
A Computational Field Framework for
Collaborative Task Execution in Volunteer Clouds

Stefano Sebastio
IMT Institute for Advanced Studies

Lucca, Italy
stefano.sebastio@imtlucca.it

Michele Amoretti
Centro Interdipartimentale SITEIA.PARMA,
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Abstract—The increasing diffusion of cloud technologies is
opening new opportunities for distributed and collaborative
computing. Volunteer clouds are a prominent example, where
participants join and leave the platform and collaborate by
sharing their computational resources. The high dynamism and
unpredictability of such scenarios call for decentralized self-* ap-
proaches to guarantee QoS. We present a simulation framework
for collaborative task execution in volunteer clouds and propose
one concrete instance based on Ant Colony Optimization, which
is validated through a set of simulation experiments based on
Google workload data.
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I. INTRODUCTION

The wide adoption of the Cloud technology, in its various
incarnations, is increasing the efforts of the research community
on approaches and techniques to optimize the resource usage.
Usually, cloud service providers arrange their resources in sites
that cooperate within the domain of the same company. How-
ever, new peer-to-peer, decentralized, open-world paradigms
such as the Volunteer Computing [1] are gaining popularity.
Such paradigms envision platforms where, in addition to data
centers, less powerful computational devices participate to share
and use each others’ resources, and are characterized by a
high, unpredictable dynamism (participants may leave and
join at any time) and heterogeneity (participants may share
and need different computational resources). Traditional, global
coordination and optimization techniques can be hardly applied,
which has shifted the attention to the application of agent-
based techniques in cloud computing [2], like Ant Colony
Optimization (ACO) [3] and Spatial Computing [4]. Such
approaches provide flexible and scalable solutions to distributed
computing problems such as collaborative task execution.

We present here a simulation-based framework for collabo-
rative task execution in volunteer cloud computing platforms.
In [5] we proposed a preliminary version of such a framework
that we extend here in several directions. First, we introduce
a distributed data structure called colored computational field
inspired by spatial fields, routing tables and ACO’s pheromone-
based stigmergy which provides a suitable basis for many agent-
based collaborative task execution algorithms (§II). Second,
based on the aforementioned framework, we define a highly
parametrizable ACO-based algorithm (§III). Its main features
are that it offers a decentralized solution characterized by
lightweight ant agents (in terms of behavior and carried

knowledge), that work and exploit the colored computational
field and do not require any additional data structures. In §IV
we report an excerpt of the experimental evaluation of the ACO-
based algorithm, where we assess the performance of various
alternatives and parameters, using the workload described by
the Google Cluster dataset [6]. In §V we discuss the main
sources of inspiration and further related work. Finally, in §VI
we provide some concluding remarks and outline our current
and future research efforts.

All in all, our work provides (i) a flexible framework where
existing or new agent-based algorithms for collaborative cloud
computing problems can be designed and evaluated; (ii) a novel,
highly parametric ACO-based algorithm that we advocate as a
candidate for collaborative task execution problems.

II. COMPUTATIONAL FIELD

We consider a Volunteer Cloud as a network of participants
(called also agents or nodes) that can enter and leave the
system, and can submit and satisfy task execution requests,
subject to QoS requirements. Nodes are equipped with a set
R of computational resources. When a node is not able to
execute his own tasks he needs to find another node able to
do it. This search must take into account that, as in a social
network, the node’s visibility is restricted to its contacts up to a
certain degree, and, at the same time, the amount of time spent
and the messages spread in the network should be minimized.

The main supporting structure of our framework is a colored
computational field, used to facilitate the discovery of nodes
which can satisfy task execution requests.

Definition 2.1 (Colored computational field): Let K be a
set of R+-valued computational pheromones. A K-colored
computational field is a tuple 〈N,E, ρ,Φ〉 such that N is a set
of nodes (representing cloud participants), E ⊆ N ×N is a set
of edges (representing contact relations among participants),
ρ : N → (R+)∗ is a resource map (i.e. a mapping of nodes to
their computational resources), and Φ : E → [0, 1]|K| is the
pheromone table of each edge.

