5,241 research outputs found

    A methodology for determining optimum microwave remote sensor parameters

    Get PDF
    There are no author-identified significant results in this report

    Lunar Observer Laser Altimeter observations for lunar base site selection

    Get PDF
    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and will allow for direct quantification of critical slopes, heights, and depths of features visible in images of potential lunar base sites

    Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States

    Get PDF
    In the U.S., a dedicated system of snow measurement stations and snowpack modeling products is available to estimate the snow water equivalent (SWE) throughout the winter season. In other regions of the world that depend on snowmelt for water resources, snow data can be scarce, and these regions are vulnerable to drought or flood conditions. Even in the U.S., water resource management is hampered by limited snow data in certain regions, as evident by the 2011 Missouri Basin flooding due in large part to the significant Plains snowpack. Satellite data could potentially provide important information in under‐sampled areas. This study compared the daily AMSR‐E and SSM/I SWE products over nine winter seasons to spatially distributed, modeled output SNODAS summed over 2100 watersheds in the conterminous U.S. Results show large areas where the passive microwave retrievals are highly correlated to the SNODAS data, particularly in the northern Great Plains and southern Rocky Mountain regions. However, the passive microwave SWE is significantly lower than SNODAS in heavily forested areas, and regions that typically receive a deep snowpack. The best correlations are associated with basins in which maximum annual SWE is less than 200 mm, and forest fraction is less than 20%. Even in many watersheds with poor correlations between the passive microwave data and SNODAS maximum annual SWE values, the overall pattern of accumulation and ablation did show good agreement and therefore may provide useful hydrologic information on melt timing and season length

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974

    JPL bibliography 39-12 - Prerelease for December 1970

    Get PDF
    Bibliography of technical reports on scientific and engineering studies, December 197

    Earth resources: A continuing bibliography with indexes (issue 58)

    Get PDF
    This bibliography lists 500 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1988. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Earth resources, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 541 reports, articles and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Artificial dielectric devices for variable polarization compensation at millimeter and submillimeter wavelengths

    Get PDF
    Variable polarization compensation has been demonstrated at 100 GHz. The device consists of two interlocking V-groove artificial dielectric gratings that produce a birefringence that varies with the separation distance. A maximum retardance of 74/spl deg/ has been obtained experimentally in a silicon device, in good agreement with rigorous coupled-wave computer simulations. Further simulations predict that adding quarter wave dielectric antireflection (AR) coatings to the outer surfaces of the device can reduce the insertion loss to below 4 dB. The use of rectangular grooved gratings provides increased retardance and reduced loss. It is predicted that a coupled device with rectangular grooved gratings will be capable of maximum retardance in excess of 180/spl deg/, with low insertion loss (<0.6 dB). The sensitivity of the wave retardation as a function of mechanical separation has a peak value of 485/spl deg//mm. The design and micromachining fabrication techniques scale for operation at submillimeter wavelengths

    Thermal infrared remote sensing of surface features for renewable resource applications

    Get PDF
    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications
    corecore