169,793 research outputs found

    WISP information display system user's manual

    Get PDF
    The wind shears program (WISP) supports the collection of data on magnetic tape for permanent storage or analysis. The document structure provides: (1) the hardware and software configuration required to execute the WISP system and start up procedure from a power down condition; (2) data collection task, calculations performed on the incoming data, and a description of the magnetic tape format; (3) the data display task and examples of displays obtained from execution of the real time simulation program; and (4) the raw data dump task and examples of operator actions required to obtained the desired format. The procedures outlines herein will allow continuous data collection at the expense of real time visual displays

    Energy-based model of a solar-powered pumped-hydro storage system

    Get PDF
    This document presents a port-Hamiltonian model of a pumped-hydro storage system, using Photo Voltaic energy as the primary source. MATLAB simulation results show that the model is functional under ideal conditions of constant solar radiation. It also graphically demonstrate the relationship between input solar power and the accumulation of energy at the upper reservoir. This work is a fundamental step towards a tool for the analysis and design of optimized and fully automated system

    Current state and requirements in components and energy systems databases

    Get PDF
    With the objective to develop a suitable database for the Design4Energy (D4E) workspace, the requirement identification of the component and energy system database started from the analysis of the existing database solutions. The classification, evaluation and analysis of the state of the art of the BIM and energy efficiency oriented database have inspired the requirement identification and also the approach, concept and functionalities design in T3.2. This document then identifies the major related stakeholders of the envisioned platform and project outputs. Taking into account the project objectives and the interests of the analysed stakeholders, this report brings the requirement for simulation outputs which could help the end users or architects to understand the energetic performance of their on-going design, IT requirements in architecture, data structure and interface, as well as the operation and maintenance issues. As another main focus of this document, components and energy systems database (DB) are detailed described. It defines and recommends the parameters for different building components such as wall, roof, floor, windows and doors, lighting system, renewable energy system and HVAC components such as heat pump, boiler, energy storage and distribution. During the research of the database requirement, interviews, questionnaire, literature review, internal discussions with partners and energy experts, investigation of the simulation software and BIM technologies have been the main data sources. The key information presented within this document can be summarised as follows: · Objectives and vision of the component and energy system database. · Analysis of existing database solutions. By classifying the current practices into three categories: construction material database, component database and others such as building type database, different technologies and platforms are analysed. · Identification and analysis of the major stakeholders related to the D4E scope. · Questionnaire design and the collected results · Database requirement in system architecture, interoperability, data structure, user interface and user management. · Database requirement description of the simulation outputs, specifying the interesting data which could help the end users to understand their on-going building design. · Database requirement description of the operation and maintenance related issues. · Database requirement description of building components, including envelope (wall, covers/roof, floor), window and door. The recommended parameters are given in table format. · Database requirement description of energy systems, focusing on the subcategories like lighting system, renewable energy, heat pump, boiler, energy storage and distribution, in each subcategory, requirements for specific technologies are described. Introduction of the strengths and weaknesses of the latest and popular technologies is also included in appendices

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    MOLNs: A cloud platform for interactive, reproducible and scalable spatial stochastic computational experiments in systems biology using PyURDME

    Full text link
    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools, a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments

    Specifications for modelling fuel cell and combustion-based residential cogeneration device within whole-building simulation programs

    Get PDF
    This document contains the specifications for a series of residential cogeneration device models developed within IEA/ECBCS Annex 42. The devices covered are: solid oxide and polymer exchange membrane fuel cells (SOFC and PEM), and internal combustion and Stirling engine units (ICE and SE). These models have been developed for use within whole-building simulation programs and one or more of the models described herein have been integrated into the following simulation packages: ESP-r, EnergyPlus, TRNSYS and IDA-ICE. The models have been designed to predict the energy performance of cogeneration devices when integrated into a residential building (dwelling). The models account for thermal performance (dynamic thermal performance in the case of the combustion engine models), electrochemical and combustion reactions where appropriate, along with electrical power output. All of the devices are modelled at levels of detail appropriate for whole-building simulation tools
    corecore