28 research outputs found

    Optimal capacitor placement to minimise harmonics in power systems and software tools

    Get PDF
    Harmonics in power systems is a relatively new area of research. In view of this and the growing awareness of the quality of the electricity supply, the theory of harmonics in power systems is reviewed. The sources and the effects of harmonics are investigated. The algorithms that are used for the frequency analysis of power systems are investigated and compared. These algorithms comprise the companion circuit method, the Gauss-Seidel method, the Newton-Raphson method and the current injection method. In addition various freely and commercially available software packages for the harmonic analysis of power systems are studied and compared. For this purpose a questionnaire was sent out to software developers and suppliers. This questionnaire as well as the results of the comparative investigation are presented. A power system has many configurations due to the switching of power capacitors on to and off the power grid. Some of these configurations can result in unacceptable distortion levels. An existing state space method is investigated to analyse these configurations and an example is worked through, to illustrate how this method works. However, this state space model is only applicable to radial power systems and there have to be power capacitors at the end of every feeder amongst others. Because of these significant disadvantages of this method, a new analytical approach or theoretical foundation for the analysis of power capacitors in radial as well as meshed power systems is developed in this thesis. For this purpose the branch current and nodal voltage equations are determined. Redundant nodal voltages are eliminated from the set of branch current equations. The remaining equations and the nodal voltage equations are then combined to form a system realisation. This system realisation is still overspecified and a further reduction is done to obtain a minimal realisation of the power system. This approach is demonstrated analytically and numerically by way of five case studies. This approach is also verified by comparing it with the current injection method. Identical results are obtained with the state space approach and with the current injection method, demonstrating that the state space approach is indeed valid

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    Determining transmission line parameters from time-stamped data

    Get PDF
    The main aim of this project was to find a practical and accurate method to determine the parameters of a transmission line by using current and voltage measurements. The term line parameters refer to the inherent series resistance and inductance that is found on transmission lines. The line parameters were determined by using the voltage and current measurements from either side of the transmission line. An accurate reference signal is needed to precisely compare the measured signals. The timing signals from GPS units were used to reference the measurements. In a field implementation data transfer of the measured signals would be a necessity which can be accomplished by GPRS modems. Three methods are proposed for determining line parameters. These methods were thoroughly tested in the following ways: 1. A model was built in SIMULINK with known elements and values. The three methods were then applied to the model and simulations were run. The results from the simulations are compared to the known values. 2. A system was built in the laboratory with known parameters. The results gathered from testing the system on all three methods are compared to known values. 3. Finally, the methods were applied to field data from recorders of a utility. This was done to see how well the methods would perform on a real system. Accuracy was determined from what the utility accepts as the correct values. Another focus of the project was to determine the surge impedance loading (SIL) curve from measured data. This curve can be used to determine the loadability limit of the transmission line as well as to visually show at what point the line is operating at any given time. The curve is also useful as it provides insight into the additional reactive power needed for a certain active power transfer. The concept of drawing a SIL curve from actual measurements was first tested by means of simulation. The drawing of the proposed curve is also tested on actual measurements from a transmission line. This investigation posed many challenges. These challenges are discussed in detail in the dissertation. Some of these challenges have easily implementable solutions while others still leave room for further research. The results and findings are published in this document.Dissertation (MEng (Electrical))--University of Pretoria, 2008.Electrical, Electronic and Computer EngineeringMEngunrestricte

    The Elements of Big Data Value

    Get PDF
    This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation

    Partitioning and sourcing of evapotranspiration using coupled MARMITES-MODFLOW model, La Mata catchment (Spain)

    Get PDF
    The new, two-way coupled, distributed and transient MARMITES-MODFLOW (MM-MF) model, coupling land surface and soil zone domains with groundwater, is presented. It implements model-based partitioning and sourcing of subsurface evapotranspiration (ETss) as part of spatio-temporal water balance (WB). The partitioning of ETss involves its separation into evaporation (E) and transpiration (T), while the sourcing of E and T involves separation of each of the two into soil zone (Esoil and Tsoil) and groundwater (Eg and Tg) components. The objective of that development was to understand the system dynamics of a catchment with shallow water table, through spatio-temporal quantification of water fluxes and evaluation of their importance in water balances, focusing on the Eg and Tg components of ETss. While the Eg is computed using formulation from published study, the Tg is obtained through a novel phenomenological function, based on soil moisture availability and transpiration demand driven by climatic conditions. The MM-MF model was applied in the small La Mata catchment (~4.8 km2, Salamanca Province, Spain), characterized by semi-arid climate, granitic bedrock, shallow water table and sparse oak woodland. The main catchment characteristics were obtained using remote sensing, non-invasive hydrogeophysics and classical field data acquisition. The MM-MF model was calibrated in transient, using daily data of five hydrological years, between 1st October 2008 and 30th September 2013. The WB confirmed dependence of groundwater exfiltration on gross recharge. These two water fluxes, together with infiltration and Esoil, constituted the largest subsurface water fluxes. The Eg was higher than the Tg, which is explained by low tree coverage (~7%). Considering seasonal variability, Eg and Tg were larger in dry seasons than in wet season, when solar radiation was the largest and soil moisture the most depleted. A relevant observation with respect to tree transpiration was that during dry seasons, the decline of Tsoil, associated with the decline of soil moisture, was compensated by increase of Tg, despite continuously declining water table. However, in dry seasons, T was far below the atmospheric evaporative demand, indicating that the groundwater uptake by the tree species of this study constituted a survival strategy and not a mechanism for continued plant growth. The presented MM-MF model allowed to analyze catchment water dynamics and water balance in detail, accounting separately for impacts of evaporation and transpiration processes on groundwater resources. With its unique capability of partitioning and sourcing of ETss, the MM-MF model is particularly suitable for mapping groundwater dependent ecosystems, but also for analyzing impacts of climate and land cover changes on groundwater resources

    Interpersonal synchrony and network dynamics in social interaction [Special issue]

    Get PDF

    Space station systems: A bibliography with indexes (supplement 6)

    Get PDF
    This bibliography lists 1,133 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1987 and December 31, 1987. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems. The coverage includes documents that define major systems and subsystems, servicing and support requirements, procedures and operations, and missions for the current and future Space Station

    Towards an Understanding of Tinnitus Heterogeneity

    Get PDF
    corecore