9,084 research outputs found

    GIS in Healthcare

    Get PDF
    The landscape of healthcare is dynamic, gradually becoming more complicated with factors beyond simple supply and demand. Similar to the diversity of social, political and economic contexts, the practical utilization of healthcare resources also varies around the world. However, the spatial components of these contexts, along with aspects of supply and demand, can reveal a common theme among these factors. This book presents advancements in GIS applications that reveal the complexity of and solutions for a dynamic healthcare landscape

    Community Time-Activity Trajectory Modelling based on Markov Chain Simulation and Dirichlet Regression

    Full text link
    Accurate modeling of human time-activity trajectory is essential to support community resilience and emergency response strategies such as daily energy planning and urban seismic vulnerability assessment. However, existing modeling of time-activity trajectory is only driven by socio-demographic information with identical activity trajectories shared among the same group of people and neglects the influence of the environment. To further improve human time-activity trajectory modeling, this paper constructs community time-activity trajectory and analyzes how social-demographic and built environment influence people s activity trajectory based on Markov Chains and Dirichlet Regression. We use the New York area as a case study and gather data from American Time Use Survey, Policy Map, and the New York City Energy & Water Performance Map to evaluate the proposed method. To validate the regression model, Box s M Test and T-test are performed with 80% data training the model and the left 20% as the test sample. The modeling results align well with the actual human behavior trajectories, demonstrating the effectiveness of the proposed method. It also shows that both social-demographic and built environment factors will significantly impact a community's time-activity trajectory. Specifically, 1) Diversity and median age both have a significant influence on the proportion of time people assign to education activity. 2) Transportation condition affects people s activity trajectory in the way that longer commute time decreases the proportion of biological activity (eg. sleeping and eating) and increases people s working time. 3) Residential density affects almost all activities with a significant p-value for all biological needs, household management, working, education, and personal preference.Comment: to be published in Computers, Environment and Urban Syste

    Assessing Ozone-Related Health Impacts under a Changing Climate

    Get PDF
    Climate change may increase the frequency and intensity of ozone episodes in future summers in the United States. However, only recently have models become available that can assess the impact of climate change on O(3) concentrations and health effects at regional and local scales that are relevant to adaptive planning. We developed and applied an integrated modeling framework to assess potential O(3)-related health impacts in future decades under a changing climate. The National Aeronautics and Space Administration–Goddard Institute for Space Studies global climate model at 4° × 5° resolution was linked to the Penn State/National Center for Atmospheric Research Mesoscale Model 5 and the Community Multiscale Air Quality atmospheric chemistry model at 36 km horizontal grid resolution to simulate hourly regional meteorology and O(3) in five summers of the 2050s decade across the 31-county New York metropolitan region. We assessed changes in O(3)-related impacts on summer mortality resulting from climate change alone and with climate change superimposed on changes in O(3) precursor emissions and population growth. Considering climate change alone, there was a median 4.5% increase in O(3)-related acute mortality across the 31 counties. Incorporating O(3) precursor emission increases along with climate change yielded similar results. When population growth was factored into the projections, absolute impacts increased substantially. Counties with the highest percent increases in projected O(3) mortality spread beyond the urban core into less densely populated suburban counties. This modeling framework provides a potentially useful new tool for assessing the health risks of climate change

    Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data

    Get PDF
    Regions, independent of their geographic level of aggregation, are known to be interrelated partly due to their relative locations. Similar economic performance among regions can be attributed to proximity. Consequently, a proper understanding, and accounting, of spatial liaisons is needed in order to effectively forecast regional economic variables. Several spatial econometric techniques are available in the literature, which deal with the spatial autocorrelation in geographically-referenced data. The experiments carried out in this paper are concerned with the analysis of the spatial autocorrelation observed for unemployment rates in 439 NUTS-3 German districts. We employ a semi-parametric approach – spatial filtering – in order to uncover spatial patterns that are consistently significant over time. We first provide a brief overview of the spatial filtering method and illustrate the data set. Subsequently, we describe the empirical application carried out: that is, the spatial filtering analysis of regional unemployment rates in Germany. Furthermore, we exploit the resulting spatial filter as an explanatory variable in a panel modelling framework. Additional explanatory variables, such as average daily wages, are used in concurrence with the spatial filter. Our experiments show that the computed spatial filters account for most of the residual spatial autocorrelation in the data.spatial filtering, eigenvectors, Germany, unemployment

    Why the poor in rural Malawi are where they are: An Analysis of the Spatial Determinants of the Local Prevalence of Poverty

    Get PDF
    "We examine the spatial determinants of the prevalence of poverty for small spatially defined populations in rural Malawi. Poverty prevalence was estimated using a small-area poverty estimation technique. A theoretical approach based on the risk chain conceptualization of household economic vulnerability guided our selection of a set of potential risk and coping strategies — the determinants of our model — that could be represented spatially. These were used in two analyses to develop global and local models, respectively. In our global model—a spatial error model — only eight of the more than two dozen determinants selected for analysis proved significant. In contrast, all of the determinants considered were significant in at least some of the local models of poverty prevalence. The local models were developed using geographically weighted regression. Moreover, these models provided strong evidence of the spatial nonstationarity of the relationship between poverty and its determinants. That is, in determining the level of poverty in rural communities, where one is located in Malawi matters. This result for poverty reduction efforts in rural Malawi implies that such efforts should be designed for and targeted at the district and subdistrict levels. A national, relatively inflexible approach to poverty reduction is unlikely to enjoy broad success." Authors' AbstractSpatial analysis (Statistics) ,Poverty mapping ,Spatial regression ,Poverty determinants ,

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster
    corecore