
Computing and Informatics, Vol. 22, 2003, 1001–1020, V 2012-Sep-3

DATA INTEGRATION IN MEDIATED SERVICE
COMPOSITIONS

Claus Pahl, Yaoling Zhu

Dublin City University
School of Computing
Dublin 9
Ireland
e-mail: claus.pahl@dcu.ie, yao.zhu3@mail.dcu.ie

Abstract. A major aim of the Web service platform is the integration of existing
software and information systems. Data integration is a central aspect in this con-
text. Traditional techniques for information and data transformation are, however,
not sufficient to provide flexible and automatable data integration solutions for Web
and Cloud service-enabled information systems. The difficulties arise from a high
degree of complexity in data structures in many applications and from the addi-
tional problem of heterogeneity of data representation in applications that often
cross organisational boundaries. We present an integration technique that embeds
a declarative data transformation technique based on semantic data models as a
mediator service into a Web service-oriented information system architecture. Au-
tomation through consistency-oriented semantic data models and flexibility through
modular declarative data transformations are the key enablers of the approach. Au-
tomation is needed to enable dynamic integration and composition. Modifiability
is another aim here that benefits from consistency and modularity.

Keywords: Data Integration, Service Architecture, Cloud Integration, Semantic
Data Modelling, Mediated Architecture, Declarative Data Transformation

1 INTRODUCTION

A major aim of the Web service platform is the integration of existing software and
information systems [1]. Information and data integration is a central aspect here
[26]. Traditional techniques based on XML for data representation and XSLT for

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11311312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1002 C. Pahl, Y. Zhu

transformations between XML documents are, however, not sufficient to provide
flexible and automatable integration solutions for Web service-enabled information
systems. Difficulties arise from the high degree of complexity in data structures in
many business and technology applications and from the problem of heterogeneity
of data representation in applications that cross organisational boundaries.

The emergence of service-oriented architecture (SOA) as an architectural style
and recently cloud computing require a unified way to expose the data and func-
tionality of an information system [1, 23, 3]. The Web services platform has the
potential to solve the problems in the service and cloud data integration domain
such as heterogeneity and interoperability [12, 8, 28]. Our contribution is an in-
tegration framework for Web-enabled information systems comprising of, firstly, a
data integration technique based on semantic, ontology-based data models and the
declarative specification of transformation rules and, secondly, a mediator architec-
ture based on information services and the construction of connectors that handle
the transformations to implement the integration process [22].

A data integration technique in the form of a mediator service can dynamically
perform transformations based on a unified semantic data model built on top of
individual data models in heterogeneous environments. Abstraction has been used
successfully to address flexibility problems in data processing [17]. Declarative XML-
based data query and transformation languages [28] and Semantic Web and ontology
technology [5] provide the basis for our approach. The combination of declarative
and semantic specification and automated support of architecture implementations
provides the necessary flexibility and modularity to deal with complexity and con-
sistency problems. Two central questions to the data integration problem and its
automation shall be addressed in this investigation:

• how to construct data model transformation rules and how to express these rules
in a formal, but also accessible and maintainable way,

• how integration can be facilitated through service composition to enable inter-
operability through connector and relationship modelling.

We show how ontology-based semantic data models and the declarative data
query and transformation language Xcerpt [4] and its execution environment can be
combined in order to allow dynamic data transformation and integration in service-
based systems. We focus on technical solutions to semantically enhance data mod-
elling and adapt Xcerpt and its support environment so that it can facilitate the
dynamic generation of Xcerpt query programs (in response to user requests) from
abstract transformation rules. Automation is critical to enable dynamic integration.
We analyse the maintainability of this solution.

2 DATA INTEGRATION AND TRANSFORMATION

Information integration is the problem of combining heterogeneous data residing at
different sources in order to provide the user with a unified view [11, 26]. It is central

Data Integration in Mediated Service Compositions 1003

in any attempt to adapt services and their underlying data sources to specific client
and provider needs in the context of dynamic service composition. An important
task is the definition of mappings between individual data sources and a unified
view of these sources. Fig. 1 shows two schemas representing the views of client
and provider on a collection of customers. The integration of these hierarchically
structured schemas can be defined using transformation languages.

transformation
between different
local schemas

Fig. 1. Two Schema Diagrams of the Global Data Model that need to be integrated.

A case study shall clarify current limitations. The Application Service Provider
(ASP) business model promotes the use of software as a service SaaS in cloud com-
puting [19]. An example of this model is information systems outsourcing, i.e. the
handing over management of an enterprises information infrastructure to a third
party cloud service provider. The ASP takes responsibility for managing the soft-
ware application on its own infrastructure. The ASP maintains the application and
ensures that system functionality and data are available when requested.

The ASP context is the environment in which we have developed our solution
and evaluated its characteristics. Our evaluation is based on a joint project with
a major ASP [27], who provides standard ERP solutions to hundreds of customers
in Europe and Asia. Recently, a service-based platform has been implemented by
the company to provide an ASP integration solution. The case study is part of
the ASP’s Customer Intelligence Framework (CIF). CIF provides portal-based ac-
cess for customers and managers to a reporting system for the ASP’s on-demand
services. The reporting system consists of analyser objects that access content in
the form of requests logs, outage tracking data and customer life cycle information.
The aim is to support ad-hoc, cross-content adaptable user queries. Change and

1004 C. Pahl, Y. Zhu

evolution problems are omnipresent for this company due to a large number ASP
clients, the variety of services offered by the ASP and the range of data associated
to services. Maintainability is consequently a particular focus of our investigation.
Only maintainability can provide a long-term cost-effective integration solution.

