5 research outputs found

    A generic level 1 simulator for spaceborne GNSS-R missions and application to GEROS-ISS ocean reflectometry

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the past decade Global Navigation Satellites System Reflectometry (GNSS-R) has emerged as a new technique for earth remote sensing for various applications, such as ocean altimetry and sea state monitoring. After the success of the GNSS-R demonstrator payloads aboard the UK-DMC or TDS-1 satellites; at present, there are several missions planned to carry GNSS reflectometers. The GNSS rEflectometry, Radio Occultation, and Scatterometry onboard International Space Station (GEROS-ISS) is an innovative ISS experiment exploiting GNSS-R technique to measure key parameters of ocean, land, and ice surfaces. For GEROS-ISS mission, the European Space Agency (ESA) supported the study of GNSS-R assessment of requirements and consolidation of retrieval algorithms (GARCA). For this, it was required to accurately simulate the GEROS-ISS measurements including the whole range of parameters affecting the observation conditions and the instrument, which is called GEROS-SIM. To meet these requirements, the PAU/PARIS end-to-end performance simulator (P2^{2}EPS) previously developed by UPC BarcelonaTech was used as the baseline building blocks for the level 1 (L1) processor of GEROS-SIM. P2^{2}EPS is a flexible tool, and is capable of systematically simulating the GNSS-R observations for spaceborne GNSS-R missions. Thanks to the completeness and flexibility, the instrument-to-L1 data module of GEROS-SIM could be implemented by proper modification and update of P2^{2}EPS. The developed GEROS-SIM was verified and validated in the GARCA study as comparing to the TDS-1 measurements. This paper presents the design, implementation, and results of the GEROS-SIM L1 module in a generic way to be applied to GNSS-R instruments.Peer ReviewedPostprint (author's final draft

    Simulation study on tropicial cyclone tracking from the ISS using GNSS-R measurements

    No full text
    Global Navigation Satellite System Reflectometry (GNSS-R) has been emerged as a new opportunity for satellite remote sensing. From the bistatic measurement of GNSS-R, various geophysical parameters can be retrieved. This work shows the possibility of GNSS-R to monitoring the tropical cyclone. For case study, the GEROS mission is considered, which plans to install GNSS-R instrument on International Space Station. From the simulated DDM, the scattering coefficient maps are restored, and the eye of cyclone is detected.Peer Reviewe

    Simulation study on tropicial cyclone tracking from the ISS using GNSS-R measurements

    No full text
    Global Navigation Satellite System Reflectometry (GNSS-R) has been emerged as a new opportunity for satellite remote sensing. From the bistatic measurement of GNSS-R, various geophysical parameters can be retrieved. This work shows the possibility of GNSS-R to monitoring the tropical cyclone. For case study, the GEROS mission is considered, which plans to install GNSS-R instrument on International Space Station. From the simulated DDM, the scattering coefficient maps are restored, and the eye of cyclone is detected.Peer Reviewe