Very often, R ⊆ K, i.e. each element of K correspond
to a computational resource (e.g. RAM, number of cores,
core frequency) but it may also contain other values. In the
examples we shall see, for instance, we will consider the
predicted idle time and also a feedback pheromone. For the
sake of simplicity we assume that all resources are measurable
in R+ (i.e. as non-negative reals). The resource map ρ is
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used to represent each node’s computational resources. The
pheromone table Φ is a mapping of edges into a vector
of [0, 1]-normalized pheromone values. Each value in the
vector is a “pheromone level” value associated to one of the
K computational pheromones and indicates a sort of level
of “goodness” of a connection with respect to the resource.
Obviously, Φ is intended to be implemented as a distributed
table where each entry Φ((i, j)) is maintained at node i. We
often refer to the pheromone k in edge ej with Φk(ej). More
in general we denote with ~xi the i-th element of a vector ~x. We
sometimes refer to the set of edges (i, j) outgoing from a node
i with Ei. The pheromone table can be seen as a sort of routing
table or gradient map [4], used to ease the resource discovery
process while minimizing the need of communication.

III. ACO-BASED ALGORITHM

Several algorithms can be defined on top of a colored
computational field. This section presents a paradigmatic
example of a highly parametric ACO-based algorithm that relies
on the use of ant-like agents that will be in charge of maintaing
and exploiting the computational field. This algorithm relies on
two different types of ants: colored scout ants and hunter ants.
Colored scout ants are in charge of periodically exploring the
neighborhood of a node to discover computational resources
to update the field accordingly. Such ants are specialized by
resources: each color k corresponds to corresponds to one type
of computational resource. Hunter ants act on demand when
a new task execution request is issued and participate in two
ways: exploiting the field to quickly find a volunteer node, and
updating the field according to the received feedback.

Both types of ants are described in detail in §III-A and
§III-B, respectively. However, it is worth to remark one of
their main features: both exploit the computational field to
take their exploration decisions, namely when they are in a
node they choose their next hop with a probabilistic selection
weighted according corresponding level of pheromone. This
(called stigmergy) may eventually lead to an optimal situation
in a static network, but may also suffer (as all ACO based
approaches) from stagnation, specially in dynamic networks.
Stagnation occurs when the ants converge to an apparently
optimal decision, which may prevent the system to adapt to the
emergence of new, better solutions. Our ACO based algorithm
features some standard techniques to prevent stagnation such
as evaporation (pheromones are regularly decreased) as well as
some novel ones such as temperature regulation (the likelihood
of exploring new paths is increased when the network is
updated), memory aging (in analogy with the standard aging,
releasing amount of pheromone inversely proportional to the
distance of the resource) and angry ants (a third kind of agents
that remove pheromones along outdated links).

A. Colored Scout Ants

Colored scouts are spawned periodically in a process that is
independent from the request and execution of tasks. Their goal
is to explore the network and update the pheromone field. Each
ant releases and follows its own pheromone color (k ∈ K).
Listing 1 describes the scout-ant color algorithm through a
pseudo-code. To summarize, each scouting ant explores the
network (line 7) probing the neighborhood goodness going
away from its home node (the one that has spawned it). When
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Fig. 1. Example of memory aging approach for scout ants.

its TTL is exhausted it comes back (line 17) to its source node
releasing the pheromone according the memory aging approach
(line 31). In the following we provide a detailed explanation
of the main features of the algorithm.

Temperature-dependent Exploration & Exploitation . The
behavior on ants can be considered as an online Reinforcement
Learning (RL) approach [7] where at each step the decision
involves a choice among: exploration (try to gather new infor-
mation) and exploitation (focus on the best decision according
the current information). Exploration can be considered as a risk
run by the node, with the hope to obtain better knowledge and
thus make better decisions in the future. A common approach
to face the “exploration-exploitation dilemma” is the use of a
Softmax method [7]. Each ant moves according to the past path
desirability (exploitation) and to the exploration compliance,
according to the following equation:

pk(ej) =
e

Φk(ej)

T∑
∀eqεEi

e
Φk(eq)

T

(1)

where pk(ej) is the probability that the k-colored scout ant at
node i chooses ej as the next hop. According to the Softmax
action selection method, we have chosen the Boltzmann (or
Gibbs) distribution, with a tunable temperature function T , to
choose the next hop probabilistically but taking into account
the expected reward i.e. the probability to find a node willing
to perform a task. The temperature function controls the
exploitation/exploration tradeoff, i.e., if T →∞ the ant tends
to follow a more random approach (all the paths have the
same preference), otherwise if T → 0 the ant follows a greedy
approach which reduces the exploration component.

One of the roles of T is to prevent stagnation. Indeed, if
we choose T to be a monotonically decreasing function with
respect to time, then, as time goes by, it is possible to reduce
exploration and make a more sound use of the knowledge
gathered so far. However, each time a new neighbor connects
to a node i, the T function of i is re-initialized to encourage
the exploration of new resources.

