6,956 research outputs found

    DIRAC framework evaluation for the Fermi\boldsymbol{Fermi}-LAT and CTA experiments

    Full text link
    DIRAC (Distributed Infrastructure with Remote Agent Control) is a general framework for the management of tasks over distributed heterogeneous computing environments. It has been originally developed to support the production activities of the LHCb (Large Hadron Collider Beauty) experiment and today is extensively used by several particle physics and biology communities. Current (FermiFermi Large Area Telescope -- LAT) and planned (Cherenkov Telescope Array -- CTA) new generation astrophysical/cosmological experiments, with very large processing and storage needs, are currently investigating the usability of DIRAC in this context. Each of these use cases has some peculiarities: FermiFermi-LAT will interface DIRAC to its own workflow system to allow the access to the grid resources, while CTA is using DIRAC as workflow management system for Monte Carlo production and analysis on the grid. We describe the prototype effort that we lead toward deploying a DIRAC solution for some aspects of FermiFermi-LAT and CTA needs.Comment: proceedings to CHEP 2013 conference : http://www.chep2013.org

    OGSA first impressions: a case study re-engineering a scientific applicationwith the open grid services architecture

    Get PDF
    We present a case study of our experience re-engineeringa scientific application using the Open Grid Services Architecture(OGSA), a new specification for developing Gridapplications using web service technologies such as WSDLand SOAP. During the last decade, UCL?s Chemistry departmenthas developed a computational approach for predictingthe crystal structures of small molecules. However,each search involves running large iterations of computationallyexpensive calculations and currently takes a fewmonths to perform. Making use of early implementationsof the OGSA specification we have wrapped the Fortranbinaries into OGSI-compliant service interfaces to exposethe existing scientific application as a set of loosely coupledweb services. We show how the OGSA implementationfacilitates the distribution of such applications across alarge network, radically improving performance of the systemthrough parallel CPU capacity, coordinated resourcemanagement and automation of the computational process.We discuss the difficulties that we encountered turning Fortranexecutables into OGSA services and delivering a robust,scalable system. One unusual aspect of our approachis the way we transfer input and output data for the Fortrancodes. Instead of employing a file transfer service wetransform the XML encoded data in the SOAP message tonative file format, where possible using XSLT stylesheets.We also discuss a computational workflow service that enablesusers to distribute and manage parts of the computationalprocess across different clusters and administrativedomains. We examine how our experience re-engineeringthe polymorph prediction application led to this approachand to what extent our efforts have succeeded

    Data integration in mediated service compositions

    Get PDF
    A major aim of the Web service platform is the integration of existing software and information systems. Data integration is a central aspect in this con- text. Traditional techniques for information and data transformation are, however, not sucient to provide exible and automatable data integration solutions for Web and Cloud service-enabled information systems. The diculties arise from a high degree of complexity in data structures in many applications and from the additional problem of heterogenity of data representation in applications that often cross organisational boundaries. We present an integration technique that embeds a declarative data transformation technique based on semantic data models as a mediator service into a Web service-oriented information system architecture. Automation through consistency-oriented semantic data models and exibility through modular declarative data transformations are the key enablers of the approach. Automation is needed to enable dynamic integration and composition. Modiability is another aim here that benets from consistency and modularity

    A Computational Field Framework for Collaborative Task Execution in Volunteer Clouds

    Get PDF
    The increasing diffusion of cloud technologies is opening new opportunities for distributed and collaborative computing. Volunteer clouds are a prominent example, where participants join and leave the platform and collaborate by sharing their computational resources. The high dynamism and unpredictability of such scenarios call for decentralized self-* approaches to guarantee QoS. We present a simulation framework for collaborative task execution in volunteer clouds and propose one concrete instance based on Ant Colony Optimization, which is validated through a set of simulation experiments based on Google workload data
    corecore