    Advanced GNSS-R instruments for altimetric and scatterometric applications

    Get PDF
    This work is the result of more than eight years during a bachelor thesis, a master thesis, and the Ph.D. thesis dedicated to the development of the Microwave Interferometric Reflectometer (MIR) instrument. It summarizes all the knowledge acquired during this time, and describes the MIR instrument as detailed as possible. MIR is a Global Navigation Satellite System - Reflectometer (GNSS-R), that is, an instrument that uses Global Navigation Satellite System (GNSS) signals scattered on the Earth's surface to retrieve geophysical parameters. These signals are received below the noise level, but since they have been spread in the frequency domain using spread-spectrum techniques, and in particular using the so-called Pseudo Random Noise (PRN) codes, it is still possible to retrieve them because of the large correlation gain achieved. In GNSS-R, two main techniques are used for this purpose: the conventional technique cGNSS-R and the interferometric one iGNSS-R, each with its pros and cons. In the former technique, the reflected signal is cross-correlated against a locally generated clean-replica of the transmitted signal. In the latter technique the reflected signal is cross-correlated with the direct one. Nowadays multiple GNSS systems coexist, transmitting narrow and wide, open and private signals. A comparison between systems, signals, and techniques in fair conditions is necessary. The MIR instrument has been designed as an airborne instrument for that purpose: the instrument has two arrays, an up-looking one, and a down-looking one, each with 19 dual-band antennas in a hexagonal distribution. The instrument is able to form 2 beams at each frequency band (L1/E1, and L5/E5A), which are pointing continuously to the desired satellites taking into account their position, as well as the instrument's position and attitude. The data is sampled and stored for later post-processing. Last but not least, MIR is auto-calibrated using similar signals to the ones transmitted by the GNSS satellites. During the instrument development, the Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) signals from the Barcelona airport threatened to disrupt the interferometric technique. These signals were also studied, and it was concluded that the use of a mitigation systems were as strongly recommended. The interferometric technique was also affected by the unwanted contribution of other satellites. The impact of these contributions was studied using real data gathered during this Ph.D. thesis. During these 8 years, the instrument was designed, built, tested, and calibrated. A field campaign was carried out in Australia between May 2018 and June 2018 to determine the instrument's accuracy in sensing soil moisture and sea altimetry. This work describes each of these steps in detail and aims to be helpful for those who decide to continue the legacy of this instrument.Este trabajo es el resultado de más de 8 años de doctorado dedicados al desarrollo del instrumento Microwave Interferometric Reflectometer (MIR). Esta tesis resume todo el conocimiento adquirido durante este tiempo, y describe el MIR lo más detalladamente posible. El MIR es un Reflectómetro de señales de Sistemas Globales de Navegación por Satélite (GNSS-R), es decir, es un instrumento que usa señales de GNSS reflejadas en la superficie de la tierra para obtener parámetros geofísicos. Estas señales son recibidas bajo el nivel de ruido, pero dado que han sido ensanchadas en el dominio frecuencial usando técnicas de espectro ensanchado, y en particular usando códigos Pseudo Random Noise (PRN), es todavía posible recibirlas debido a la elevada ganancia de correlación. En GNSS-R existen dos técnicas para este propósito: la convencional (cGNSS-R), y la interferométrica (iGNSS-R), cada una con sus pros y sus contras. En la primera se calcula la correlación cruzada de la señal reflejada y de una réplica generada del código transmitido. En la segunda técnica se calcula la correlación cruzada de la señal reflejada y de la señal directa. Hoy en día muchos sistemas GNSS coexisten, transmitiendo señales de distintos anchos de banda, algunas públicas y otras privadas. Una comparación entre sistemas, señales, y técnicas en condiciones justas es necesaria. El MIR es un instrumento aerotransportado diseñado como para ese propósito: el instrumento tiene dos arrays de antenas, uno apuntando al cielo, y otro apuntando al suelo, cada uno con 19 antenas doble banda en una distribución hexagonal. El instrumento puede formar 2 haces en cada banda frecuencial (L1/E1 y L5/E5A) que apuntan continuamente a los satélites deseados teniendo en cuenta su posición, y la posición y actitud del instrumento. Los datos son guardados para ser procesados posteriormente. Por último pero no menos importante, el MIR se calibra usando señales similares a las transmitidas por los satélites de GNSS. Durante el desarrollo del instrumento, señales del sistema Distance Measuremt Equi Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) del aeropuerto de Barcelona mostraron ser una amenaza para la técnica interferométrica. Estas señales fueron estudiadas y se concluyó que era encarecidamente recomendado el uso de sistemas de mitigación de interferencias. La técnica interferométrica también se ve afectada por las contribuciones no deseadas de otros satélites, llamado cross-talk. El impacto del cross-talk fue estudiado usando datos reales tomados durante esta tesis doctoral. A lo largo de estos 8 años el instrumento ha sido diseñado, construido, testeado y calibrado. Una campaña de medidas fue llevada a cabo en Australia entre Mayo de 2018 y Junio de 2018 para determinar la capacidad del instrumento para estimar la humedad del terreno y la altura del mar. Este documento describe cada uno de estos pasos al detalle y espera resultar útil para aquellos que decidan continuar con el legado de este instrumento.Postprint (published version

