37 research outputs found

    IB2d : a Python and MATLAB implementation of the immersed boundary method

    Get PDF
    The development of fluid-structure interaction (FSI) software involves trade-offs between ease of use, generality, performance, and cost. Typically there are large learning curves when using low-level software to model the interaction of an elastic structure immersed in a uniform density fluid. Many existing codes are not publicly available, and the commercial software that exists usually requires expensive licenses and may not be as robust or allow the necessary flexibility that in house codes can provide. We present an open source immersed boundary software package, IB2d, with full implementations in both MATLAB and Python, that is capable of running a vast range of biomechanics models and is accessible to scientists who have experience in high-level programming environments. IB2d contains multiple options for constructing material properties of the fiber structure, as well as the advection-diffusion of a chemical gradient, muscle mechanics models, and artificial forcing to drive boundaries with a preferred motion

    The Fluid Dynamics of Heart Development: The effect of morphology on flow at several stages

    Get PDF
    Proper cardiogenesis requires a delicate balance between genetic and environmental (epigenetic) signals, and mechanical forces. While many cellular biologists and geneticists have extensively studied heart morphogenesis using various experimental techniques, only a few scientists have begun using mathematical modeling as a tool for studying cardiogenic events. Hemodynamic processes, such as vortex formation, are important in the generation of shear at the endothelial surface layer and strains at the epithelial layer, which aid in proper morphology and functionality. The purpose of this thesis is to study the underlying fluid dynamics in various stages on heart development, in particular, the morphogenic stages when the heart is a linear heart tube as well as during the onset of ventricular trabeculation. Previous mathematical models of the linear heart tube stage have focused on mechanisms of valveless pumping, whether dynamic suction pumping (impedance pumping) or peristalsis; however, they all have neglected hematocrit. The impact of blood cells was examined by fluid-structure interaction simulations, via the immersed boundary method. Moreover, electrophysiology models were incorporated into an immersed boundary framework, and bifurcations within the morphospace were studied that give rise to a spectrum of pumping regimes, with peristaltic-like waves of contraction and impedance pumping at the extremes. Lastly, effects of resonant pumping, damping, and boundary inertial effects (added mass) were studied for dynamic suction pumping. The other stage of heart development considered here is during the onset of ventricular trabeculation. This occurs after the heart has undergone the cardiac looping stage and now is a multi-chambered pumping system with primitive endocardial cushions, which act as precursors to valve leaflets. Trabeculation introduces complex morphology onto the inner lining of the endocardium in the ventricle. This transition of a smooth endocardium to one with complex geometry, may have significant effect on the intracardial fluid dynamics and stress distribution within emrbyonic hearts. Previous studies have not included these geometric perturbations along the ventricular endocardium. The role of trabeculae on intracardial (and intertrabecular) flows was studied using two different mathematical models implemented within an immersed boundary framework. It is shown that the trabecular geometry and number density have a significant effect on such flows. Furthermore this thesis also focused attention to the creation of software for scientists and engineers to perform fluid-structure interaction simulations at an accelerated rate, in user-friendly environments for beginner programmers, e.g., MATLAB or Python 3.5. The software, IB2d, performs fully coupled fluid-structure interaction problems using Charles Peskin's immersed boundary method. IB2d is capable of running a vast range of biomechanics models and contains multiple options for constructing material properties of the fiber structure, advection-diffusion of a chemical gradient, muscle mechanics models, Boussinesq approximations, and artificial forcing to drive boundaries with a preferred motion. The software currently contains over 50 examples, ranging from rubber-bands oscillating to flow past a cylinder to a simple aneurysm model to falling spheres in a chemical gradient to jellyfish locomotion to a heart tube pumping coupled with electrophysiology, muscle, and calcium dynamics modelsDoctor of Philosoph

    Research reports: 1985 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    A compilation of 40 technical reports on research conducted by participants in the 1985 NASA/ASEE Summer Faculty Fellowship Program at Marshall Space Flight Center (MSFC) is given. Weibull density functions, reliability analysis, directional solidification, space stations, jet stream, fracture mechanics, composite materials, orbital maneuvering vehicles, stellar winds and gamma ray bursts are among the topics discussed

    Design, Manufacture, and Structural Dynamic Analysis of a Biomimetic Insect-Sized Wing for Micro Air Vehicles

