithms that can prune candidate solutions);

the investigation of how approximate MDP policies for tasks (e.g. those generated

by trajectory-based planning methods) can be used within this framework to remove

the assumption that policies are provided a priori; and the incorporation of machine

learning techniques to learn a set of parameterized tasks using data collected from

the environment. Future work on the Dynamic Means algorithm includes: devising

a spectral relaxation based on the derived cost function, which will lead to an al-

gorithm that is less sensitive to local optima and can be used to cluster arbitrary

92

graph data; the development of a smart probabilistic label initialization scheme that

has theoretically guaranteed bounds on expected model error; and the creation of a

decentralized version of the clustering algorithm based upon past decentralization of

the DP-means algorithm. Finally, future work on SCORE should incorporate these

changes to MDP task allocation and Dynamic Means, and methods for automatically

tuning its various parameters should be investigated.

93

94

Bibliography

[1] L. Bu§oniu, R. Babuska, and B. D. Schutter, "A comprehensive survey of mul-

tiagent reinforcement learning," IEEE Transactions on Systems, Man, and Cy-

bernetics, vol. 38, no. 2, pp. 156-172, 2008.

[2] N. Roy, G. Gordon, and S. Thrun, "Planning under uncertainty for reliable

health care robotics," Field and Service Robotics, vol. STAR 24, pp. 417-426,
2006.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge, MA:
MIT Press, 2005.

[4] B. Argall, S. Chernova, M. Veloso, and B. Browning, "A survey of robot learn-

ing from demonstration," Robotics and Autonomous Systems, vol. 57, no. 5,
pp. 469-483, 2009.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Edi-

tion. Englewood Cliffs, NJ: Prentice-Hall, 2003.

[6] E. Alpaydin, Introduction to Machine Learning (Adaptive Computation and

Machine Learning). The MIT Press, 2004.

[7] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer, first ed., 2007.

[8] K. Korb and A. Nicholson, Bayesian Artificial Intelligence. Boca-Raton, FL:

CRC Press, 2 ed., 2011.

[9] L. F. Bertuccelli and J. P. How, "Robust uav search for environments with im-

precise probability maps," in IEEE Conference on Decision and Control (CDC),

(Seville, Spain), pp. 5680-5685, 12-15 December 2005.

[10] Y. W. Teh, Dirichlet Process, pp. 280-290. Encyclopedia of Machine Learning,

Springer-Verlag New York Inc, 2011.

95

[11] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, "Hierarchical dirichlet

processes," Journal of the American Statistical Association, vol. 101, no. 476,

pp. 1566-1581, 2006.

[12] D. Lin, E. Grimson, and J. Fisher, "Construction of dependent dirichlet pro-

cesses based on poisson processes," in Neural Information Processing Systems,

2010.

[13] R. Thibaux and M. I. Jordan, "Hierarchical beta processes and the indian buffet

process," in International Conference on Artificial Intelligence and Statistics,

vol. 11, pp. 564-571, 2007.

[14] E. B. Fox, Bayesian Nonparametric Learning of Complex Dynamical Phenom-

ena. PhD thesis, Massachusetts Institute of Technology, Cambridge MA, De-

cember 2009.

[15] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT

Press, Cambridge, MA, 2006.

[16] R. Neal, "Markov chain sampling methods for dirichlet process mixture mod-

els," Journal of computational and graphical statistics, pp. 249-265, 2000.

[17] D. M. Blei and M. I. Jordan, "Variational inference for dirichlet process mix-

tures," Bayesian Analysis, vol. 1, no. 1, pp. 121-144, 2006.

[18] M. Hoffman, D. Blei, C. Wang, and J. Paisley, "Stochastic variational infer-

ence," arXiv ePrint 1206.7051, 2012.

[19] C. M. Carvalho, H. F. Lopes, N. G. Polson, and M. A. Taddy, "Particle learning

for general mixtures," Bayesian Analysis, vol. 5, no. 4, pp. 709-740, 2010.

