190 research outputs found

    Robotic Manipulator Control in the Presence of Uncertainty

    Get PDF
    openThis research focuses on the problem of manipulator control in the presence of uncertainty and aims to compare different approaches for handling uncertainty while developing robust and adaptive methods that can control the robot without explicit knowledge of uncertainty bounds. Uncertainty is a pervasive challenge in robotics, arising from various sources such as sensor noise, modeling errors, and external disturbances. Effectively addressing uncertainty is crucial for achieving accurate and reliable manipulator control. The research will explore and compare existing methods for uncertainty handling such as robust feedback linearization , sliding mode control and robust adaptive control. These methods provide mechanisms to model and compensate for uncertainty in the control system. Additionally, modified robust and adaptive control methods will be developed that can dynamically adjust control laws based on the observed states, without requiring explicit knowledge of uncertainty bounds. To evaluate the performance of the different approaches, comprehensive experiments will be conducted on a manipulator platform. Various manipulation tasks will be performed under different levels of uncertainty, and the performance of each control approach will be assessed in terms of accuracy, stability, and adaptability. Comparative analysis will be conducted to highlight the strengths and weaknesses of each method and identify the most effective approach for handling uncertainty in manipulator control. The outcomes of this research will contribute to the advancement of manipulator control by providing insights into the effectiveness of different approaches for uncertainty handling. The development of new robust and adaptive control methods will enable manipulators to operate in uncertain environments without requiring explicit knowledge of uncertainty bounds. Ultimately, this research will facilitate the deployment of more reliable and adaptive robotic systems capable of handling uncertainty and improving their performance in various real-world applications.This research focuses on the problem of manipulator control in the presence of uncertainty and aims to compare different approaches for handling uncertainty while developing robust and adaptive methods that can control the robot without explicit knowledge of uncertainty bounds. Uncertainty is a pervasive challenge in robotics, arising from various sources such as sensor noise, modeling errors, and external disturbances. Effectively addressing uncertainty is crucial for achieving accurate and reliable manipulator control. The research will explore and compare existing methods for uncertainty handling such as robust feedback linearization , sliding mode control and robust adaptive control. These methods provide mechanisms to model and compensate for uncertainty in the control system. Additionally, modified robust and adaptive control methods will be developed that can dynamically adjust control laws based on the observed states, without requiring explicit knowledge of uncertainty bounds. To evaluate the performance of the different approaches, comprehensive experiments will be conducted on a manipulator platform. Various manipulation tasks will be performed under different levels of uncertainty, and the performance of each control approach will be assessed in terms of accuracy, stability, and adaptability. Comparative analysis will be conducted to highlight the strengths and weaknesses of each method and identify the most effective approach for handling uncertainty in manipulator control. The outcomes of this research will contribute to the advancement of manipulator control by providing insights into the effectiveness of different approaches for uncertainty handling. The development of new robust and adaptive control methods will enable manipulators to operate in uncertain environments without requiring explicit knowledge of uncertainty bounds. Ultimately, this research will facilitate the deployment of more reliable and adaptive robotic systems capable of handling uncertainty and improving their performance in various real-world applications

    Control Improvement of Low-Cost Cast Aluminium Robotic Arm Using Arduino Based Computed Torque Control

    Get PDF
    Gravity causes non-linearity in position control of an articulated industrial robotic arm. Especially for a joint position control of a robot’s shoulder and elbow that works parallel with the gravity direction. To overcome the problem, Computed Torque Control algorithm was implemented. This algorithm linearized the feedback, so a regular linear Proportional Derivative controller can be implemented. The contribution of this research is to find an effective controller to control a heavy weight low-cost robotic arm link/body using low-cost controller such as Arduino. A Computed Torque Control was implemented to control the shoulder joint of an articulated robotic arm. This joint is the most affected joint by the gravity. It works along the vertical plane, and loaded by the rest of the arm and the robot’s load. The proposed controller was compared to a Proportional Integral Derivative (PID) Controller and a Cascade PID Controller. The experiment showed that the Computed Torque Controller can control the position of the arm properly both in the direction along or against the gravity. A linear PID controller could not bring the arm to the set point when it moves against the gravity, but it works well when the arm moves in the opposite direction. A Cascade PID controller has an overshot when the arm moves along the gravity. But it works properly when it moves up against the gravity. A Computed Torque Control works well in both directions even in the presence of gravity force because it includes the gravity on its algorithm

    Studies on Trajectory Tracking of Two Link Planar Manipulator

    Get PDF
    In robotic manipulator control situations, high accuracy trajectory tracking is one of the challenging aspects. This is due to nonlinearities in dynamics and input coupling present in the robotic arm. In the present work, a two link planar manipulator revolving in a horizontal plane is considered. Its kinematics, Jacobian analysis, dynamic equations are obtained from modelling. It is proposed to use this manipulator for following a desired trajectory by using an effective control method. Initially, computed torque control scheme is used to obtain the end effector motions. The dynamic equations are solved by numerical method and the joint space results are used to obtain the error and its derivative. This linearized error dynamic control uses constant gains and an attempt is made to obtain a correct set of gains in each error cycle to refine the control performance. A scaled prototype is made with aluminium links and joint servos. A mechatronic system with an arduino microcontroller board is employed to drive the servos in incremental fashion as per the tracking point and its inverse kinematics. The computer results are shown for two trajectories namely a straight line and spline. The errors are reported as a function of time and the corresponding joint torques computed in each time step are plotted. Finally to illustrate the mechatronic control system on the prototype, a path containing three points is considered and corresponding errors and repeatability are presented

    Neural Network Learning Algorithms for High-Precision Position Control and Drift Attenuation in Robotic Manipulators

    Get PDF
    In this paper, different learning methods based on Artificial Neural Networks (ANNs) are examined to replace the default speed controller for high-precision position control and drift attenuation in robotic manipulators. ANN learning methods including Levenberg–Marquardt and Bayesian Regression are implemented and compared using a UR5 robot with six degrees of freedom to improve trajectory tracking and minimize position error. Extensive simulation and experimental tests on the identification and control of the robot by means of the neural network controllers yield comparable results with respect to the classical controller, showing the feasibility of the proposed approach

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Robotic contour tracking with adaptive feedforward control by fuzzy online tuning

    Get PDF
    Industrial robots have great importance in manufacturing. Typical uses of the robots are welding, painting, deburring, grinding, polishing and shape recovery. Most of these tasks such as grinding, deburring need force control to achieve high performance. These tasks involve contour following. Contour following is a challenging task because in many of applications the geometry physical of the targeted contour are unknown. In addition to that, achieving tasks as polishing, grinding and deburring requires small force and velocity tracking errors. In order to accomplish these tasks, disturbances have to be taken account. In this thesis the aim is to achieve contour tracking with using fuzzy online tuning. The fuzzy method is proposed in this thesis to adjust a feedforward force control parameter. In this technique, the varying feedforward control parameter compensates for disturbance effects. The method employs the chattering of control signal and the normal force and tangential velocity errors to adjust the control term. Simulations with the model of a direct drive planar elbow manipulator are used to last proposed technique
    corecore