4,404 research outputs found

    Design of miniaturized sensors for a mission-oriented uav application: A new pathway for early warning

    Get PDF
    In recent decades, the increasing threats associated with Chemical and Radiological (CR) agents prompted the development of new tools to detect and collect samples without putting in danger first responders inside contaminated areas. A particularly promising branch of these technological developments relates to the integration of different detectors and sampling systems with Unmanned Aerial Vehicles (UAV). The adoption of this equipment may bring significant benefits for both military and civilian implementations. For instance, instrumented UAVs could be used in support of specialist military teams such as Sampling and Identification of Biological, Chemical and Radiological Agents (SIBCRA) team, tasked to perform sampling in contaminated areas, detecting the presence of CR substances in field and then confirming, collecting and evaluating the effective threats. Furthermore, instrumented UAVs may find dual-use application in the civil world in support of emergency teams during industrial accidents and in the monitoring activities of critical infrastructures. Small size drones equipped with different instruments for detection and collection of samples may enable, indeed, several applications, becoming a tool versatile and easy to use in different fields, and even featuring equipment normally utilized in manual operation. The authors hereby present the design of miniaturized sensors for a mission-oriented UAV application and the preliminary results from an experimental campaign performed in 2020

    Design of Miniaturized Sensors for a Mission-Oriented UAV Application: A New Pathway for Early Warning

    Get PDF
    In recent decades, the increasing threats associated with Chemical and Radiological (CR) agents prompted the development of new tools to detect and collect samples without putting in danger first responders inside contaminated areas. A particularly promising branch of these technological developments relates to the integration of different detectors and sampling systems with Unmanned Aerial Vehicles (UAV). The adoption of this equipment may bring significant benefits for both military and civilian implementations. For instance, instrumented UAVs could be used in support of specialist military teams such as Sampling and Identification of Biological, Chemical and Radiological Agents (SIBCRA) team, tasked to perform sampling in contaminated areas, detecting the presence of CR substances in field and then confirming, collecting and evaluating the effective threats. Furthermore, instrumented UAVs may find dual-use application in the civil world in support of emergency teams during industrial accidents and in the monitoring activities of critical infrastructures. Small size drones equipped with different instruments for detection and collection of samples may enable, indeed, several applications, becoming a tool versatile and easy to use in different fields, and even featuring equipment normally utilized in manual operation. The authors hereby present the design of miniaturized sensors for a mission-oriented UAV application and the preliminary results from an experimental campaign performed in 2020

    Alaska University Transportation Center 2012 Annual Report

    Get PDF

    Research on improving maritime emergency management based on AI and VR in Tianjin Port

    Get PDF

    Design and implementation of UAV performance validation system

    Get PDF
    Abstract. This thesis aims for design and implementation of a system for drone performance measurements, which can be used for validation of different drones for research projects accordingly. Additionally, the device should be able to be used as a part of a hardware-in-loop -system with simulators in drone research. The primary goal for this thesis is to build a system which helps to document different drone properties efficiently and safely. This is done with a system that consists of a robust frame, a force and torque measuring transducer, a drone stabilizing unit, a data logging system, and a remote-control power supply. For controlling the system, user interface was created to control the data stream, the drone stabilizing unit, and the power supply. This thesis includes a literature review of drone general classification properties and legal regulations. Short review of drone usage and selection criteria in industry and research is conducted, as well as in-depth review of the drone components and their relation to overall performance of the drone. The thesis also contains literature review of force and torque measuring theory, and other drone performance measuring units. The functionality of the designed unit is tested by building a drone from spare components, and valuating its performance based on e.g., lift generation, power consumption and visual behavior of the drone. Measured data is documented, and with the documents, drone’s suitability for future research projects can be assessed. According to the results, the unit can be used to evaluate drone’s performance, and groundwork for Hardware-in-loop simulator connection for drone research. The testing unit and the data recordings as well as the built testing drone stays within the research facility for further development.UAV testausjärjestelmän suunnittelu ja toteutus. Tiivistelmä. Tässä diplomityössä suunnitellaan ja valmistetaan droonien suorituskykyä mittaava tutkimuslaitteisto, jonka avulla voidaan arvioida erilaisten droonien soveltuvuutta tutkimusprojekteihin tapauskohtaisesti. Työssä tavoitellaan helppokäyttöistä järjestelmää, jonka avulla itse tehtyjen droonien ominaisuuksia voidaan dokumentoida turvallisesti ja tehokkaasti. Työssä perehdytään droonien luokitteluun tutustumalla voimassa oleviin säädöksiin, sekä droonin suorituskykyä kuvaaviin ominaisuuksiin. Työssä tarkastellaan droonien käyttöä eri aloilla arvioiden esiin nousseita droonin valintaperusteita ja ominaisuuksia. Tämän jälkeen tutustutaan droonien rakenteeseen ja ominaisuuksiin. Voiman mittauksen teoriaan sekä kehitettyihin mittausmenetelmiin tutustutaan tukemaan anturivalintaa. Suunniteltu järjestelmä koostuu tukevasta rungosta, voiman mittaukseen soveltuvasta anturista, droonin vakauttamisen kokonaisuudesta, datan keräysjärjestelmästä sekä etäohjattavasta virtalähteestä. Laitteiston ohjaukseen luotiin rajapinta, jonka kautta järjestelmää voidaan hallita. Järjestelmän toimivuus todettiin kahdella mittauskäyttöön soveltuvalla droonilla, joiden suorituskykyä arvioitiin droonien ominaisuuksien, sekä visuaalisen käyttäytymisen avulla. Mittauksien tulokset dokumentoitiin, ja dokumentaation perusteella voidaan arvioida sekä tutkimuslaitteiston toimivuutta, että mitattujen droonien soveltuvuutta tulevissa tutkimusprojekteissa. Mittausten perusteella voidaan todeta laitteen soveltuvan droonien suorituskyvyn mittaamiseen, sekä pohjatyöksi simulaattorikytkentään. Mittalaitteisto sekä mittaustulokset jäävät Biomimetiikka ja älykkäät järjestelmät -tutkimusyksikön käyttöön droonitutkimuksen tueksi