Each ant has an associated TTL (time-to-live), which
establishes the number of hops that an ant must try to do



Listing 1. Colored scout ant algorithm
1 coloredAntStep(ScoutAnt antk){
2 antk.pathAdd(this);
3 antk.pathNest(this.getNestGoodness(k));
4 antk.updateTtl();
5
6 if (antk.getTtlValue()>0){
7 w := antChooseContact(this.neighbors - antk.getPath());
8 if (w!=0){
9 w.coloredAntStep(antk);

10 return;
11 }
12 }
13 l := antk.getStepPrevious(this);
14 l.coloredAntStepBack(antk, this);
15 }
16
17 coloredAntStepBack(ScoutAnt antk, Node from){
18 this.depositColoredPheromone(antk, from);
19 l := antk.getStepPrevious(this);
20 l.coloredAntStepBack(antk, this);
21 }
22
23 depositColoredPheromone(ScoutAnt antk, Node from){
24 p := antk.getMemoryAgingPheromone(this);
25 if ( (p > this.getPheromoneEdge(from)) ||
26 (k != FINISHING_TIME )){
27 this.setPhermoneEdge(p, from);
28 }
29 }
30
31 getMemoryAgingPheromone(Node n){
32 antMemory_trace = pathNest.subList(n.index+1, end);
33 p_best = max(antMemory_trace);
34 mem_aging = | antMemory_trace.getIndex(p_best) - (n.index

+1) |;
35 return p_memoryAging(p_best, mem_aging);
36 }

during its exploration, before returning home, that prevents
endless and unnecessary exploration efforts.

Memory Aging. Scout ants explore the network and record the
nodes’ goodness (or nest value i.e. the resource value associated
to the corresponding color) found during their exploration.
While returning home, a scout releases a pheromone value
ruled by the ant memory aging (to prevent stagnation) and the
node goodness in that part of the network (Listing 1, lines
31-36, getMemoryAgingPheromone(·)). We do not use the
traditional concept of aging, where the ant deposits lesser
and lesser pheromone as they moves from node to node,
because the information that provides the pheromone is in
our setting not only useful for the node where the scout has
been spawned. However, we still want to take into account the
distance between a potential task execution requester and the
node holding the necessary resources. For this purpose, our
memory aging mechanisms releases an amount of pheromone
that is inversely proportional to the distance to the best resource
found so far, and not to the distance between the node from
which the ant has been spawned (as in traditional aging). In
other words, our memory aging mechanism considers what
the ant remembers from the goodness of the best node in
the subsequent portions of the path it has followed. This
can be achieved, for instance, by instantiating the function
p memoryAging(p best, mem aging), Listing 1 in line 35 as
p best− mem aging · AgingFactor, where p best is the
best value found so far, mem aging is the distance to it and
AgingFactor is a discounting factor.

Fig. 1 clarifies the memory aging approach through an
example. The scout ant is spawned at node 0 and follows the

TABLE I. EXAMPLE OF RESOURCES UNDER/OVER UTILIZATION

~x ~y srwr(~x1, ~y1) srwr(~x2, ~y2) crwr(~x, ~y)
〈M,N〉 〈M,N〉 1 1 1
〈M/2, N〉 〈M,N〉 0.5 1 0.75
〈M/2, N/2〉 〈M,N〉 0.5 0.5 0.5
〈0, N〉 〈M,N〉 0 1 0.5

path 0→ 1→ 2→ 3→ 4→ 5 (Fig. 1, top). When the TTL
expires after 5 hops (at node 5) the scout ant returns home
(node 0) as illustrated in Fig. 1, right. In the first step back
the actual value of the resource at node 5 (i.e. 3) is taken into
account (c.f. label in the link from node 4 to 3). Note however,
that in the second step back the edge is labelled with 2.5 and
not 3 as an effect of the aging function. At each step back,
the pheromone on the next link is updated only if its value
is lower than the one the ant would like to assign. Otherwise
the current value is kept. This is the case of the as third step
back (from node 3 to node 2) where the ant would has found
a resource with value 3 but the previous pheromone value is 4
(that may be the result from a previous exploration of some of
the subsequent gray nodes).

Evaporation. In addition to the dynamic temperature and
memory aging mechanisms, we also use the evaporation
technique to deal with stagnation in presence of volatile
resources. The finishing time, for instance, is a volatile resource
measure and its value should be updated frequently. A higher
amount of pheromone is assigned the more the declared
finishing time is closer to the current time. A new pheromone
is released only if the new value is higher to the one previously
released. If instead we would update regardless the best value
previously found, the pheromone values would be highly
variable, providing unstable information.