XSLT is the most widely used XML data integration language, which is also
the basis of an existing system in the ASP of our case study. However, an XSLT
solution suffers from some limitations within our context due its is syntactical focus
and operational language.

• Semantics: Only the syntactical integration of query and construction part of
a XSLT transformation program is specified, but consistency in terms of the
semantics cannot be guaranteed.

• Modularity: XSLT does not support a join or composition operator on XML
documents that allows several source XML documents to be merged into one
before being transformed, i.e. does not adequately support complex data struc-
tures and their integration.

• Maintainability: XSLT transformations are difficult to write, maintain and reuse
for large-scale information integration. It is difficult to separate source and
target parts of transformation rules as well as the filtering constraints due to its
operational character without separation of query and construction concerns.

Due to these drawbacks, we propose a two-pronged approach consisting of semantic
data models and a declarative query and transformation approach, providing more
expressive power and the ability to automatically generate query and transformation
programs as connectors for services-based data integration in Web-enabled informa-
tion systems. A range of characteristics of XML query and transformation languages
beyond XSLT, which have been studied and compared [9, 11, 16], led us to choose
the fully declarative language Xcerpt [4] as our transformation platform [27].

Recently, service platforms are used to provide integration solutions. In the
Web services context, data in XML representation, which is retrieved from individual
data services, needs to be merged and transformed. Data schema integration cannot
be fully automated on a syntactic level since the syntactic representation of data
schemas does not convey the semantics of different data sources. For instance, a
customer can be identified by a unique customer identifier; or, the same customer
may be identified by a combination of a service support identifier and its geographical
location, see Fig. 1. Ontology-based semantic data models can rectify this problem
by providing an agreed vocabulary of concepts with associated properties.

3 DATA TRANSFORMATION AND CONNECTOR ARCHITECTURE

Mappings between data schemas of different participants might or might not repre-
sent the same semantical information. The Semantic Web and in particular ontology-
based data domain and service models [5] can provide input for improvements of cur-
rent integration approaches in terms of data modelling and transformation validation

Data Integration in Mediated Service Compositions 1005

by providing a notion of consistency, based on which an automated transformation
approach can become reliable [8]. We define consistency here as the preservation of
semantics in transformations.

We introduce here the semantic information architecture that defines and inte-
grates the individual schemas in use (Section 3.1). We show how transformation
rules between the schemas can be automatically constructed (Section 3.2) in terms
of the transformation language Xcerpt (Section 3.3). Connectors, i.e. implemented
transformations that connect to data sources, are then addressed in Section 3.4.

3.1 Information Architecture

Ontologies are knowledge representation frameworks that represent a domain in
terms of concepts and their properties. We use a simplified OWL syntax to avoid
the verbosity of XML-OWL [5]. It provides us with a concise notation to express
a semantic data model. The elements of the XML data models of each of the
participants are represented as concepts in the ontology. The concept Customer
is defined in terms of its properties – data type-like properties such as name or
identification and also object type properties such as services used by a customer.
Three concept descriptions, using the existential quantifier exists here, express that
a customer is linked to an identification through a supportID property, to a name
using the custName property, and to services using Services. In some cases, these
properties refer to other composite concepts; sometimes they refer to atomic concepts
that act as type names here. Technically, the existential quantification means that
there exits for instance a name that is a customer name.

Customer = exits supportID . Identification and

exits custName . Name and

exits usedServices . Service

Service = exists custID . ID and

exists servSystem . System

System = exists hasPart . Machine

The ontology represents syntactical and semantical properties of a common over-
arching data model, which is agreed upon by all participants such as service (or data)
provider and consumer. This model is actually a domain ontology, capturing central
concepts of a domain and defining them semantically. This means that all individ-
ual XML data models can be mapped onto this common semantic model. These
mappings can then be used to automatically generate transformations between dif-
ferent concrete participant data models. The overall information architecture is
summarised in Fig. 2. For practical reasons a corresponding semantically equiva-
lent XML representation to our notation is needed. The corresponding global XML
schema representation for the customer element is:

1006 C. Pahl, Y. Zhu

<!ELEMENT Customer (Service, System) >

<!ATTLIST Customer

supportID ID

custName Name >

Here, the principle of this mapping becomes clear: ontology concepts are mapped
to XML elements and specific predefined atomic concepts serve to represent sim-
ple properties that are mapped to XML attributes. We have focused on the core
elements of ontologies and XML data here to highlight the principles. Description
elements of XML such as different types of attributes or option and iteration in
element definition can also be captured through a refined property language.

Customer
supportID (Identifier)
custName (Name)
usedServices (multiple Service)

Service
custID (Identifier)
servSystem (System)

…

<!ELEMENT Customer (Service, System) >
<!ATTLIST Customer

supportID ID
custName Name >

…

<!ELEMENT CustomerArray (Customer*) >
<!ATTLIST CustomerArray … >

<!ELEMENT …

<!ELEMENT ArrayOfCustomer (Customer*) >
<!ATTLIST ArrayOfCustomer … >

<!ELEMENT …

construct

map

Domain
Ontology

Global
XML Schema

Local XML Schemas

Customer
supportID (Identifier)
custName (Name)
usedServices (multiple Service)

Service
custID (Identifier)
servSystem (System)

…

Customer
supportID (Identifier)
custName (Name)
usedServices (multiple Service)

Service
custID (Identifier)
servSystem (System)

…

<!ELEMENT Customer (Service, System) >
<!ATTLIST Customer

supportID ID
custName Name >

…

<!ELEMENT CustomerArray (Customer*) >
<!ATTLIST CustomerArray … >

<!ELEMENT …

<!ELEMENT ArrayOfCustomer (Customer*) >
<!ATTLIST ArrayOfCustomer … >

<!ELEMENT …

construct

map

Domain
Ontology

Global
XML Schema

Local XML Schemas

Fig. 2. Information Architecture Overview.