[20] D. J. White, "A survey of applications of markov decision processes," Journal

of the Operational Research Society, vol. 44, no. 11, 1993.

[21] J. D. Redding, Approximate Multi-Agent Planning in Dynamic and Uncertain

Environments. PhD thesis, Massachusetts Institute of Technology, Cambridge

MA, February 2012.

[22] S. S. Ponda, Robust Distributed Planning Strategies for Autonomous Multi-

Agent Teams. PhD thesis, Massachusetts Institute of Technology, Cambridge

MA, September 2012.

96

[23] B. P. Gerkey and M. J. Mataric, "A formal analysis and taxonomy of task

allocation in multi-robot systems," International Journal of Robotics Research,

vol. 23(9), pp. 939-954, 2004.

[24] H.-L. Choi, L. Brunet, and J. P. How, "Consensus-based decentralized auctions

for robust task allocation," IEEE Transactions on Robotics, vol. 25, pp. 912-

926, August 2009.

[25] L. B. Johnson, H.-L. Choi, S. S. Ponda, and J. P. How, "Allowing non-
submodular score functions in distributed task allocation," in IEEE Conference

on Decision and Control (CDC), Dec 2012 (to appear).

[26] L. B. Johnson, S. S. Ponda, H.-L. Choi, and J. P. How, "Asynchronous decen-

tralized task allocation for dynamic environments," in Proceedings of the AIAA

Infotech@Aerospace Conference, (St. Louis, MO), March 2011.

[27] U. Feige and J. Vondrak, "Approximation algorithms for allocation problems:

Improving the factor of 1-1/e," in IEEE Symposium on Foundations of computer

Science, pp. 667-676, 2006.

[28] A. Krause and C. Guestrin, "Near-optimal observation selection using submod-

ular functions," in In Proc. of Conf. on AI, 2007.

[29] S. S. Ponda, L. B. Johnson, and J. P. How, "Distributed chance-constrained task

allocation for autonomous multi-agent teams," in American Control Conference

(ACC), June 2012.

[30] S. S. Ponda, L. B. Johnson, A. Geramifard, and J. P. How, Handbook of

Unmanned Aerial Vehicles, ch. Cooperative Mission Planning for Multi-UAV

Teams. Springer, 2012 (to appear).

[31] J. Redding, A. Geramifard, A. Undurti, H. Choi, and J. How, "An intelli-

gent cooperative control architecture," in American Control Conference (A CC),
(Baltimore, MD), pp. 57-62, July 2010.

[32] N. Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin, L. P. Kaelbling, T. Dean,

and C. Boutilier, "Solving very large weakly coupled markov decision pro-

cesses," in The Fifteenth National Conference on Artificial Intelligence, (Madi-

son, WI), pp. 165-172, 1998.

97

[33] C. Boutilier, R. I. Brafman, and C. Geib, "Prioritized goal decomposition of

markov decision processes: Toward a synthesis of classical and decision theoretic

planning," in The Fifteenth Intl. Joint Conf. on AI (IJCAI), (Nagoya, Japan),

pp. 1156-1162, 1997.

[34] S. Singh and D. Cohn, "How to dynamically merge markov decision processes,"

in Advances in Neural Information Processing Systems, (Cambridge), pp. 1057-

1063, MIT Press, 1997.

[35] D. Dolgov and E. Durfee, "Computationally-efficient combinatorial auctions for

resource allocation in weakly-coupled mdps," in The Intl. Conf. on Autonomous

Agents and Multi Agent Systems, pp. 657-664, 2005.

[36] P. Plamondon, B. Chaib-draa, and A. R. Benaskeur, "A multiagent task asso-

ciated mdp (mtamdp) approach to resource allocation," in A AAI Spring Sym-

posium on Distributed Plan and Schedule Management, 2006.