    Applications of wireless sensor technologies in construction

    Get PDF
    The construction industry is characterised by a number of problems in crucial fields such as health, safety and logistics. Since these problems affect the progress of construction projects, the construction industry has attempted to introduce the use of innovative information and communication technologies on the construction site. Specific technologies which find applicability on the construction site are wireless sensors, and especially radio-frequency identification (RFID) technology. RFID tagging is a technology capable of tracking items. The technology has been applied on the construction site for various applications, such as asset tracking. There are many problems related to health, safety and logistics on the construction site which could be resolved using RFID technology. In the health and safety field, the problems which exist are the monitoring of dangerous areas on the construction site, such as large excavation areas, the collisions between workers and vehicles, between vehicles and equipment and between vehicles, the detection of hazardous substances on the construction site when the construction work has been completed and the collection of hazard notifications from specific areas of the construction site as feedback for the prevention of future accidents. In the logistics field, the tracking of a material during its delivery on the construction site, its transportation to specific subcontractors and its future utilisation as well as the monitoring of the rate of use of materials on the construction site, the checking of the sequence of steel members and the monitoring of the temperature of porous materials are issues which can be realised using RFID technology. In order to facilitate the use of RFID technology for the specific health, safety and logistics problems, a system has been developed. The operation of this system is based on the combined use of hardware and software elements. The hardware elements of the developed system are a wireless local area network, RFID readers and tags. Its software elements are a software development kit based on which, a number of graphical user interfaces have been created for the interaction of the users with the REID tags, and Notepad files which store data collected from REID tags through the graphical user interfaces. Each of the graphical user interfaces is designed in such a way so that it corresponds to the requirements of the health, safety or logistics situation in which it is used. The proposed system has been tested on a simulated construction site by a group of experts and a number of findings have been produced. Specifically, the testing of the proposed system showed that RFID technology can connect the different stages which characterise the construction supply chain. In addition, it showed the capability of the technology to be integrated with construction processes. The testing of the system also revealed the barriers and the enablers to the use of RFID technology in the construction industry. An example of such a barrier is the unwillingness of the people of the construction industry to quit traditional techniques in favour of a new technology. Enablers which enhance the use of RFID technology in the construction industry are the lack of complexity which characterises the operation of RFID tagging and the relatively low cost of RFID tags. In general, RFID technology is an innovative sensor technology which can help the construction industry through its asset tracking ability. However, further research should be done on the improvement of RFID technology on specific characteristics, such as its inability to provide location coordinates and the resilience of the electromagnetic signal emitted by the RFID reader when there are metallic objects around the reader

    Study on emergency response mechanism and treatment technology of LNG releasing on/under water

    Get PDF

    Ancient and historical systems

    Get PDF
    corecore