We consider resources such as RAM, cpu cores and cpu
frequency to be non-volatile since we assume those cannot be
allocated forever but only on short-basis (i.e. to execute tasks).
The main reason for not applying evaporation to non-volatile
resources is that we consider volunteer computing systems
enjoying the stability of peer-to-peer networks (as evidenced
in e.g. [8], [9]). The non-consumable resources of nodes will
appear and disappear with them according to some regularity
so that applying evaporation may be useless.

Angry Ants. Even if the network enjoys the above mentioned
stability, it’s dynamics can however lead to some stagnation
problem. For instance, when a node that caused the update of
the pheromone on several links goes offline, all subsequent task
execution requests on the nodes of those links may follow a
wrong path without finding the desired resources. To deal with
this, we introduce angry ants, which are spawned by scout
ants when they finds an abrupt change in the computational
field. The angry ant follows back the path of the colored scout
ant, and throws away a certain amount of pheromone of the
corresponding color to force the update of the corresponding
pheromone color by future scout ants.

B. Hunter Ants

When a node has a task for which it cannot respect the
deadline, it starts spawning multiple hunter ants. Every hunter
ant has the goal to find a node ready to satisfy the task execution
request. For this purpose the hunter ant starts exploring the



Listing 2. Hunter ant algorithm
1 antStep(Ant ant){
2 ant.pathAdd(this);
3 ant.updateTtl();
4 if (this.askExecutionToNode(ant.getTask())){
5 l := ant.getStepPrevious(this);
6 l.antStepBack(ant, this);
7 } else if (ant.getTtlValue()>0) {
8 w := antChooseContact(this.neighbors - ant.getPath());
9 if (w!=0){

10 w.antStep(ant);
11 return;
12 }
13 }
14 this.antStepBackHome(ant);
15 }
16
17 antStepBack(Ant ant, Node from){
18 this.depositPheromone(ant, from);
19 l := ant.getStepPrevious(this);
20 l.antStepBack(ant, this);
21 }
22
23 depositPheromone(Ant ant, Node from){
24 p := ant.getAgingPheromone(this);
25 this.setPhermoneEdge(p, from);
26 }

network, exploring the computational field and the colored
pheromones and the task characteristics. Task execution requests
are sent to those nodes found by the hunter ants, until one of
them accepts or the hunter ant attempts are exhausted. The
hunter ant brings with it only a task description (with its
functional and not functional requirements) and not the task
itself to minimize the used network

The behavior of hunter ants is sketched in the algorithm
of Listing 2, where the ant contains a task description used to
find the best match (as we shall explain). Each hunter ant tries
to find a node willing to execute the task (4) following the
computational field (8) built according to the overall pheromone
(Eq. 3). If it does not find any node willing to collaborate after
its TTL it returns to the home node. In the following we provide
a detailed explanation of the main features of the algorithm.

A Resource Allocation Heuristic. The global goal of the
system would be to maximize the number of tasks that meet
their deadline. However, the problem is clearly untractable in
a global manner (for instance, even the problem of finding
the best task-node match is well known to be NP-complete)
and would require perfect predictions of future task arrival
times and characteristics, which is totally unrealistic in open
environment such as volunteer clouds, where tasks requests
and nodes participating in the network change over time.
Therefore, hunter ants use local heuristics based on the idea that
minimizing wasted resources (the ones that are reserved but not
used completely) will increase the probability to accommodate
more requests in the future. These heuristics rely on a single
resource waste ratio function srwr and a combined resource
waste ratio function crwr , defined in Eq. 2. Note that the
latter uses a vector η of size |~x| that allows one to express
preferences among resources.

srwr(x, y) =
min(x, y)

max(x, y)
crwr(~x, ~y) =

∑
∀k∈1..|~x|

ηk · srwr(~xk, ~yk)∑
∀σ∈1..|~x| ησ

(2)

These functions are exemplified in the example of Table I,
where only two types of resources are taken into account and
both have the same weight (η1 = η2 = 1). The first example is
the best match, where required resources ~x perfectly matches
the provided resources ~y. In the rest of the scenarios, we have a
mismatch that is due to under/over resource utilization. Smaller
values of crwr suggest higher degree of mismatch among
requested and provided resources.