3.2 Transformation Rule Construction

The ontology provides a semantically defined global data model from which trans-
formations between different data representations can be derived. This construction
has a number of specific requirements regarding transformation rules:

• modularity of transformation rules, i.e. rules specific to particular data elements
of the information architecture that can be combined according to the structure
of data, to support flexible rule generation and configuration,

• consistency for the reliable generation and configuration of transformation rules
by allowing semantics-preserving rules to be constructed automatically.

Data Integration in Mediated Service Compositions 1007

Based on a data-oriented domain ontology and two given local data models
(source and target, expressed as XML schemas) that are mapped onto the ontology,
the rule construction process is based on three steps:

• Define one transformation rule per concept in the ontology that is represented
in the target data model.

• Identify semantically equivalent concepts of the selected source model concepts.

• For each identified concept: a) determine required attributes – these are end
nodes of the ontological structure – and b) copy semantically equivalent coun-
terparts from the source model.

This illustrates that rule generation automation is possible. A necessary prerequisite
is that all concepts of the source model are actually supported by the transformation
rules, mapping each to the target data model. The taxonomic hierarchy that the
ontology defines is the basis of modular rule definitions – there is a rule for each
concept in the taxonomic hierarchy. Consistency of rules is demonstrated using
(ontology-proven) semantically equivalent concepts.

The transformation rules based on the sample ontology for the given customer
example will be presented later on once the transformation language is introduced.
These could be formulated such that the data integration problem from Fig. 1 is
formally defined. The mappings between participant data models and the data
ontology define semantically equivalent representation of common agreed ontology
elements in the data models. Consequently, the presented rule construction process
is consistent in that it preserves the semantics in transformations.

The concrete target of this construction is the chosen declarative transformation
language Xcerpt. The construction process has been expressed here in abstract
terms – a complete specification in terms of transformation languages such as QVT
or even Xcerpt itself would have been too verbose for this context. Declarativeness
and modularity provide the required flexibility for our solution. The construction
of transformation rules is actually only the first step in the provision of XML data
integration. These transformations can be constructed prior to the customer query
construction and stored in rule repositories.

3.3 Xcerpt Background

We describe Xcerpt principles and the rationale for choosing it and demonstrate
how such a declarative language needs to be adapted for deployment in a dynamic,
mediated service environment. Xcerpt is a query language designed for querying and
transforming traditional XML and HTML data, as well as Semantic Web data in the
form of RDF and OWL. It separates the matching part and the construction part in
a transformation specification, see Fig. 3. Xcerpt follows a pattern-based approach
to querying XML data. The Xcerpt platform includes a runtime environment with
an execution engine at its core [18].

1008 C. Pahl, Y. Zhu

CONSTRUCT
CustomerArray [

all Customer[
nameAsContracted [var Name],
companyId [var CompanyId],
serviceOrganizationIdentifier [var OrgId],
all supportidentifier[

CustomerSupportIdentifier [var Code],
ISOCountryCode [var CSI]

]
]

]
FROM

arrayOfCustomer[[
item [[

orgName [var Name],
companyId [var CompanyId],
gcdbOrgId [var OrgId],
countryCode [var Code],
csiNumber [var CSI]

]]
]]

Fig. 3. Declarative Transformation Specification of a Customer Array Element in Xcerpt.

Fig. 3 shows a transformation example for a customer array based on Fig. 1. The
structure of this specification is based on a construction part (CONSTRUCT) and
a source query part (FROM). An output customer in CustomerArray is constructed
based on the elements of an item in an arrayOfCustomer by using a pattern matching
approach, identifying relevant attributes in the source and referring to them in
the constructed output through variables such as Name or CompanyID. During
transformation, these hold the concrete values of the selected (matched) elements.

Xcerpt distinguishes two types of specifications:

• Goal-based query programs, identified by the keyword GOAL, are executable
query programs that refer to input and output resources and that describe data
extraction and construction.

• Abstract transformation rules, identified by CONSTRUCT as in Fig. 3, are
function-like transformation specifications with no output resource associated.

Xcerpt extends classical pattern-based matching: [..] is used for ordered exact
sub-term patterns and [[..]] for ordered partial sub-term patterns, possibly part of
a quantified expression (all/exists). Firstly, query patterns can be formulated as in-
complete specifications in three dimensions. Incomplete query specifications can be
represented in depth, which allows XML data to be selected at any arbitrary depth;
in breadth, which allows querying neighbouring nodes using wildcards, and in order.
Incomplete query specifications allow patterns to be specified more flexibly without
losing accuracy. Secondly, the simulation unification computes answer substitutions
for the variables in the query pattern against underlying XML terms.

Data Integration in Mediated Service Compositions 1009

3.4 Connector Construction and Query Composition

We have adapted Xcerpt to support the construction of service connectors, i.e. exe-
cutable query and transformation programs that integrate different data services:

• In order to promote modularity and code reuse, individual integration rules
should not be designed to perform complex transformation tasks – rather a
composition of individual rules is preferable. The composition of rules through
rule chaining demands the query part of a service connector to be built ahead
of the construction part.

