82 research outputs found

    Management: A bibliography for NASA managers

    Get PDF
    This bibliography lists 731 reports, articles and other documents introduced into the NASA Scientific and Technical Information System in 1990. Items are selected and grouped according to their usefulness to the manager as manager. Citations are grouped into ten subject categories: human factors and personnel issues; management theory and techniques; industrial management and manufacturing; robotics and expert systems; computers and information management; research and development; economics, costs and markets; logistics and operations management; reliability and quality control; and legality, legislation, and policy

    Optimization of PV Modules Layout on High-rise Building Skins Using a BIM-based Generative Design Approach

    Get PDF
    Growing urbanism and the resulting increase of energy demand coupled with depleting fossil energy resources are making the need for renewable energy resources progressively palpable and vital. In addition to reducing carbon dioxide emissions, renewable energy is crucial to improve health and well-being, and provide affordable energy access worldwide. Photovoltaic (PV) solar energy, as a fast-evolving industry, has become a vital part of the global energy transformation in recent years that can contribute to the development of sustainable cities and the mitigation of global warming. In the urban environment, buildings are central to human activities. Given that buildings currently account for 40% of the global energy consumption, to achieve sustainable urban development, buildings are of particular importance for distributed renewable energy generation, which reduces energy transmission losses. PV panels are able to harvest the solar power and turn it into a clean source of energy. Furthermore, the increasing availability, affordability, and efficiency of PV panels are rendering them an attractive option for the users so that the worldwide use of photovoltaic electricity is growing rapidly by more than 50% a year. Of different types of buildings in the built environment, high-rise buildings are of particular interest because of their high potentials for harvesting a considerable amount of PV energy on vertical and horizontal surfaces. Nevertheless, this high potential is seldom harnessed mainly because the deployment of PV modules on high-rise buildings requires considering a complex interplay between various factors that affect the installation of PV modules (e.g., neighborhood shadow effect, modules self-shadowing effect, surface-specific PV modules, etc.). This renders the design of PV modules in high-rise buildings a complex optimization problem, one that requires a generative design approach. There are many tools and models, from simple 2D evaluation to more comprehensive and complicated 3D analysis, that can help simulate the solar radiation potential of surfaces of a building. However, the majority of the methods do not discriminate between different types of surfaces of the building and treat the entire envelope as a single surface. In recent years, and with the advent and rising popularity of the Building Information Modeling (BIM) concept, the apparatus for the implementation of such a comprehensive generative design approach is becoming increasingly available. However, to the best of the author’s knowledge, there is currently no framework for the BIM-based generative design of PV modules for high-rise buildings. Addressing the current issues, this research aims to: (1) Develop a parametric modeling platform for the design of surface-specific PV module layout on the entire skin of buildings, and (2) Develop a BIM-based generative design framework for the design of PV modules layout on high-rise building skins. In this framework, the surface-specific parametric model of PV modules is integrated with an optimization method to find the optimum design of PV modules layout considering the study period, profit margin, harvested PV energy, and cost. This framework will enable designers and investors to apply the generative design paradigm to the use of PV modules on building skin considering the complex interaction between building surface types (e.g., windows, walls, etc.), type of PV module (e.g., opaque, semi-transparent, etc.), their tilt and pan angles, and the financial aspect of the PV system (i.e., revenue vs. cost at different study periods). The results generated by the elaborate case study demonstrated that the generative design framework is capable of offering more favourable solutions (i.e., either or both of reduced costs and increased energy revenue) compared to baseline scenarios. It is observed that in the majority of the studied scenario, the optimum solutions favored a more consistent orientation of the panels (i.e., consistent pan and tilt angles across all the panels)

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Sensor Networks and Their Applications: Investigating the Role of Sensor Web Enablement

    Get PDF
    The Engineering Doctorate (EngD) was conducted in conjunction with BT Research on state-of-the-art Wireless Sensor Network (WSN) projects. The first area of work is a literature review of WSN project applications, some of which the author worked on as a BT Researcher based at the world renowned Adastral Park Research Labs in Suffolk (2004-09). WSN applications are examined within the context of Machine-to-Machine (M2M); Information Networking (IN); Internet/Web of Things (IoT/WoT); smart home and smart devices; BT’s 21st Century Network (21CN); Cloud Computing; and future trends. In addition, this thesis provides an insight into the capabilities of similar external WSN project applications. Under BT’s Sensor Virtualization project, the second area of work focuses on building a Generic Architecture for WSNs with reusable infrastructure and ‘infostructure’ by identifying and trialling suitable components, in order to realise actual business benefits for BT. The third area of work focuses on the Open Geospatial Consortium (OGC) standards and their Sensor Web Enablement (SWE) initiative. The SWE framework was investigated to ascertain its potential as a component of the Generic Architecture. BT’s SAPHE project served as a use case. BT Research’s experiences of taking this traditional (vertical) stove-piped application and creating SWE compliant services are described. The author’s findings were originally presented in a series of publications and have been incorporated into this thesis along with supplementary WSN material from BT Research projects. SWE 2.0 specifications are outlined to highlight key improvements, since work began at BT with SWE 1.0. The fourth area of work focuses on Complex Event Processing (CEP) which was evaluated to ascertain its potential for aggregating and correlating the shared project sensor data (‘infostructure’) harvested and for enabling data fusion for WSNs in diverse domains. Finally, the conclusions and suggestions for further work are provided

    Environmental Technology Applications in the Retrofitting of Residential Buildings

    Get PDF
    The impact of buildings on the environment is nothing short of devastating. In recent years, much attention has been given to creating an environmentally friendly built environment. Nonetheless, it has been levied on new buildings. Residential buildings make up at least 80% of the built environment, most of which were built before any energy efficiency guidelines or regulations were introduced. Retrofitting existing residential buildings is a key yet neglected priority in effecting the transition to an environmentally friendly, sustainable built environment. It is pivotal to reducing a building’s energy consumption while simultaneously improving indoor environmental quality and minimizing harmful emissions. This Special Issue showcases studies investigating applications of environmental technology that is tailored to enhance the sustainable performance of existing residential buildings. It helps to better understand the innovations that have been taking place in retrofitting residential buildings, as well as highlighting many opportunities for future research in this field
    • 

    corecore