Weighting links. Such heuristic functions are used to associate
goodness values to links. For this purpose we also use a
function Φ(t) that provides the pheromone vector of a task
t obtained applying the same functions used by scout ants.
Then the goodness of a link e will be based on the value of
crwr(Φ(e),Φ(t))). The idea is that task requirements that are
closer to the available ones are preferable. For a single color
the optimal value is given single resource wasted ratio tends to
1, while the worst case is when resources are reserved but not
completely used by the task and the function tends to 0. In the
rest of the cases, for each component single resource component
k we obtain Φk(t)/Φk(e) when the resource is under-used, or
Φk(t)/Φk(e) when the resource is over-used.

Pheromone Release. When a hunter ant finds a node willing
to perform a task, it releases its own type of pheromone which
serves to record a measure of the node’s availability to execute
remote task, its network stability and also its load. The node’s
willingness to perform tasks can be regarded as a reputation
assigned to the node and is subject to pheromone aging and
evaporation to take into account the lost of knowledge about
the node behavior (i.e. its load and its willingness to accept
remote tasks). At each step a hunter ant computes an overall
pheromone value for an edge e according to Eq. 3.

Ψ(e, t) = crwrα(e, t) · Φβft(e) · Φ
γ
h(e) · λδ(e, t) (3)

where Φft is the pheromone value associated to the node’s
finishing time, Φh is the feedback pheromone released by the
hunter ants, and λ(e, t) ∈ R+ is a heuristic measure which
evaluates the estimated performance of link e for a task like t,
in terms of data rate and delay perceived in the last interaction
along e. This measure takes into account the network overhead
for transferring the task to the node that will execute it. The
α, β, γ and δ parameters are used as tunable weights for the
components of the equation. The above each components are
normalized in the range [0, 1].

Exploration. Unlike the function antChooseContact(·) used
by the colored ants, hunter ants combine all types of pheromone
colors (Listing 2, line 8). However, the probability to choose
link e′ as the next hop is computed in a similar manner:

ph(e′, t) =
e

Ψ(e′,t)
T∑

∀e′′∈Ei
e

Ψ(e′′,t)
T

(4)

IV. SIMULATION

We evaluated our ACO-based instance of the framework
using a volunteer cloud computing scenario (§IV-A) modeled
in the discrete event simulator DEUS [10], [11]. We ran all the
experiments on a laptop equipped with a 2.0 Ghz Quad Core
CPU and 16 GB of RAM.



TABLE II. NODE ATTRIBUTES

type CPU freq. cores RAM Nodes
Volunteer 1− 2 GHz 1− 6 0.1− 2 GBs 100− 3, 000
Data Center 1− 3 GHz 2− 32 2− 6 GBs 7

A. Simulated Scenario

We describe here the main characteristics of the scenario
used in the experiments.

The network includes 10 cloud sites, among which 7 are
managed by data centers and the others are purely P2P. The
specification of the nodes’ resources is reported in Table II.
Volunteer nodes are less computationally powerful since they
correspond to mobile devices such as laptops. We consider
different cloud configurations which differ in the number of
participating volunteer nodes (from 100 to 3, 000), each one
belonging to one cloud site. Every site is managed by a
supernode that can be run on top of a data center or a volunteer
node. The overlay network is semi-hierarchical with supernodes
that have connections with peers of other sites and normal nodes
that have connections only in the same site. Each node joining
the network notifies its status (online, going offline) to the
corresponding supernode and receives a list of neighbors (a
random subset of the volunteer nodes in the same site).

Each node acts both as task producer and consumer. Nodes
share their resources to address tasks execution requests coming
from other nodes but can also create requests for their tasks.
We consider that nodes execute tasks in exclusive application
environments, allocating for this purpose a Virtual Machine
(VM) with the necessary resources that is released when the
task completes its execution. A task is accepted for execution
by a node only if the latter is able to guarantee its completion
within its deadline, otherwise the task is discarded. A completed
task marks a hit for the node on which it has been executed.
The cost of communication is calculated assuming one of
the simple yet realistic models of underlying communication
network described in [12].

As workload model we consider the Google Cloud Back-
end [6] described in [13]. There the tasks requirements are
characterized by their duration, CPU requirements and main
memory. Since the data provided in [6], [13] contains some
obfuscated information we have done some assumptions, more-
over we have assumed a QoS (Quality of Service) parameter
defined by a deadline (more restrictive for the small tasks) after
which the task execution is considered useless. Tasks attributes
are reported in Table III.