• The data representation of the global data model changes as element names
change or elements are being removed – these should not affect the query and
integration part of the rules. Only an additional construction part is needed to
enable versioning of the global data model.

Modularity and incomplete query specifications turn out to be essential features that
are required from a query and transformation language in our context. In order to
achieve the compositionality of modular rules, a layered approach shall be taken:

• Ground rules are responsible for populating XML data in the form of Xcerpt
data terms by reading XML documents from individual service providers. These
ground rules are linked to individual data Web services. These rules instruct
the connector where to retrieve elements of data objects.

• The Xcerpt data terms are consumed subsequently by non-ground queries based
on intermediate composite rules. These rules are responsible for integrating
ground rules to render data types in the global XML schema. However, these
rules still do not produce output.

• Finally, the composite rules are responsible for rendering the data objects defined
in the interfaces of the mediator Web services based on customer requests. The
composite rules are views on top of ground and intermediate representations
according to the global schema. Therefore, the exported data from a mediator
Web service is the goal of the corresponding connector (a query program).

Ground rules, which read individual data elements from the resources, are associated
to at least one resource identifier. This is a bottom-up approach in terms of data
population because data is assigned from the bottom level of the rules upward until
it reaches the ultimate goal of a hierarchically structured rule. These rules are
defined through an integration goal (the top-level query program) and structured
into sub-rules down to ground rules. These layered rules are saved in a repository.
When needed, a rule will be picked and a backward rule chaining technique for rule
composition enables data objects to be populated to answer transformation requests.
Rule chaining means that resulting variable bindings from a transformation rule that
is used within a query program are chained with those of the query program itself.
Rule chaining is used to build recursive query programs. Consistent connectors can
then be constructed on the fly based on input data such as the data services and

1010 C. Pahl, Y. Zhu

the layered rules. This modular approach allows us to deal with arbitrarily complex
data structures. Modularity entails maintainability and scalability as well.

GOAL
Out { Resource {“file:SupportIdentifier_Customer.xml”},

SupportIdentifier [All var SupportIdentifier] }
FROM

Var SupportIdentifier -> SupportIdentifier {{}}
END

CONSTRUCT
SupportIdentifier [var Code, optional Var CName, Var Code]

FROM
in { Resource {“file:customer1.xml”},

ArrayOfCustomer [[
customer [[optional countryName [var CName],

countryCode [var Code]
csiNumber [var CSI]]] }

END

Fig. 4. Transformation Specification based on Goal Chaining with Goal-based Query Pro-
gram.

We apply backward goal-based rule chaining to execute complex queries based
on composite rules. Fig. 4 shows an example of this pattern matching approach
that separates a possibly partial query into resource and construction parts. The
transformation rule maps the supportIdentifier element of the customer example
from Fig. 1. Fig. 4 is a composite rule based on the SupportIdentifier construc-
tion rule at a lower level. Fig. 5 demonstrates the transformation that produces
the resulting XML data for the Customer service. The output from the Customer
mediator represents a customer as identified in a servicing system. In the example,
rule CustomerArray is a composite rule, based on Customer and Service, that could
be used to answer a user query directly. The resource identifiers in the form of vari-
ables and the interfaces for the data representation will be supplied to the connector
generator. Rule mappings in the connector generator determine which queries are
constructed from the repository for execution.

4 THE MEDIATED SERVICE INTEGRATION ARCHITECTURE

We propose a mediated service-based architecture for the transformation of XML
data in Web service-based information systems. The major aims of the proposed
architecture for the integration and mediation of XML data in the context of Web
services are threefold: improved modifiability through declarative and modular rule-
based query programs, improved reusability of declarative integration rules through
automated connector construction, and improved flexibility through dynamic gen-
eration of consistent, i.e. semantics-preserving connectors. After introducing the
mediator architecture in Section 4.1, we will demonstrate how the transformation
rule generation from the previous section and execution techniques can be integrated
into composed Web service processes through a mediated approach. In Section 4.2,
we show how connectors are generated in this architectural setting.

Data Integration in Mediated Service Compositions 1011

Rule 1: This rule produces the CustomerArray by grouping and reconstructing.

CONSTRUCT
CustomerArray [[

all var customer,
all var supportidentifier,
all var services [[

var customerName,
all var system [[var systemId, all var machine]]

]]
]]

FROM
Customer [[var customer, var supportidentifier]]

AND
Service [[var services [[var system [[var machine]]]]]]

Rule 2a: This rule gets Customer data terms according to the global data model.

CONSTRUCT
Customer[[var customer, all var supportidentifier]]

FROM
arrayOfCustomer[[var customer, var supportidentifier]]

Rule 2b: This rule gets Service data terms according to the global data model.

CONSTRUCT
Service [[var service [[var system [[var machine]]]]]]

FROM
arrayOfService [[

var service [[var system [[var systemId]]]]
]]

AND
Machine [[var machine, var systemId]];

Rule 3: This construct rule gets Machine data terms.

CONSTRUCT
Machines [[

all machine-of-system [[var machine]],
var systemId

]]
FROM

machineItem [[var machine, var systemId]]

Fig. 5. The Composite Rules for Customer Transformation in Xcerpt.