    Get PDF
    The exceptional flying characteristics of airborne insects motivates the design of biomimetic wing structures that can exhibit a similar structural dynamic behavior. For this purpose, this investigation describes a method for both manufacturing a biomimetic insect-sized wing using the photolithography technique and analyzing its structural dynamic response. The geometry of a crane fly forewing (family Tipulidae) is acquired using a micro-computed tomography scanner. A computer-aided design model is generated from the measurements of the reconstructed scanned model of the insect wing to design the photomasks of the membrane and the venation network required for the photolithography procedure. A composite material wing is manufactured by patterning the venation network using photoresist SU-8 on a Kapton film for the assembling of the wing. A single material artificial wing is fabricated using the photoresist SU-8 for both the membrane and the network of veins. Experiments are conducted using a modal shaker and a digital image correlation (DIC) system to determine the natural frequencies and the mode shapes of the artificial wing from the fast Fourier transform of the displacement response of the wing. The experimental results are compared with those from a finite element (FE) model of the wing. A numerical simulation of the fluid-structure interaction is conducted by coupling the FE model of the artificial wing with a computational fluid dynamics model of the surrounding airflow. From these simulations, the deformation response and the coefficients of drag and lift of the artificial wing are predicted for different freestream velocities and angles of attack. Wind-tunnel experiments are conducted using the DIC system to determine the structural deformation response of the artificial wing under different freestream velocities and angles of attack. The vibration modes are dominated by a bending and torsional deformation response. The deformation along the span of the wing increases nonlinearly from the root of the wing to the tip of the wing with Reynolds number. The aerodynamic performance, defined as the ratio of the coefficient of lift to the coefficient of drag, of the artificial wing increases with Reynolds number and angle of attack up to the critical angle of attack

    Design, Manufacture, and Structural Dynamic Analysis of a Biomimetic Insect-Sized Wing for Micro Air Vehicles

    Get PDF
    The exceptional flying characteristics of airborne insects motivates the design of biomimetic wing structures that can exhibit a similar structural dynamic behavior. For this purpose, this investigation describes a method for both manufacturing a biomimetic insect-sized wing using the photolithography technique and analyzing its structural dynamic response. The geometry of a crane fly forewing (family Tipulidae) is acquired using a micro-computed tomography scanner. A computer-aided design model is generated from the measurements of the reconstructed scanned model of the insect wing to design the photomasks of the membrane and the venation network required for the photolithography procedure. A composite material wing is manufactured by patterning the venation network using photoresist SU-8 on a Kapton film for the assembling of the wing. A single material artificial wing is fabricated using the photoresist SU-8 for both the membrane and the network of veins. Experiments are conducted using a modal shaker and a digital image correlation (DIC) system to determine the natural frequencies and the mode shapes of the artificial wing from the fast Fourier transform of the displacement response of the wing. The experimental results are compared with those from a finite element (FE) model of the wing. A numerical simulation of the fluid-structure interaction is conducted by coupling the FE model of the artificial wing with a computational fluid dynamics model of the surrounding airflow. From these simulations, the deformation response and the coefficients of drag and lift of the artificial wing are predicted for different freestream velocities and angles of attack. Wind-tunnel experiments are conducted using the DIC system to determine the structural deformation response of the artificial wing under different freestream velocities and angles of attack. The vibration modes are dominated by a bending and torsional deformation response. The deformation along the span of the wing increases nonlinearly from the root of the wing to the tip of the wing with Reynolds number. The aerodynamic performance, defined as the ratio of the coefficient of lift to the coefficient of drag, of the artificial wing increases with Reynolds number and angle of attack up to the critical angle of attack

    Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Get PDF
    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines

    RELAP5/MOD3 code manual. Volume 4, Models and correlations

    Full text link

    Laboratory Directed Research and Development 1998 Annual Report

    Full text link

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    Rheology and Processing of Polymers

    Get PDF
    This book covers the latest developments in the field of rheology and polymer processing, highlighting cutting-edge research focusing on the processing of advanced polymers and their composites. It demonstrates that the field of rheology and polymer processing is still gaining increased attention. Presented within are cutting-edge research results and the latest developments in the field of polymer science and engineering, innovations in the processing and characterization of biopolymers and polymer-based products, polymer physics, composites, modeling and simulations, and rheology
    corecore