[37 C. Boutilier, "Sequential optimality and coordination in multiagent systems,"

in The Sixteenth Intl. Joint Conf. on Al (IJCAI), (Stockholm), pp. 478-485,

1999.

[38] S. Proper and P. Tadepalli, "Solving multiagent assignment markov decision

processes," in Proceedings of the 8th Intl. Joint Conf. on Autonomous Agents

and Multiagent Systems, pp. 681-688, 2009.

[39] C. Guestrin, M. Lagoudakis, and R. Parr, "Coordinated reinforcement learn-

ing," in AAAI Symposium Series: Collaborative Learning Agents, 2002.

[40] E. Fox, D. Choi, and A. Willsky, "Nonparametric bayesian methods for large

scale multi-target tracking," in Fortieth Asilomar Conference on Signals, Sys-

tems and Computers (ACSSC '06), pp. 2009 -2013, Nov 2006.

[41] E. Fox, E. B. Sudderth, and A. S. Willsky, "Hierachical Dirichlet processes for

tracking maneuvering targets," in Information Fusion, 2007 10th International

Conference on, July 2007.

[42] E. Fox, E. Sudderth, M. Jordan, and A. Willsky, "Nonparametric bayesian

learning of switching linear dynamical systems," Advances in Neural Informa-

tion Processing Systems (NIPS), 2009.

98

[43] Y. W. Teh and M. Jordan, Bayesian Nonparametrics in Practice, ch. Hierar-

chical Bayesian Nonparametric Models with Applications. 2009.

[44] T. Ferguson, "A Bayesian Analysis of Some Nonparametric Problems," The

Annals of Statistics, vol. 1, no. 2, pp. 209-230, 1973.

[45] C. E. Antoniak, "Mixtures of Dirichlet Processes With Applications to Bayesian

Nonparametric Problems," The Annals of Statistics, vol. 2, no. 6, pp. 1152-

1174, 1974.

[46] N. L. Hjort, "Nonparametric Bayes Estimators Based on Beta Processes in

Models for Life History Data," The Annals of Statistics, vol. 18, no. 3, pp. 1259-

1294, 1990.

[47] D. Steinberg, 0. Pizarro, S. Williams, and M. Jakuba, "Dirichlet process mix-

ture models for autonomous habitat classification," in IEEE OCEANS Confer-

ence, 2010.

[48] S. N. MacEachern, "Dependent nonparametric processes," in Proceedings of the

Bayesian Statistical Science Section, American Statistical Association, 1999.

[49] Y. W. Teh, "Dirichlet processes," in Encyclopedia of Machine Learning, New

York: Springer, 2010.

[50] R. M. Neal, "Markov chain sampling methods for dirichlet process mixture mod-

els," Journal of Computational and Graphical Statistics, vol. 9, no. 2, pp. 249-

265, 2000.

[51] M. Pitt and N. Shephard, "Filtering via simulation: Auxiliary particle filters,"

Journal of the American Statistical Association, vol. 94, no. 446, pp. 590-599,

1999.

[52] F. Doshi-Velez and Z. Ghahramani, "Accelerated sampling for the indian buffet

process," in Proceedings of the International Conference on Machine Learning,

2009.

[53] F. Endres, C. Plagemann, C. Stachniss, and W. Burgard, "Unsupervised dis-

covery of object classes from range data using latent dirichlet allocation," in

Robotics Science and Systems, 2005.

99

[54] M. Luber, K. Arras, C. Plagemann, and W. Burgard, "Classifying dynamic

objects: An unsupervised learning approach," in Robotics Science and Systems,

2004.

[55] Z. Wang, M. Deisenroth, H. B. Amor, D. Vogt, B. Sch6lkopf, and J. Pe-

ters, "Probabilistic modeling of human movements for intention inference," in

Robotics Science and Systems, 2008.

[56] S. P. Lloyd, "Least squares quantization in pcm," IEEE Transactions on Infor-

mation Theory, vol. 28, no. 2, pp. 129-137, 1982.

