1,093 research outputs found

    ns-3 Implementation of the 3GPP MIMO Channel Model for Frequency Spectrum above 6 GHz

    Full text link
    Communications at mmWave frequencies will be a key enabler of the next generation of cellular networks, due to the multi-Gbps rate that can be achieved. However, there are still several problems that must be solved before this technology can be widely adopted, primarily associated with the interplay between the variability of mmWave links and the complexity of mobile networks. An end-to-end network simulator represents a great tool to assess the performance of any proposed solution to meet the stringent 5G requirements. Given the criticality of channel propagation characteristics at higher frequencies, we present our implementation of the 3GPP channel model for the 6-100 GHz band for the ns-3 end-to-end 5G mmWave module, and detail its associated MIMO beamforming architecture

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Hybrid ray-tracing/FDTD method for human exposure evaluation of a massive MIMO technology in an industrial indoor environment

    Get PDF
    This paper presents a numerical approach for massive multiple-input multiple-output (MIMO) human exposure assessment. It combines ray-tracing for the estimation of the wireless channel and the finite-difference time-domain method to simulate the exposure of a realistic human phantom. We apply it to estimate the exposure in a model of an industrial indoor environment with a single massive MIMO base station (BS). The exposure scenarios include line-of-sight and non-line-of-sight propagation with the BS using equal gain transmission precoding at 3.5 GHz. Calculated channel parameters are discussed in comparison with the data available in the literature. The exposure in the phantom's head is evaluated in terms of the peak-spatial specific absorption rate averaged over a 10-g cube and referenced to the free-space time-averaged Poynting vector magnitude at the same location

    Analog MIMO Radio-over-Copper: Prototype and Preliminary Experimental Results

    Full text link
    Analog Multiple-Input Multiple-Output Radio-over-Copper (A-MIMO-RoC) is an effective all-analog FrontHaul (FH) architecture that exploits any pre-existing Local Area Network (LAN) cabling infrastructure of buildings to distribute Radio-Frequency (RF) signals indoors. A-MIMO-RoC, by leveraging a fully analog implementation, completely avoids any dedicated digital interface by using a transparent end-to-end system, with consequent latency, bandwidth and cost benefits. Usually, LAN cables are exploited mainly in the low-frequency spectrum portion, mostly due to the moderate cable attenuation and crosstalk among twisted-pairs. Unlike current systems based on LAN cables, the key feature of the proposed platform is to exploit more efficiently the huge bandwidth capability offered by LAN cables, that contain 4 twisted-pairs reaching up to 500 MHz bandwidth/pair when the length is below 100 m. Several works proposed numerical simulations that assert the feasibility of employing LAN cables for indoor FH applications up to several hundreds of MHz, but an A-MIMO-RoC experimental evaluation is still missing. Here, we present some preliminary results obtained with an A-MIMO-RoC prototype made by low-cost all-analog/all-passive devices along the signal path. This setup demonstrates experimentally the feasibility of the proposed analog relaying of MIMO RF signals over LAN cables up to 400 MHz, thus enabling an efficient exploitation of the LAN cables transport capabilities for 5G indoor applications.Comment: Part of this work has been accepted as a conference publication to ISWCS 201

