19,031 research outputs found

    Self-stabilizing Numerical Iterative Computation

    Full text link
    Many challenging tasks in sensor networks, including sensor calibration, ranking of nodes, monitoring, event region detection, collaborative filtering, collaborative signal processing, {\em etc.}, can be formulated as a problem of solving a linear system of equations. Several recent works propose different distributed algorithms for solving these problems, usually by using linear iterative numerical methods. In this work, we extend the settings of the above approaches, by adding another dimension to the problem. Specifically, we are interested in {\em self-stabilizing} algorithms, that continuously run and converge to a solution from any initial state. This aspect of the problem is highly important due to the dynamic nature of the network and the frequent changes in the measured environment. In this paper, we link together algorithms from two different domains. On the one hand, we use the rich linear algebra literature of linear iterative methods for solving systems of linear equations, which are naturally distributed with rapid convergence properties. On the other hand, we are interested in self-stabilizing algorithms, where the input to the computation is constantly changing, and we would like the algorithms to converge from any initial state. We propose a simple novel method called \syncAlg as a self-stabilizing variant of the linear iterative methods. We prove that under mild conditions the self-stabilizing algorithm converges to a desired result. We further extend these results to handle the asynchronous case. As a case study, we discuss the sensor calibration problem and provide simulation results to support the applicability of our approach

    Self-stabilizing TDMA Algorithms for Wireless Ad-hoc Networks without External Reference

    Full text link
    Time division multiple access (TDMA) is a method for sharing communication media. In wireless communications, TDMA algorithms often divide the radio time into timeslots of uniform size, ξ\xi, and then combine them into frames of uniform size, τ\tau. We consider TDMA algorithms that allocate at least one timeslot in every frame to every node. Given a maximal node degree, δ\delta, and no access to external references for collision detection, time or position, we consider the problem of collision-free self-stabilizing TDMA algorithms that use constant frame size. We demonstrate that this problem has no solution when the frame size is τ<max{2δ,χ2}\tau < \max\{2\delta,\chi_2\}, where χ2\chi_2 is the chromatic number for distance-22 vertex coloring. As a complement to this lower bound, we focus on proving the existence of collision-free self-stabilizing TDMA algorithms that use constant frame size of τ\tau. We consider basic settings (no hardware support for collision detection and no prior clock synchronization), and the collision of concurrent transmissions from transmitters that are at most two hops apart. In the context of self-stabilizing systems that have no external reference, we are the first to study this problem (to the best of our knowledge), and use simulations to show convergence even with computation time uncertainties

    Self-Stabilizing Repeated Balls-into-Bins

    Full text link
    We study the following synchronous process that we call "repeated balls-into-bins". The process is started by assigning nn balls to nn bins in an arbitrary way. In every subsequent round, from each non-empty bin one ball is chosen according to some fixed strategy (random, FIFO, etc), and re-assigned to one of the nn bins uniformly at random. We define a configuration "legitimate" if its maximum load is O(logn)\mathcal{O}(\log n). We prove that, starting from any configuration, the process will converge to a legitimate configuration in linear time and then it will only take on legitimate configurations over a period of length bounded by any polynomial in nn, with high probability (w.h.p.). This implies that the process is self-stabilizing and that every ball traverses all bins in O(nlog2n)\mathcal{O}(n \log^2 n) rounds, w.h.p

    Brief Announcement: Memory Lower Bounds for Self-Stabilization

    Get PDF
    In the context of self-stabilization, a silent algorithm guarantees that the communication registers (a.k.a register) of every node do not change once the algorithm has stabilized. At the end of the 90\u27s, Dolev et al. [Acta Inf. \u2799] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent deterministic algorithm must use a memory of Omega(log n) bits per register in n-node networks. Similarly, Korman et al. [Dist. Comp. \u2707] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning tree (MST), every silent algorithm must use a memory of Omega(log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary deterministic self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for deterministic general algorithms, also established at the end of the 90\u27s, is due to Beauquier et al. [PODC \u2799] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing the lower bound Omega(log log n) bits per register for deterministic self-stabilizing algorithms solving (Delta+1)-coloring, leader election or constructing a spanning tree in networks of maximum degree Delta

    Memory lower bounds for deterministic self-stabilization

    Full text link
    In the context of self-stabilization, a \emph{silent} algorithm guarantees that the register of every node does not change once the algorithm has stabilized. At the end of the 90's, Dolev et al. [Acta Inf. '99] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent algorithm must use a memory of Ω(logn)\Omega(\log n) bits per register in nn-node networks. Similarly, Korman et al. [Dist. Comp. '07] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning trees (MST), every silent algorithm must use a memory of Ω(log2n)\Omega(\log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for general algorithms, also established at the end of the 90's, is due to Beauquier et al.~[PODC '99] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing a tight lower bound of Θ(logΔ+loglogn)\Theta(\log \Delta+\log \log n) bits per register for self-stabilizing algorithms solving (Δ+1)(\Delta+1)-coloring or constructing a spanning tree in networks of maximum degree~Δ\Delta. The lower bound Ω(loglogn)\Omega(\log \log n) bits per register also holds for leader election
    corecore