    Contributions to land, sea, and sea ice remote sensing using GNSS-reflectometry

    Get PDF
    This PhD thesis researches the use of passive remote sensing techniques using signals transmitted from the navigation satellites (GNSS) in order to retrieve different geophysical parameters. The thesis consists of two different parts without taking into account the introduction, the state of the art and the conclusions. The first part analyzes the Interference Pattern Technique (IPT), which was previously used in another PhD thesis, and proposes some key improvements. First, the addition of horizontal polarization to the existing vertical polarization is proposed. Then, the retrieval of soil moisture is studied using the horizontal polarization only and combining both polarizations to correct for the surface roughness effects. It is also demonstrated that the phase difference between the two interference patterns is directly related to soil moisture content. A field campaign was conducted in Australia to test empirically all the theoretical developments and algorithms. Secondly, the possibility of measuring Significant Wave Height (SWH) and Mean Sea Surface Level (MSSL) using the IPT is studied. A three month field campaign over coastal sea is devoted to that study. The SWH retrieval is a new estimation algorithm based on measuring the point where the interference pattern loses coherence. The MSSL retrieval is based on the estimation of the IPT oscillation frequency, testing different spectral estimators to improve the accuracy. Since the IPT is limited in coverage due to its static requirements, the research conducted in this thesis migrated to scatterometric GNSS-R techniques. The main goal that migration was to increase coverage of the different GNSS-R instruments. Therefore, the second part of this thesis analyzes the applicability of a scatterometric technique from different platforms: ground-based (mobile and fixed), airborne, and spaceborne. The ground-based still platforms have allowed to develop a soil moisture retrieval algorithm. The ground-based moving platforms have extended the validity of that algorithm. Airborne platforms have been used to study the reflected electric field statistics when the surface reflecting surface is varying (smooth or rough land, and sea). They have also been used to develop different algorithms to measure the coherent and incoherent scattered components depending on the data structure (real-data or complex data). Coherent reflectivity measured from airborne platforms has been compared to other techniques such microwave radiometry, which is highly used in the soil moisture retrieval from spaceborne sensors, and other sensors using optical, multispectral and thermal frequency bands. These relationships between microwave radiometry and GNSS-R measurements suggests the potential synergy of both techniques. A sea ice detection algorithm is also developed using scatterometric GNSS-R data from the UK TDS-1 mission. This algorithm is based on measuring the degree of coherence of the reflected waveform. Finally, a field campaign was conducted to study the effect of vegetation on the GNSS signals that pass through it in order to take into account and correct the effect of vegetation in the GNSS-R data and in the soil moisture retrieval algorithms.Aquesta tesi doctoral aprofundeix en el coneixement de les tècniques de teledetecció passives utilitzant senyals emesos pels satèl·lits de navegació (GNSS) amb l'objectiu de recuperar diferents paràmetres geofísics del terreny. La tesi conté dues parts ben diferenciades a banda de la introducció, estat de l'art i conclusions. La primera part analitza la tècnica coneguda com a patró d'interferències, utilitzada prèviament en una altra tesi doctoral, i proposa certes millores per la seva aplicabilitat. En primer lloc es decideix afegir polarització horitzontal a la ja existent polarització vertical, i s'estudia la recuperació d'humitat del sòl utilitzant només polarització horitzontal i combinant les dues polaritzacions per corregir els efectes de la rugositat del terreny. A continuació es demostra que la mesura de desfasament entre els dos patrons d'interferència està directament relacionada amb la humitat del terreny. Es va realitzar una campanya de mesures a Austràlia per provar empíricament tots els desenvolupaments teòrics i algorismes proposats. En segon lloc s'analitza l'aplicabilitat del patró d'interferències en la mesura de l'altura de les onades (SWH) i del nivell del mar (MSSL), tots dos de forma precisa. L'estimació de l'alçada de les onades és un procés totalment nou basat en mesurar el punt on el patró d'interferències perd la coherència. L'estimació del nivell del mar es basa en l'anàlisi espectral del patró d'interferències provant diferents estimadors espectrals. Atès que la tècnica del patró d'interferència està limitada en cobertura per les seves característiques estàtiques, la investigació duta a terme en aquesta tesi doctoral va migrar cap a tècniques GNSS-R escateromètriques. El principal objectiu a assolir va ser el d'augmentar la cobertura dels diferents instruments GNSS-R de mesura. En conseqüència, la segona part d'aquesta tesi analitza l'aplicabilitat d'aquestes tècniques des de diferents plataformes terrestres (mòbils i fixes), aerotransportades i satèl·lit. Les plataformes terrestres fixes han permès derivar algoritmes de recuperació d'humitat i les mòbils estendre la validació d'aquests. Les plataformes aerotransportades s'han utilitzat per mirar l'estadística del camp elèctric reflectit quan la superfície on es reflecteixen els senyals GNSS va variant (terra plana o terra rugosa, i mar). També han servit per desenvolupar diferents algorismes amb l'objectiu de determinar les components coherent i incoherent del senyal reflectit. De la mateixa manera, dades de reflectivitat coherent mesurades des d'aquestes plataformes han estat comparades amb altres tècniques de teledetecció passiva com la radiometria de microones, altament utilitzada en la mesura d'humitat de terreny, i altres sensors òptics, multi-espectrals, i tèrmics. Aquests resultats han permès suggerir la possible sinergia de dades d'ambdues tecnologies. Un algorisme per detectar la presència de gel sobre el mar també ha estat desenvolupat mitjançant l'ús de dades GNSS-R escateromètriques satel·litals de la missió UK TDS-1. Aquest algorisme es basa en mesurar el grau de coherència de la forma d'ona reflectida. Finalment, s'ha realitzat un estudi de l'efecte de la vegetació en els senyals GNSS que la travessen, per tal de poder corregir aquest efecte en els algoritmes de recuperació d'humitat del terreny
    corecore