50,617 research outputs found

    Performance and cryptographic evaluation of security protocols in distributed networks using applied pi calculus and Markov Chain

    Get PDF
    The development of cryptographic protocols goes through two stages, namely, security verification and performance analysis. The verification of the protocolā€™s security properties could be analytically achieved using threat modelling, or formally using formal methods and model checkers. The performance analysis could be mathematical or simulation-based. However, mathematical modelling is complicated and does not reflect the actual deployment environment of the protocol in the current state of the art. Simulation software provides scalability and can simulate complicated scenarios, however, there are times when it is not possible to use simulations due to a lack of support for new technologies or simulation scenarios. Therefore, this paper proposes a formal method and analytical model for evaluating the performance of security protocols using applied pi-calculus and Markov Chain processes. It interprets algebraic processes and associates cryptographic operatives with quantitative measures to estimate and evaluate cryptographic costs. With this approach, the protocols are presented as processes using applied pi-calculus, and their security properties are an approximate abstraction of protocol equivalence based on the verification from ProVerif and evaluated using analytical and simulation models for quantitative measures. The interpretation of the quantities is associated with process transitions, rates, and measures as a cost of using cryptographic primitives. This method supports usersā€™ input in analysing the protocolā€™s activities and performance. As a proof of concept, we deploy this approach to assess the performance of security protocols designed to protect large-scale, 5G-based Device-to-Device communications. We also conducted a performance evaluation of the protocols based on analytical and network simulator results to compare the effectiveness of the proposed approach

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    ProbNV: probabilistic verification of network control planes

    Get PDF
    ProbNV is a new framework for probabilistic network control plane verification that strikes a balance between generality and scalability. ProbNV is general enough to encode a wide range of features from the most common protocols (eBGP and OSPF) and yet scalable enough to handle challenging properties, such as probabilistic all-failures analysis of medium-sized networks with 100-200 devices. When there are a small, bounded number of failures, networks with up to 500 devices may be verified in seconds. ProbNV operates by translating raw CISCO configurations into a probabilistic and functional programming language designed for network verification. This language comes equipped with a novel type system that characterizes the sort of representation to be used for each data structure: concrete for the usual representation of values; symbolic for a BDD-based representation of sets of values; and multi-value for an MTBDD-based representation of values that depend upon symbolics. Careful use of these varying representations speeds execution of symbolic simulation of network models. The MTBDD-based representations are also used to calculate probabilistic properties of network models once symbolic simulation is complete. We implement the language and evaluate its performance on benchmarks constructed from real network topologies and synthesized routing policies

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    The STRESS Method for Boundary-point Performance Analysis of End-to-end Multicast Timer-Suppression Mechanisms

    Full text link
    Evaluation of Internet protocols usually uses random scenarios or scenarios based on designers' intuition. Such approach may be useful for average-case analysis but does not cover boundary-point (worst or best-case) scenarios. To synthesize boundary-point scenarios a more systematic approach is needed.In this paper, we present a method for automatic synthesis of worst and best case scenarios for protocol boundary-point evaluation. Our method uses a fault-oriented test generation (FOTG) algorithm for searching the protocol and system state space to synthesize these scenarios. The algorithm is based on a global finite state machine (FSM) model. We extend the algorithm with timing semantics to handle end-to-end delays and address performance criteria. We introduce the notion of a virtual LAN to represent delays of the underlying multicast distribution tree. The algorithms used in our method utilize implicit backward search using branch and bound techniques and start from given target events. This aims to reduce the search complexity drastically. As a case study, we use our method to evaluate variants of the timer suppression mechanism, used in various multicast protocols, with respect to two performance criteria: overhead of response messages and response time. Simulation results for reliable multicast protocols show that our method provides a scalable way for synthesizing worst-case scenarios automatically. Results obtained using stress scenarios differ dramatically from those obtained through average-case analyses. We hope for our method to serve as a model for applying systematic scenario generation to other multicast protocols.Comment: 24 pages, 10 figures, IEEE/ACM Transactions on Networking (ToN) [To appear

    A Lightweight and Attack Resistant Authenticated Routing Protocol for Mobile Adhoc Networks

    Full text link
    In mobile ad hoc networks, by attacking the corresponding routing protocol, an attacker can easily disturb the operations of the network. For ad hoc networks, till now many secured routing protocols have been proposed which contains some disadvantages. Therefore security in ad hoc networks is a controversial area till now. In this paper, we proposed a Lightweight and Attack Resistant Authenticated Routing Protocol (LARARP) for mobile ad hoc networks. For the route discovery attacks in MANET routing protocols, our protocol gives an effective security. It supports the node to drop the invalid packets earlier by detecting the malicious nodes quickly by verifying the digital signatures of all the intermediate nodes. It punishes the misbehaving nodes by decrementing a credit counter and rewards the well behaving nodes by incrementing the credit counter. Thus it prevents uncompromised nodes from attacking the routes with malicious or compromised nodes. It is also used to prevent the denial-of-service (DoS) attacks. The efficiency and effectiveness of LARARP are verified through the detailed simulation studies.Comment: 14 Pages, IJWM

    Practical applications of probabilistic model checking to communication protocols

    Get PDF
    Probabilistic model checking is a formal verification technique for the analysis of systems that exhibit stochastic behaviour. It has been successfully employed in an extremely wide array of application domains including, for example, communication and multimedia protocols, security and power management. In this chapter we focus on the applicability of these techniques to the analysis of communication protocols. An analysis of the performance of such systems must successfully incorporate several crucial aspects, including concurrency between multiple components, real-time constraints and randomisation. Probabilistic model checking, in particular using probabilistic timed automata, is well suited to such an analysis. We provide an overview of this area, with emphasis on an industrially relevant case study: the IEEE 802.3 (CSMA/CD) protocol. We also discuss two contrasting approaches to the implementation of probabilistic model checking, namely those based on numerical computation and those based on discrete-event simulation. Using results from the two tools PRISM and APMC, we summarise the advantages, disadvantages and trade-offs associated with these techniques

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • ā€¦
    corecore