[57] D. Pelleg and A. Moore, "X-means: Extending k-means with efficient estimation

of the number of clusters," in Proceedings of the 17th International Conference

on Machine Learning, 2000.

[58] R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters

in a data set via the gap statistic," Journal of the Royal Statistical Society B,

vol. 63, no. 2, pp. 411-423, 2001.

[59] B. Kulis and M. I. Jordan, "Revisiting k-means: New algorithms via bayesian

nonparametrics," in Proceedings of the 29th International Conference on Ma-

chine Learning (ICML), (Edinburgh, Scotland), 2012.

[60] T. Ishioka, "Extended k-means with an efficient estimation of the number of

clusters," in Proceedings of the 2nd International Conference on Intelligent Data

Engineering and Automated Learning, pp. 17-22, 2000.

[61] C. Hue, J.-P. L. Cadre, and P. Perez, "Tracking multiple objects with particle

filtering," IEEE Transactions on Aerospace and Electronic Systems, vol. 38,

no. 3, pp. 791-812, 2002.

[62] J. Vermaak, A. Doucet, and P. Perez, "Maintaining multi-modality through

mixture tracking," in Proceedings of the 9th IEEE International Conference on

Computer Vision, 2003.

[63] J. Ko, D. J. Klein, D. Fox, and D. Hihnel, "Gp-ukf: Unscented kalman filters

with gaussian process prediction and observation models," in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pp. 1901-1907,

2007.

100

[64] A. Girard, C. E. Rasmussen, J. Quintero-Candela, and R. Murray-smith,

"Gaussian process priors with uncertain inputs - application to multiple-step

ahead time series forecasting," in Advances in Neural Information Processing

Systems, pp. 529-536, MIT Press, 2003.

[65] Y. Engel, S. Mannor, and R. Meir, "Bayes meets Bellman: The Gaussian pro-

cess approach to temporal difference learning.," in International Conference

on Machine Learning (ICML) (T. Fawcett and N. Mishra, eds.), pp. 154-161,

AAAI Press, 2003.

[66] C. Rasmussen and M. Kuss, "Gaussian processes in reinforcement learning,"

Advances in Neural Information Processing Systems, vol. 16, pp. 751-759, 2004.

[67] G. S. Aoude, B. D. Luders, J. M. Joseph, N. Roy, and J. P. How, "Probabilis-

tically safe motion planning to avoid dynamic obstacles with uncertain motion

patterns," Autonomous Robots, vol. 35, no. 1, pp. 51-76, 2013.

[68] J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, "A bayesian nonparametric

approach to modeling motion patterns," Autonomous Robots, vol. 31, no. 4,

pp. 383-400, 2011.

[69] F. Doshi-Velez, "The infinite partially observable markov decision process,"

2009.

[70] T. Campbell, S. S. Ponda, G. Chowdhary, and J. P. How, "Planning under

uncertainty using nonparametric bayesian models," in AIAA Guidance, Navi-

gation, and Control Conference (GNC), August 2012.

[71] R. Sutton, "Integrated architectures for learning, planning, and reacting based

on approximating dynamic programming," in Proceedings of the 7th Interna-

tional Conference on Machine Learning, pp. 216-224, 1990.

[72] A. Geramifard, T. J. Walsh, N. Roy, and J. How, "Batch iFDD: A Scalable

Matching Pursuit Algorithm for Solving MDPs," in Proceedings of the 29th

Annual Conference on Uncertainty in Artificial Intelligence (UAI), (Bellevue,

Washington, USA), AUAI Press, 2013.

[73] R. Sutton, C. Szepesvari, A. Geramifard, and M. Bowling, "Dyna-style planning

with linear function approximation and prioritized sweeping," in Proceedings of

the 25th International Conference on Machine Learning, (Helsinki, Finland),

2008.