The task arrival model is described [13]. More precisely,
it considers that task arrivals can be modeled by a Markovian
processes, i.e. the inter-arrival time between two consecutive
tasks can be modeled as an exponential random variable with
mean value equal to 600 ms for large tasks and 200 ms for
small tasks. From a queue theoretic point of view, the simulated
scenario can be seen as a queue model where data center nodes
are modeled as M/G/m/ +∞ queues, while the volunteer
nodes are modeled as M/G/1/+∞ queues. I.e. task arrival
is modeled as generic Markovian (M ) process (Poisson in our
case); the task service time follows a generic (G) distribution;
we consider the presence of 1 VM in each volunteer node and
m VMs in data centers; and task queues are unbounded (+∞).

TABLE III. TASK ATTRIBUTES

type duration Cores RAM Deadline Arrival
offset mean

small 0− 0.4 h 1 0− 0.5 GBs 0.2 200 ms
large 1− 12 h 1− 4 1− 4 GBs 0.4 600 ms

The duration of the simulated scenario is of 1 hour, with a
granularity of ten milliseconds.

B. Instantiated ACO Algorithm

As we have seen (§III), our ACO-based algorithm is highly
parametric. The actual configuration used in the reported
experiment can be specified in specific XML configuration
files. For instance, Listing 3) shows the configuration corre-
sponding to scout ants colored by finishing time. Some of
the configuration parameters of the algorithm are functions
(i.e. releasing, aging and temperature) for which the current
implementation considers several possibilities (constants, linear
or exponential functions, user-specified functions, etc.).

In the experiments, the three resource scout ants are
configured with: ttl = 3, initial pheromone = 1,
depositing function = x, aging function = −0.2·x+1,
and constant temperature = 1. The finishing time scout
ants differs in the pheromone deposit function that must be
decreasing (to assign more pheromone when the finishing time
is closer to the actual time), thus it is configured with −0.2∗x+1
and with a constant evaporation rate of 0.0001. Scout ants are
spawned with a period of 50 seconds. Hunter ants are instead
configured with 3 attempts for each task (hunting efforts before
giving up), pheromone deposit function equal to −x+1, weight
for each kind of pheromone (used in Eq. s 3) equal to 1 and
constant temperature value equal to 1.

C. Evaluated performance indices

Our simulator allows us to measure a large set of perfor-
mance indices. We focus here on a small subset of them, that
we consider particularly significant to evaluate the goodness of
our algorithm in terms of the QoS perceived, communication
overhead and fairness (load balance). In particular, we will
report here: (i) Hit plus running rate: the relative amount of
tasks that have completed (satisfying their deadline) or are still
running (they will certainly be completed if the node that have
taken it in charge does not go offline); (ii) Useless message rate:
the relative amount of refused requests over the total number
of sent requests, indicating the overhead of the requests sent
to overloaded nodes; (iii) Mean task Waiting time: the time
that a task spends before that its execution starts; (iv) Mean
task Sojourn time: the time that a task spends in the network,
measured as the Waiting plus the Execution times.

D. Results

We evaluated the impact of scout ants, by varying the
number of volunteer nodes participating in the network.

Apart from the basic common configuration we described
above, it is worth mentioning that every node uses ants
configured with exactly the same behavior. We performed
parametric simulations, to study the behavior of the system
for different number of participating volunteer nodes. In the



Listing 3. Colored scout ant configuration
1 <aut:event id="coloredAntFinishingTime" handler="it.imtlucca

.aco.ColoredAntEvent" >
2 <aut:params>
3 <aut:param name="hasSameAssociatedNode" value="true" />
4 <! const = a, line = b ∗ x+ a, exp = a ∗ eb∗x + c -->
5 <aut:param name="antColor" value="finishingTime" />
6 <aut:param name="initPheromone" value="1" />
7 <aut:param name="ttl" value="3" />
8 <aut:param name="pheromone_a" value="1" />
9 <aut:param name="pheromone_b" value="-0.2" />

10 <aut:param name="ant" value="line" />
11 <aut:param name="evaporation" value="0.0001" />
12 <aut:param name="pheromoneAging_a" value="1" />
13 <aut:param name="pheromoneAging_b" value="-0.2" />
14 <aut:param name="agingFunc" value="line" />
15 <aut:param name="temperature_a" value="1" />
16 <aut:param name="temperatureFunc" value="const" />
17 </aut:event>

following we refer to the average results obtained after reaching
a 95% Confidence Interval with a radius of 0.001 evaluated
with the Student’s t-test. Typically, tenths of simulations are
needed, each taking several hours.

The conducted experiments have the aim of evaluating the
impact of scout ants in the algorithm behavior. It is worth to
remark that the algorithm can run without those ants by solely
relying on the feedback pheromone collected by hunter ants.
These experiments show that scout ants significantly improve
the algorithm’s performance in several dimensions.