    System capacity enhancement for 5G network and beyond

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Doctor of PhilosophyThe demand for wireless digital data is dramatically increasing year over year. Wireless communication systems like Laptops, Smart phones, Tablets, Smart watch, Virtual Reality devices and so on are becoming an important part of people’s daily life. The number of mobile devices is increasing at a very fast speed as well as the requirements for mobile devices such as super high-resolution image/video, fast download speed, very short latency and high reliability, which raise challenges to the existing wireless communication networks. Unlike the previous four generation communication networks, the fifth-generation (5G) wireless communication network includes many technologies such as millimetre-wave communication, massive multiple-input multiple-output (MIMO), visual light communication (VLC), heterogeneous network (HetNet) and so forth. Although 5G has not been standardised yet, these above technologies have been studied in both academia and industry and the goal of the research is to enhance and improve the system capacity for 5G networks and beyond by studying some key problems and providing some effective solutions existing in the above technologies from system implementation and hardware impairments’ perspective. The key problems studied in this thesis include interference cancellation in HetNet, impairments calibration for massive MIMO, channel state estimation for VLC, and low latency parallel Turbo decoding technique. Firstly, inter-cell interference in HetNet is studied and a cell specific reference signal (CRS) interference cancellation method is proposed to mitigate the performance degrade in enhanced inter-cell interference coordination (eICIC). This method takes carrier frequency offset (CFO) and timing offset (TO) of the user’s received signal into account. By reconstructing the interfering signal and cancelling it afterwards, the capacity of HetNet is enhanced. Secondly, for massive MIMO systems, the radio frequency (RF) impairments of the hardware will degrade the beamforming performance. When operated in time duplex division (TDD) mode, a massive MIMO system relies on the reciprocity of the channel which can be broken by the transmitter and receiver RF impairments. Impairments calibration has been studied and a closed-loop reciprocity calibration method is proposed in this thesis. A test device (TD) is introduced in this calibration method that can estimate the transmitters’ impairments over-the-air and feed the results back to the base station via the Internet. The uplink pilots sent by the TD can assist the BS receivers’ impairment estimation. With both the uplink and downlink impairments estimates, the reciprocity calibration coefficients can be obtained. By computer simulation and lab experiment, the performance of the proposed method is evaluated. Channel coding is an essential part of a wireless communication system which helps fight with noise and get correct information delivery. Turbo codes is one of the most reliable codes that has been used in many standards such as WiMAX and LTE. However, the decoding process of turbo codes is time-consuming and the decoding latency should be improved to meet the requirement of the future network. A reverse interleave address generator is proposed that can reduce the decoding time and a low latency parallel turbo decoder has been implemented on a FPGA platform. The simulation and experiment results prove the effectiveness of the address generator and show that there is a trade-off between latency and throughput with a limited hardware resource. Apart from the above contributions, this thesis also investigated multi-user precoding for MIMO VLC systems. As a green and secure technology, VLC is achieving more and more attention and could become a part of 5G network especially for indoor communication. For indoor scenario, the MIMO VLC channel could be easily ill-conditioned. Hence, it is important to study the impact of the channel state to the precoding performance. A channel state estimation method is proposed based on the signal to interference noise ratio (SINR) of the users’ received signal. Simulation results show that it can enhance the capacity of the indoor MIMO VLC system

    Analysis of massive MIMO performance in an indoor picocell with high number of users

    Get PDF
    This paper presents an analysis of the massive multiple input and multiple output (MIMO) channel in an indoor picocell with a high number of active user terminals and a base station consisting of a virtual array with up to one hundred elements. The analysis is based on the results of a measurement campaign carried out in the 3.2 to 4 GHz band in a scenario of reduced size and with a symmetrical geometry, in which users are also placed in an orderly manner. The channel meets the condition of favorable propagation depending on several factors, one of the most important being the spatial distribution of users. Results concerning the inverse condition number as well as the channel sum capacity are included. Another factor that determines the performance of massive MIMO systems when operated in an orthogonal frequency division multiplexing (OFDM) framework is the frequency selectivity of the channel that limits the size of the coherence block (ChB). Focusing on the most significant results achieved, it can be concluded that the channel reaches a capacity of 89% with respect to an i.i.d. Rayleigh channel. Concerning the cumulative distribution function (CDF) of the sum capacity, it can also be observed that the tails are not very pronounced, which indicates that a homogeneous service can be given to all users. Regarding the number of samples that make up the ChB, although it is high in all cases (of the order of tens of thousands), it strongly depends on the degree of correlation used to calculate the coherence bandwidth.This work was supported in part by the Spanish Ministerio de EconomĂ­a, Industria y Competitividad, under Grant TEC2017-86779-C2-1-R, in part by the European economic community (EEC) through Fondo Europeo de Desarrollo Regional (FEDER) funds, and in part by the Spanish Ministerio de Ciencia e InnovaciĂłn under Grant UCAN08-4E-010
    • …
    corecore