20 research outputs found

    Immersed boundary methods for numerical simulation of confined fluid and plasma turbulence in complex geometries: a review

    Full text link
    Immersed boundary methods for computing confined fluid and plasma flows in complex geometries are reviewed. The mathematical principle of the volume penalization technique is described and simple examples for imposing Dirichlet and Neumann boundary conditions in one dimension are given. Applications for fluid and plasma turbulence in two and three space dimensions illustrate the applicability and the efficiency of the method in computing flows in complex geometries, for example in toroidal geometries with asymmetric poloidal cross-sections.Comment: in Journal of Plasma Physics, 201

    Analysis and discretization of the volume penalized Laplace operator with Neumann boundary conditions

    Full text link
    We study the properties of an approximation of the Laplace operator with Neumann boundary conditions using volume penalization. For the one-dimensional Poisson equation we compute explicitly the exact solution of the penalized equation and quantify the penalization error. Numerical simulations using finite differences allow then to assess the discretisation and penalization errors. The eigenvalue problem of the penalized Laplace operator with Neumann boundary conditions is also studied. As examples in two space dimensions, we consider a Poisson equation with Neumann boundary conditions in rectangular and circular domains

    Volume penalization for inhomogeneous Neumann boundary conditions modeling scalar flux in complicated geometry

    Full text link
    We develop a volume penalization method for inhomogeneous Neumann boundary conditions, generalizing the flux-based volume penalization method for homogeneous Neumann boundary condition proposed by Kadoch et al. [J. Comput. Phys. 231 (2012) 4365]. The generalized method allows us to model scalar flux through walls in geometries of complex shape using simple, e.g. Cartesian, domains for solving the governing equations. We examine the properties of the method, by considering a one-dimensional Poisson equation with different Neumann boundary conditions. The penalized Laplace operator is discretized by second order central finite-differences and interpolation. The discretization and penalization errors are thus assessed for several test problems. Convergence properties of the discretized operator and the solution of the penalized equation are analyzed. The generalized method is then applied to an advection-diffusion equation coupled with the Navier-Stokes equations in an annular domain which is immersed in a square domain. The application is verified by numerical simulation of steady free convection in a concentric annulus heated through the inner cylinder surface using an extended square domain.Comment: 32 pages, 19 figure

    Flow dynamics and magnetic induction in the von-Karman plasma experiment

    Get PDF
    The von-Karman plasma experiment is a novel versatile experimental device designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas. A high-density plasma column (10^16 - 10^19 particles.m^-3) is created by two radio-frequency plasma sources located at each end of a 1 m long linear device. Flows are driven through JxB azimuthal torques created from independently controlled emissive cathodes. The device has been designed such that magnetic induction processes and turbulent plasma dynamics can be studied from a variety of time-averaged axisymmetric flows in a cylinder. MHD simulations implementing volume-penalization support the experimental development to design the most efficient flow-driving schemes and understand the flow dynamics. Preliminary experimental results show that a rotating motion of up to nearly 1 km/s is controlled by the JxB azimuthal torque

    Simulation of forced deformable bodies interacting with two-dimensional incompressible flows: Application to fish-like swimming

    No full text
    International audienceWe present an efficient algorithm for simulation of deformable bodies interacting with two-dimensional incompressible flows. The temporal and spatial discretizations of the Navier-Stokes equations in vorticity stream-function formulation are based on classical fourth-order Runge-Kutta and compact finite differences, respectively. Using a uniform Cartesian grid we benefit from the advantage of a new fourth-order direct solver for the Poisson equation to ensure the incompressibility constraint down to machine zero. For introducing a deformable body in fluid flow, the volume penalization method is used. A Lagrangian structured grid with prescribed motion covers the deformable body interacting with the surrounding fluid due to the hydrodynamic forces and moment calculated on the Eulerian reference grid. An efficient law for curvature control of an anguilliform fish, swimming to a prescribed goal, is proposed. Validation of the developed method shows the efficiency and expected accuracy of the algorithm for fish-like swimming and also for a variety of fluid/solid interaction problems

    Stabilisation non linéaire des équations de la magnétohydrodynamique et applications aux écoulements multiphasiques

    Get PDF
    The investigations presented in this manuscript focus on the numerical approximation of the magnetohydrodynamics (MHD) equations and on their stabilization for problems involving either large kinetic Reynolds numbers or multiphase flows. We validate numerically a new Large Eddy Simulation (LES) model, called entropy viscosity, on flows driven by precessing cylindrical containers or counter-rotating impellers (Von Kármán flow). These studies are performed with SFEMaNS MHD-code developed by J.-L. Guermond and C. Nore since 2002 for axisymmetric geometries. This code is based on a spectral decomposition in the azimuthal direction and a Lagrange finite element approximation in a meridian plane. We adapt a pseudo-penalization method to report the action of rotating impellers that extends the range of SFEMaNS's applications to any geometry. We also present an original approximation method of the Navier-Stokes equations with variable density. This method uses the momentum as variable and stabilizes both mass and momentum equations with the same entropy viscosity.Les travaux présentés dans ce manuscrit se concentrent sur l'approximation numérique des équations de la magnétohydrodynamique (MHD) et sur leur stabilisation pour des problèmes caractérisés par des nombres de Reynolds cinétique élevés ou par des écoulements multiphasiques. Nous validons numériquement un nouveau modèle de Simulation des Grandes Echelles (ou Large Eddy Simulations, LES), dit de viscosité entropique, sur des écoulements de cylindre en précession ou créés par des turbines contra-rotatives (écoulement de Von Kármán). Ces études sont réalisées avec le code MHD SFEMaNS développé par J.-L. Guermond et C. Nore depuis 2002 pour des géométries axisymétriques. Ce code est basé sur une décomposition spectrale dans la direction azimutale et des éléments finis de Lagrange dans un plan méridien. Nous adaptons une méthode de pseudo-pénalisation pour prendre en compte des turbines en mouvement, ce qui étend le code SFEMaNS à des géométries quelconques. Nous présentons aussi une méthode originale d'approximation des équations de Navier-Stokes à densité variable qui utilise la quantité de mouvement comme variable et la viscosité entropique pour stabiliser les équations de la masse et du mouvement

    Direct and Large-Eddy Simulation IX

    Get PDF
    corecore