101

[74] H. Yao, R. S. Sutton, S. Bhatnagar, D. Dongcui, and C. Szepesviri, "Multi-step

dynamic planning for policy evaluation and control," in NIPS, pp. 2187-2195,

2009.

[75] J. Asmuth, L. Li, M. Littman, A. Nouri, and D. Wingate, "A bayesian sampling

approach to exploration in reinforcement learning," in Proceedings of the 25th

Conference on Uncertainty in Artificial Intelligence (UAI), (Montreal, Canada),

2009.

[76] P. Poupart, N. Vlassis, J. Hoey, and K. Regan, "An Analytic Solution to Dis-

crete Bayesian Reinforcement Learning," in Proceedings of the 23rd Interna-

tional Conference on Machine Learning, (Pittsburgh, PA), 2006.

[77] R. Brafman and M. Tennenholtz, "R-Max - A General Polynomial Time Algo-

rithm for Near-Optimal Reinforcement Learning," Journal of Machine Learning

Research, vol. 3, pp. 213-231, 2002.

[78] L. Li, M. Littman, and T. Walsh, "Knows what it knows: A framework for

self-aware learning," in Proceedings of the 25th International Conference on

Machine Learning, (Helsinki, Finland), 2008.

[79] M. Haruno, D. M. Wolpert, and M. Kawato, "MOSAIC Model for Sensorimotor

Learning and Control," Neural Computation, vol. 13, no. 10, pp. 2201-2220,

2001.

[80] D. M. Wolpert and M. Kawato, "Multiple paired forward and inverse models

for motor control," Neural Networks, vol. 11, pp. 1317-1329, 1998.

[81] K. Doya, K. Samejima, K. Katagiri, and M. Kawato, "Multiple model-based

reinforcement learning," Neural Computation, vol. 14, pp. 1347-1369, 2002.

[82] N. Sugimoto, M. Haruno, K. Doya, and M. Kawato, "Mosaic for multiple-reward

environments," Neural Computation, vol. 24, pp. 577-606, 2012.

[83] E. B. Fox, Bayesian Nonparametric Learning of Complex Dynamical Phenom-

ena. PhD thesis, Massachusetts Institute of Technology, 2009.

[84] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," J. Mach.

Learn. Res., vol. 3, pp. 993-1022, 2003.

102

[85] E. Fox, E. Sudderth, M. Jordan, and A. Willsky, "Bayesian nonparametric

methods for learning markov switching processes," IEEE Signal Processing

Magazine, vol. 27, no. 6, pp. 43 -54, 2010.

[86] P. Trautman and A. Krause, "Unfreezing the robot: Navigation in dense, inter-

acting crowds," in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2010.

[87] J. M. Joseph, "Nonparametric bayesian behavior modeling," Master's thesis,

Massachusetts Institute of Technology, 2008.

[88 J. Sethuraman, "A constructive definition of dirichlet priors," Statistia Sinica,

vol. 4, pp. 639-650, 1994.

[89] J. Boyd-Graber and D. M. Blei, "Syntactic topic models," in Advances in Neural

Information Processing Systems (NIPS), 2008.

[90] J. Kingman, Poisson Processes. Oxford University Press, 1993.

[91] A. Geramifard, J. Redding, N. Roy, and J. P. How, "UAV Cooperative Control

with Stochastic Risk Models," in American Control Conference (A CC), pp. 3393

- 3398, June 2011.

[92] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. NJ: John Wiley & Sons, Inc., 2005.

[93] L. Kocsis and C. Szepesviri, "Bandit based monte-carlo planning," in European

Conference on Machine Learning, pp. 282-293, 2006.

[94] R. Parr, L. Li, G. Taylor, C. Painter-Wakefield, and M. L. Littman, "An analysis

of linear models, linear value-function approximation, and feature selection for

reinforcement learning," in Proceedings of the 25th international conference on

Machine learning, ICML '08, (New York, NY, USA), pp. 752-759, ACM, 2008.