In Fig. 2 (left), 3 (left) and 3 (right) we report the Hit
+ Running Rate for all, large, and small tasks, respectively.
The values are plotted considering the number of participating
volunteer nodes on the horizontal axis. Obviously, the higher
the number of nodes, the better the performance of the system
is in terms of Hit + Running Rate. The overall number of
performed tasks is acceptable considering that the number of
participating nodes is very limited.

In Fig. 2 (right) we report the Rate of Refused Requests for
Remote Execution. As one might expect the number of refused
requests is lower, when the number of nodes increases. Scout
ants allow a faster reduction in the refused requests thanks to
the knowledge about resources availability introduced by them
in the computational field.

Due to lack of space the other performance indices results
are only briefly commented. With a low number of nodes the
knowledge added by the scout ants and the mismatch policy
followed in Eq. 2 tends to favor large tasks to data center nodes
leading to an increased waiting and sojourn times for small
tasks and to a lower execution rate for the latter. Thus large
tasks become a bottleneck for small ones. Scout ants provide
almost linear scaling of executed tasks increasing the number
of nodes.

Scout ants allow an increase in the remote requests accepted
and the load is better spread among the nodes able to execute
the tasks. The only drawback is perceived in the increased
waiting and sojourn times due to the bottleneck created by the
large tasks.

V. RELATED WORK

The ACO approach was firstly proposed by Di Caro and
Dorigo [14] to address the routing problem with their AntNet

algorithm. There each artificial ant builds a path from source
to destination. While building the path, ants collect explicit
information about the time length of the path components and
implicit information about the load status of the network. Our
algorithm is largely inspired on this approach but is different
of course due to the different problems being solved (routing
vs. collaborative task execution).

Another of our sources of inspiration is the comprehensive
survey on approaches to network routing and load-balancing
based on ACO of Sim et al [15]. The authors stress the main
weakness of ACO based approaches, namely stagnation and
focus on the many strategies that have been developed to deal
it. In addition to the ones featured by our algorithm (namely
evaporation and aging) they consider pheromone smoothing
(reinforcing of pheromone), pheromone limiting (setting upper
bounds on the amount of deposited pheromone), privileged
pheromone laying (a privileged set of ants may release more
pheromone than the rest) and pheromone-heuristic control (the
choice of ants is a weighted combination of the amount of
pheromone and the estimate of a heuristic). Such techniques
can be of course implemented and evaluated in our framework.

Some authors have tried to adopt existing ACO-based
approaches to solve load balancing problems in task distribution
systems (see e.g. [16]–[18]). Many of them apply the basic
minmax algorithm proposed in [14]. Unfortunately, such works
do not describe their algorithms in sufficient detail so that
we could not implement and evaluate them in our framework.
However, we discuss some of their main concepts.

Mishra [16] proposed a simple ACO approach to deal with
the load balancing problem intended as the fact that every
node does approximately the same amount of work at any
instant of time. The ACO algorithm proposed in [16] is a
dynamic load balancing algorithm based only on the current
state of the system, thus no prior knowledge is needed. Each
node is configured with its capacity, its probability of being a
destination, and its pheromone (or probabilistic routing) table
that plays a role similar to our computational field. Each row of
the pheromone table is a routing preference for each destination
and each column represents the probability of choosing a
neighbor as the next hop. Ants are launched from a node
with a random destination to feed the information of the
table. When an ant reaches a node whose pheromone table is
empty, it makes a random decision. An extended version of
this algorithm considers the presence of multiple ant colonies
with the sole purpose of reducing the likelihood that all mobile
agents establish the same connection. In our opinion their
approach is suitable to solve load balancing in network routing
problems but not for collaborative task execution in volunteer
clouds since the ant’s decision does not take into account the
task QoS requirements.

LBACO (Load Balancing Colony Optimization) [17] is
an extension of the basic ACO algorithm of [14]. LBACO
not only tries to find the optimal resource allocation for each
task, but also to minimize the makespan of a given task set,
adapting to the dynamic cloud computing system and balancing
the entire system load. The makespan is defined as the time
difference among the task that completes first and the one
that complete last in a task set. The basic ACO algorithm
is extended, by carrying out new task scheduling depending
on the results in the past scheduling and also considering
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Fig. 2. Hit + Running Rate (left), and Rate of Refused Requests for Remote Execution (right) of the tasks, with and without scout ants.
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Fig. 3. Hit + Running Rate of large (left), and small (right) tasks, with and without scout ants.

the load of each VM. The algorithm takes into account VM
characteristics like: the number of processors available in each
VM, its MIPS (Million Instruction Per Second) capability
and the communication bandwidth. The LBACO algorithm
is evaluated through simulation, comparing it with basic FIFO
and ACO algorithms, in terms of the average makespan and the
Degree of Imbalance (a measure of imbalance among VMs).
Our work has a different purpose: it considers only individual
tasks, that have an associated deadline parameter, and tries
to maximize the number of tasks completed respecting their
QoS requirements. The LBACO cannot be directly applied
for collaborative task exception in volunteer clouds since it
assumes that each node knows all the resources available in
the neighbors nodes, which is unrealistic in those scenarios.