4.1 Service-based Mediator Architectures

A declarative, rule-based approach can be applied to the data transformation prob-
lem [12, 16]. The difficulty lies in embedding a declarative transformation approach
into a service-based architecture in which clients, mediators, and data provider ser-
vices are composed [7, 14]. The rules, stored in a repository, can be used to dynam-
ically create executable query and transformation programs using a consistency-
guaranteeing connector or integration service as the mediator. These integration
services are the cornerstones of a mediator architecture that processes composite
client queries that possibly involve different data sources provided by different Web
services. Mediators in an architecture harmonise and present the information avail-
able in heterogeneous data sources [21]. This harmonisation comes in the form of
an identification of semantic similarities in data while masking their syntactic dif-
ferences. Figs. 1 and 2 have illustrated an example defined in terms of an ontology

1012 C. Pahl, Y. Zhu

in order to guarantee transformation consistency.
Zhu et al. [28] and Widom [24] argue that traditional data integration archi-

tectures such as federated schema systems and data warehouses fail to meet the
requirements of constantly changing and adaptive environments. With the support
of Web service technology, however, it is possible to encapsulate integration logic in
a separate component as a mediator Web service between heterogeneous data service
providers and consumers. Therefore, we build a connector construction component
as a separate integration service, based on [8, 28]. We develop an architecture
where broker-style mediator functionality is provided by a connector generator and
a transformation engine:

• The connector construction is responsible for providing connectors based on
transformation rules to integrate and mediate XML documents. The connector
construction generates, based on schema information and transformation rules,
an executable service process that gathers information from the required re-
sources and generates a query/transformation program that compiles and trans-
lates the incoming data into the required output format.

• The process execution engine is responsible for the integration of XML data
and mediation between clients, data providers and the connector component.
The execution engine is implemented in WS-BPEL and shall access the Xcerpt
runtime engine, which is part of the Integration Service and which executes the
generated query/transformation program.

The system architecture is illustrated in Fig. 6 with a few sample information services
from an application service provider (ASP) scenario – Customer Data, E-business
System, and Request Analysis services.

Customer Data
Service

Customer Data
Service

Service Requests
Analysis Service

Service Requests
Analysis Service

E-business
Systems Service

E-business
Systems ServiceClient

Application

Client
Application Query

Service

Query
Service Mediator

BPEL Engine

Mediator
BPEL Engine

Service Connector
Generator

(Integration Service)

Service Connector
Generator

(Integration Service)

Transformation Rule
Repository

Transformation Rule
RepositorySchema

Repository

Schema
Repository

1: Query

9b: Result

Mediator Service

4: Invocation

5: Result

2: Activate
BPEL Process

3: Conversion Request

7: Xcerpt Query Rules

8: Executed
Query Program

6: Transformation
Generation

9a: Result

Fig. 6. Component View of a Mediator Service with Interactions.

Exposing data sources as services is only the first step towards building a SOA

Data Integration in Mediated Service Compositions 1013

solution. Without a service integrator, the client needs to understand each of the
data models and relationships of service providers. The mediator architecture has
the following components:

• Query service. The query service is responsible for handling inbound requests
from the application consumer side and transferring outbound results back. The
WS-BPEL process engine implements the mediator process that handles the
internal messaging of the architecture. The query service decomposes input
messages into a set of pre-defined WS-BPEL processes.

• Mediator (BPEL) engine. A mediator engine is itself a WS-BPEL process. The
mediator delivers data according to the global schema. The schema may consist
of various data entities for large enterprise integration solutions.

• Connector generation service. This component is responsible for generating
connectors for transforming messages both entering the WS-BPEL engine from
service clients and leaving the WS-BPEL engine from data provider services
according to the global data model. The active components, provided as Web
services, are complemented by two repositories:

• Transformation rule repository. The repository allows the reuse of rules and can
support multiple versions of service providers and mediator services.

• Schema repository. The repository stores the WSDL metadata and the XML
schema information for the Web service providers and the mediator Web service.
The schema information is used to validate the XML documents at runtime
before they are integrated and returned to the client application.

In our ASP scenario, the data sources are under the control of the ASP who runs
the mediator architecture, but advanced solutions where semantic matching is used
to incorporate external sources have also been investigated [5].

4.2 Connector Generation

The construction of a service connector means to generate an executable Xcerpt
query program by composing each Xcerpt query with the corresponding transfor-
mation rules. In an Xcerpt query program, there is only one goal query, which
will be processed first. The goal query is made up of composite transformations
rules that in turn are made up of ground rules that read XML data from exter-
nal resources retrieved using the data services. The process begins by expanding
each composite query according to the definitional data mappings stored in the rule
repository. The rule chaining mechanism in Xcerpt converts the goal query and all
supporting queries into one query program at runtime.

The Xcerpt runtime engine reads XML-based resources and populates them
into data terms before the query terms can start to evaluate them. The drawback
is that all resource identifiers have to be specified inside a query program rather
than be passed into a query program as parameters. Consequently, we adapted

1014 C. Pahl, Y. Zhu

the Xcerpt approach to processing transformation requests in an information in-
tegration solution. The resource identifiers in our solution are not hard-coded in
ground rules in order to achieve the desired loose coupling to achieve flexibility and
reusability. These resource identifiers are invisible to the connector construction
service. Xcerpt does not support automatic query program construction by default,
although it provides the necessary backward rule chaining technique to evaluate a
chain of queries. We have developed a wrapper mechanism to pass the resource
identifiers from the goal level down to the ground rules. This extension is needed
where rules are decoupled from resources and the only the generated Xcerpt-based
connectors are integrated with the client and provider Web services. WS-BPEL
code that coordinates the mediation and transformation process is generated by a
connector generator for transformations within the mediator service.