[95] A. Geramifard, Practical Reinforcement Learning Using Representation Learn-

ing and Safe Exploration for Large Scale Markov Decision Processes. PhD

thesis, Massachusetts Institute of Technology, Department of Aeronautics and

Astronautics, February 2012.

[96] A. Geramifard, N. K. Ure, S. Tellex, G. Chowdhary, N. Roy, and J. P. How,

"A tutorial on linear function approximators for dynamic programming and

103

reinforcement learning," Foundations and Trends in Machine Learning, 2012

(submitted).

[97] N. K. Ure, A. Geramifard, G. Chowdhary, and J. P. How, "Adaptive Planning

for Markov Decision Processes with Uncertain Transition Models via Incre-

mental Feature Dependency Discovery," in European Conference on Machine

Learning (ECML), 2012.

[98] D. Bertsimas and R. Weismantel, Optimization over integers. Dynamic Ideas

Belmont, MA, 2005.

[99] S. S. Ponda, L. B. Johnson, and J. P. How, "Risk allocation strategies for dis-

tributed chance-constrained task allocation," in American Control Conference

(A CC), June 2013 (to appear).

[100] T. Campbell, L. Johnson, and J. P. How, "Multiagent allocation of markov

decision process tasks," in American Control Conference (ACC), IEEE, 2013.

[101] J. G. Kemeny and J. L. Snell, Finite Markov Chains. New York: Springer-

Verlag, 1976.

[102] M. L. Littman, T. L. Dean, and L. P. Kaelbling, "On the complexity of solving

markov decision problems," in The Eleventh Intl. Conf. on Uncertainty in AI

(UAI), pp. 394-402, 1995.

[103] A. Geramifard, F. Doshi, J. Redding, N. Roy, and J. How, "Online discov-

ery of feature dependencies," in International Conference on Machine Learning

(ICML), 2011.

[104] N. K. Ure, G. Chowdhary, J. Redding, T. Toksoz, J. How, M. Vavrina, and

J. Vian, "Experimental demonstration of efficient multi-agent learning and

planning for persistent missions in uncertain environments," in AIAA Guid-

ance, Navigation, and Control Conference (GNC), (Minneapolis, MN), August

2012.

[105] T. Campbell, L. Johnson, M. Liu, J. How, and L. Carin, "Multiagent allo-

cation of bayesian nonparametric markov decision process tasks (poster)," in

NIPS Workshop on Bayesian Nonparametric Models for Reliable Planning and

Decision-making Under Uncertainty, 2012.

104

[106] T. Campbell, M. Liu, B. Kulis, and J. How, "Dynamic clustering via asymp-

totics of the dependent dirichlet process," in Advances in Neural Information

Processing Systems (NIPS), 2013 (submitted).

[107] T. Campbell, R. Klein, A. Geramifard, and J. How, "Simultaneous clustering

on representation expansion for learning multimodel mdps," in 1st Multidisci-

plinary Conference on Reinforcement Learning and Decision Making, 2013.

[108] R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, "Analyzing feature gen-

eration for value-function approximation," in Proceedings of the 24th Interna-

tional Conference on Machine Learning, (Corvallis, OR), 2007.

[109] M. Inaba, N. Katoh, and H. Imai, "Applications of Weighted Voronoi Diagrams

and Randomization to Variance-based k-Clustering," in Proceedings of the 10th

A CM Symposium on Computational Geometry, pp. 332-339, 1994.

[110] D. Arthur, B. Manthey, and H. R6glin, "k-means has polynomial smoothed

complexity," in Proceedings of the 50th Symposium on Foundations of Computer

Science, 2009.

[111] M. Littman, A. Cassandra, and L. Kaelbling, "Learning policies for partially

observable environments: scaling up," in International Conference on Machine

Learning (ICML), (San Francisco, CA), pp. 362-370, 1995.

105