The idea of colored ants was previously presented in a
completely different way by Ali and Belal [18]. They consider
a multiple colony approach, where each node sends a colored
colony throughout the network. Using colored ant colony helps
in preventing ants of the same nest from following the same
route, and hence enforcing them to be distributed all over the
nodes in the network. One of the main difference with respect
to our work is that their ants tend to maximize the coverage
of the network (exploration), while the strategy of our scout
ants can be configured with a certain exploration-explotation
tradeoff according to the softmax method (cf. Eq. 1).

Our hunter ants share many similarities with the spatial
computing paradigm [4]. The use of decentralized approaches
for managing Grid resources in a P2P fashion through a spatial
computing approach was first tackled by [19] where a job
resource request is defined by a capsule characterized by
mass and energy that follows a three-dimensional surface. The
surface is built on top of the overlay network (where the
nodes define the X-Y plane) and the available node’s resource
characterize their mass (adding the Z dimension). The capsule
moves according two functions that define: the difference of
potential among neighbors nodes (and then the capsule behavior
according its remaining energy) and the friction that causes a
loss of energy of the capsule (and thus ensures termination).
This approach takes into account only one type of resource
defining the surface. In our ACO algorithm the hunter ants
follow an approach which can be considered an extension of
the one proposed by [19]. Each scout ant releasing its colored
pheromone contributes to the construction of a surface where
the values are not associated to the node itself but to the link.
Moreover task requests do not have their own mass but specify
how they reacts on different surfaces. Hunter ants are able
to combine these colored surfaces building a new “surface
normalized” (Eq. 2) to the task requests and to the importance
of each kind of resource (through the weights ηk). In our
algorithm the Z dimension is given by the under/over utilization
of resources since our approach tries to minimize the amount



of resources reserved and not used by the task. This surface
normalization process aims to combine the different surfaces
generated by the pheromone colors and at same time it is able
to take into account one of the ant goals (the minimization of
task wasted resources). Hunter ants behave similarly to task
capsules since their next hop choice is guided by this surface.
The links that prove to be more attractive to the combined
colored pheromone will present a higher gradient, guiding the
hunter towards it. Differently to a traditional spatial computing
approach hunter ants do not have their own energy that must
be exhausted to stop the exploration. Hunter ants adopt a more
clever approach stopping when they find a suitable node that
can fulfill their requests. This ensures to find a solution in
less time, that seems to be a more realistic approach in an
environment where tasks can have stringent deadlines. The
algorithm termination is ensured by the ant’s TTL.

VI. CONCLUSIONS AND FUTURE WORK

Our paper presents to main novel contributions. First, it
presents a flexible framework where existing or new agent-based
algorithms for collaborative cloud computing problems can be
designed and evaluated. The key feature of the framework is a
shared data structure called computational colored field inspired
by Ant Colony Optimization [3] and Spatial Computing [4].
Overall, the framework is also inspired by the volunteer
computing [1] and cloud using agents paradigms [2]. The
proposed a general framework can be easily instantiated in
different ways to better fit the characteristics of the considered
scenario.

Second, inspired by previous ACO and spatial computing
based approaches to distributed computing problems (e.g. [14]–
[19]), we have presented an instance of the framework in the
form of a novel, highly parametric ACO-based algorithm that
we advocate as a candidate for collaborative task execution
problems. The proposed ACO approach is self-adaptive which
makes it suitable for dynamic scenarios such as volunteer
clouds, where nodes can join and leave the network at any
time. The benefits of the algorithm can be summarized by its
decentralized and self-* nature together with a light network
overhead introduced by ants. The proposed algorithm was
evaluated with a set of simulation-based experiments using
workload data from Google [6], [13].

As future work we plan to evaluate further features of
our algorithm, with a particular attention to the novel anti-
stagnation mechanisms we have proposed, namely angry ants
and memory aging. Moreover, we plan to investigate and
analyse mechanisms to deal with heterogeneous ants (each
having a different behavior).
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