5 EVALUATION

We now provide a qualitative evaluation of our techniques, analysed using a proto-
type we developed in conjunction with a major application service provider in the
context of its on-demand service infrastructure.

5.1 Evaluation Aims

Consistency and modularity are the two central aspects of our investigation. The ef-
fectiveness of the proposed integration architecture in terms of change and evolution
requirements shall be evaluated. Maintainability shall be evaluated using an analytic
evaluation method. Change scenarios are defined and used to elicit and evaluate the
modifiability goal. We also looked at scalability, which shall be evaluated based
on the same architectural analysis method as maintainability, since scalability and
maintainability are related changeability aspects. Consistency and modularity are
expected to be central factors in achieving the desired degree of maintainability and
scalability. However, the consequences of such a solution on other quality attributes
shall also be empirically evaluated. We analyse the performance of the developed
prototype and compare the prototype to the existing solution.

5.2 Modifiability Analysis and Evaluation Scenarios

The Architecture-Level Modifiability Analysis (ALMA) provides a framework to
evaluate the maintainability and scalability of software application architectures [2].
Scalability is an important requirement from a service-level integration perspective.
Part of the current software development and maintenance process at the ASP
are regular internal assessments by in-house software architects and inspections on
the software architecture performed by external experts. The definition of realistic
change scenarios as part of this process is crucial in this context. These activities
have led to the definition of three change scenarios for the modifiability evaluation
focussing on changes in specific aspects:

Data Integration in Mediated Service Compositions 1015

• Scenario 1 [Business Rules]. Clients often change the services requested from the
ASP, which requires changes to integration rules at the mediator level. Business
rules change more often than the data model.

• Scenario 2 [Data Source Providers]. Structural changes in the data provider
service architecture lead to changes in the communication at element level. Two
scenarios may happen in terms of changes of ground rules – source or target
schema changes. One is that source attributes of a data transformations from
one Web service provider to another change; the other is that the name of
attributes of a data object in the unified data model changes or the ones in the
data model of a Web service provider change.

• Scenario 3 [Integration Rules]. Caused by data model changes, new integration
rules might need to be added. This scenario might happen on two occasions: one
is that customers request new mediator Web services, the other is that a new
Web service provider is integrated. In any case, it will introduce new integration
rules at the top level of the global data model.

These scenarios have been defined in conjunction with software architects and an-
alysts at the ASP. These address maintainability primarily, but as the addition of
new services or rules indicates, also refer to scalability.

5.3 Comparison Results

To demonstrate effectiveness in terms of modifiability, we compare our solution with
a traditional solution. We have evaluated our application service provider (ASP)
solution after the release of a first prototype implementation of our architecture and
have compared it with the existing traditional XSLT-based and ad-hoc WS-BPEL-
based solution that has been already in place at the ASP – see Section 2.

• Existing System: The architecture of the existing system is based on a mediator
service at the core, which is activated by a query service and which invokes the
XSLT transformation program, which in turn accesses a schema repository.

• Solution Prototype: The architecture of the prototype was presented in Fig. 6.
It differs from the traditional one in that the mediator functionality is split over
several individual services over two layers.

The ALMA impact analysis identifies if an architectural element is affected by
a change scenario directly or indirectly. The investigation of the three scenarios has
led to the following observations based on a comparative and quantitative analysis
for the existing system and the prototype:

• Scenario 1 [Business Rules]. A problem that traditional data transformation
languages such as XSLT have is that a set of business rules to render unified
entities in the global data model are intertwined, although the business rules
are separated from the application logic. Our approach is to have a number of

1016 C. Pahl, Y. Zhu

targeted mediator processes rather than only one to support the unified virtual
information view. This supports an incremental definition as more mediator
Web services can be built to answer users queries. The unified virtual view
is subject to changes and additions as the analysis of the information sources
proceeds.

– Effect on existing architecture: transformations

– Effect on proposed integration architecture: composite rules

– How achieved: automation through connector construction at runtime

In our architecture, we have implemented a declarative rule-based approach in
which rules are represented in Xcerpt and saved separately in a rule repository.
The business rules are composed at runtime during the construction of the ser-
vice connectors by the connector generator. Therefore, changes of business rules
do not affect the rest of the business and application logic. In contrast, the query
and the construct part of the XSLT transformation queries are tightly coupled.
Therefore, it is difficult to automate the construction process of a transformation
file in the traditional solution.

• Scenario 2 [Data Source Providers]. This relates to changes of a data term when
one of the source XML documents is replaced by a new source.

– Effect on existing architecture: transformations and architecture

– Effect on proposed integration architecture: ground rules, maybe some im-
mediate rules

– How achieved: modularity, since query part and construct part of an inte-
gration rule are separated

Data term changes only affect the population of one data term in our case.
In case of name changes of attributes on both sides, the data terms remain
untouched, i.e. the query terms do not need to be changed. The only element
to change is the construct term of a business rule. If one of the data terms
at the lower level changes, then we only need to update the directly referenced
query term. The construct term in an integration rule is not affected. In order
to handle the same scenario for XSLT, another new version of the entire XSLT
transformation file needs to be created.

• Scenario 3 [Integration Rules]. In the third change scenario, the immediate
composite rules can be leveraged from the existing ones since it is likely that the
new Web service provider shares some common entities.

– Effect on existing architecture: transformations and architecture

– Effect on proposed integration architecture: new version of composite rules,
or reuse or addition of ground and immediate rules

– How achieved: integration rule repository and independent data services:
the connector generator injects no code into the integration flow

Data Integration in Mediated Service Compositions 1017

This scenario demonstrates that change of the Xcerpt integration rules can occur
in the following two scenarios: one is to build a new mediator service; the other
is to build a new version of the mediator process.

5.4 Discussion

The impact resulting from each change scenario is only local in our proposed so-
lution, whereas in traditional solutions the entire transformation set-up including
the software architecture can be affected. The declarativity and modularity of the
transformation rules and the separation of architectural concerns such as connector
generation and execution (which is Xcerpt-specific) from the mediation process as
such (which is Xcerpt-independent) into different architectural layers are the con-
tributors to a maintainable solution in our case. Consistency, achieved here through
abstract integration models and rules, is crucial for a software architect to control
changes locally. The semantic information architecture simplifies changes at the
local level. The key benefit of guaranteed consistency is, however, increased au-
tomation. The success factors for maintainability and scalability that emerge are
modularity and consistency based on an abstract, declarative approach.

The achievements in terms of maintainability, as demonstrated through ALMA,
but also limitations and drawbacks have also been looked at using empirical meth-
ods. There is often a trade-off between maintainability and performance in software
systems. Two factors inevitably decrease performance in our solution: firstly, levels
of indirection as part of the architectural separation of mediation, connector gen-
eration and transformation, and, secondly, dynamic connector generation based on
rules and schemas stored in the respective repositories. Our prototype has, however,
demonstrated that these two factors together in general do not exceed 15-20% of
the overall transformation time compared to the traditional architecture, which is
acceptable in most ASP situations.

6 CONCLUSIONS

The benefit of information systems on demand must be supported by corresponding
information management services. Many application service providers are currently
modifying their technical infrastructures to manage and integrate information using
a Web, often Cloud services-based approach. However, the question of handling
information integration in a flexible, automated and modifiable way in the context
of service-based information systems has not yet been fully explored.

The presented framework utilises semantic information integration technologies
for XML data in service-based software architectures (SaaS). The crucial solutions
for the information integration problem are drawn from mediated architectures and
data model transformation, allowing the XML data from local schemas to be consis-
tently transformed, merged and adapted according to declarative, rule-based inte-
gration schemas for dynamic and heterogeneous environments. We have proposed a

1018 C. Pahl, Y. Zhu

declarative style of transformation based on a semantic, ontology-based data model,
with implicit source model traversal and target object creation. The development of
a flexible mediator service is crucial for the success of the service-based information
systems architecture from the deployment point of view. Our solution based on the
query and transformation language Xcerpt is meant to provide a template for other
similar languages.

Our contribution deals with complex data structures and still provides maintain-
ability and scalability through modularity – using automatically generated layered
rules guided by the taxonomic hierarchy of the underlying ontology. We have demon-
strated how to seamlessly integrate this semantic data transformation technique into
a Web service architecture as a mediator service. Our investigation is based on our
experience with infrastructures of a multinational on-demand service provide.

The introduction of data transformation techniques for re-engineering activi-
ties can improve the process of re-engineering legacy systems and adopting service-
oriented architecture to manage the information technology services [25]. Business
rules often change rapidly – requiring the integration of legacy systems to deliver
a new service. How to handle the information integration in the context of active
service management has not yet been explored in sufficient detail in the context of
legacy integration and re-engineering. Our solution provides a contribution towards
the evolutionary perspective of software development and integration.

A possible extension of our approach is the utilisation of the semantic knowledge
that is available to represent all services involved in their functionality as semantic
Web services [13]. Abstract service descriptions can be derived from the semantic
properties of the data they provide, process, or consume. Karastoyanova et al. [10],
for instance, discuss a middleware architecture to support semantic data mediation
based on semantically annotated services. Their investigation demonstrates how
our semantic data mediation can be incorporated into a service-based middleware
architecture that supports SOA-based development. However, the need to have an
overarching semantic information architecture also becomes apparent, which sup-
ports our results.

REFERENCES

[1] Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004). Web Services – Concepts,
Architectures and Applications. Springer Verlag.

[2] Bengtsson, P., Lassing, N., Bosch, J. and Vliet, H. (2004). Architecture-Level Modi-
fiability Analysis (ALMA). Journal of Systems and Software, 69 (1), 129-147.

[3] Buyya, R., Broberg, J., and Goscinski, A. (2011). Cloud Computing - Principles and
Paradigms. Wiley.

[4] Bry, F. and Schaffert, S. (2002). Towards a Declarative Query and Transformation
Language for XML and Semistructured Data: Simulation Unification. Proceedings
Intl. Conference on Logic Programming. LNCS 2401, Springer-Verlag.

Data Integration in Mediated Service Compositions 1019

[5] Daconta, M.C., Obrst, L.J. and Smith, K.T. (2003). The Semantic Web – a Guide to
the Future of XML, Web Services, and Knowledge Management. Indianapolis, USA:
Wiley and Sons.

[6] Gal, A. (2008). The Health Problems of Data Integration. In OTM Workshops.
Springer, Lecture Notes in Computer Science 5333. page 65.

[7] Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ull-
man, Y. D., Vassalos, V. and Widom, J. (1997). The TSIMMIS approach to media-
tion: Data models and languages. Journal of Intelligent Information Systems. 8(2),
March 1997, 117-132.

[8] Haller, A., Cimpian, E., Mocan, A., Oren, E. and Bussler, C. (2005). WSMX – a
semantic service-oriented architecture. Proc. Intl Conf on Web Services ICWS 2005.

[9] Jhingran, A.D., Mattos, D. and Pirahesh, N.H. (2002). Information Integration: A
research agenda. IBM System Journal 41(4).

[10] Karastoyanova, D., Wetzstein, B., van Lessen, T., Wutke, D., Nitzsche, J. and Ley-
mann, F. (2007). Semantic Service Bus: Architecture and Implementation of a Next
Generation Middleware. Proceedings of the Second International Workshop on Ser-
vice Engineering SEIW 2007.

[11] Lenzerini, M. (2002). Data integration: A theoretical perspective. Proceedings Prin-
ciples of Database Systems Conference PODS’02, 233-246. ACM.

[12] Orriens, B., Yang, J. and Papazoglou, M. (2003). A Framework for Business Rule
Driven Web Service Composition. Jeusfeld, M.A. & Pastor, O. (Eds). Proceedings
ER2003 Workshops, LNCS 2814, 52-64. Springer-Verlag.

[13] Pahl, C., Zhu, Y. (2005). A Semantical Framework for the Orchestration and Chore-
ography of Web Services. International Workshop on Web Languages and Formal
Methods WLFM’05.

[14] Pahl, C., Giesecke, S., Hasselbring, W. (2007). An Ontology-based Approach for
Modelling Architectural Styles. Proc. European Conference on Software Architecture
ECSA2007. Springer-Verlag, LNCS Series.

[15] Payne, T. and Lassila, O. (2004). Semantic Web Services. IEEE Intelligent Systems,
19(4).

[16] Peltier, M., Bezivin, J and Guillaume, G. (2001). MTRANS: A general framework,
based on XSLT, for model transformations. Proceedings of the Workshop on Trans-
formations in UML WTUML01.

[17] Rouvellou, I., Degenaro, L., Rasmus, K., Ehnebuske, D. and McKee, B. (2000).
Extending business objects with business rules. Proceedings 33rd Intl. Conference on
Technology of Object-Oriented Languages. 238-249.

[18] Schaffert, S. (2004). Xcerpt: A Rule-Based Query and Transformation Language for
the Web. PhD Thesis, University of Munich.

[19] Seltsikas, P. and Currie, W.L. (2002). Evaluating the application service provider
(ASP) business model: the challenge of integration. Proceedings 35th Annual Hawaii
International Conference 2002. 2801-2809.

[20] Stal, M. (2002). Web Services: Beyond Component-based Computing. Communica-
tions of the ACM, 45 (10), 71-76.

1020 C. Pahl, Y. Zhu

[21] Stern, A. and Davis, J. (2004). Extending the Web services model to IT services.
Proceedings IEEE International Conference on Web Services. 824 - 825.

[22] Subasu, I.E., Ziegler, P., Dittrich, K.R. and Gall, H. (2008). Architectural Concerns
for Flexible Data Management. In: Workshop on Software Engineering for Tailor-
made Data Management SETMDM 2008. EDBT Workshops. pages 34-39.

[23] Wang, M.X., Bandara, K.Y., Pahl, C. (2009). Integrated constraint violation handling
for dynamic service composition. Proc. IEEE International Conference on Services
Computing.

[24] Widom, J. (1995). Research problems in data warehousing. Proceedings of 4th Inter-
national Conference on Information and Knowledge Management.

[25] Zhang, Z. and Yang, H. (2004). Incubating Services in Legacy Systems for Archi-
tectural Migration. Proceedings 11th Asia-Pacific Software Engineering Conference
(APSEC’04). 196-203.

[26] Ziegler, P. and Dittrich, K.R. (2007). Data Integration - Problems, Approaches, and
Perspectives. In J. Krogstie, A.L. Opdahl and S. Brinkkemper: Conceptual Modelling
in Information Systems Engineering. pages 39-58. Springer.

[27] Zhu, Y. (2007). Declarative Rule-based Integration and Mediation for XML Data in
Web Service-based Software Architectures. M.Sc. Thesis. Dublin City University.

[28] Zhu, F., Turner, M., Kotsiopoulos, I., Bennett, K., Russell, M., Budgen, D., Brereton,
P., Keane, J., Layzell, P., Rigby, M. and Xu, J. (2004). Dynamic Data Integration
Using Web Services. Proc. Intl Conference on Web Services ICWS2004.

Claus Pahl is a Senior Lecturer at Dublin City University’s School of Computing, where
he is the leader of the Software and Systems Engineering group. He has graduated from
the Technical University of Braunschweig and has obtained a PhD from the University of
Dortmund. He has published more than 200 papers in various journals, books, conference,
and workshop proceedings. He is on the editorial board of four journals and is a regular
reviewer for journals and conferences in the area of Web and Software technologies. He
is the principal investigator of several research projects in Web software engineering. His
research interests cover a broad spectrum from service- and component technologies in
software engineering to infrastructure and development technologies for Web applications.

Yaoling Zhu has recently finished his postgraduate research at the School of Computing
at Dublin City University with an M.Sc. by Research. Yaoling is a graduate in Computer
Science from the Zhengzhou Institute of Engineering, China. He has extensive experience
in the software sector, working for several years as a senior software engineer for multi-
national companies such as Oracle, where he has been working on e-business outsourcing
and Web service technologies in Oracle’s European Development and Technology Centre.
His research focuses on data integration problems in Web-based software systems.

