16 research outputs found

    Modelling a viscoelastic gymnastics landing mat during impact

    Get PDF
    Landing mats that undergo a large amount of area deformation are now essential for the safe completion of landings in gymnastics. The objective of this study was to develop an analytical model of a landing mat that reproduces the key characteristics of the mat-ground force during impact with minimal simulation runtime. A force plate and two high-speed video cameras were used to record the mat deformation during vertical drop testing of a 24 kg impactor. Four increasingly complex point mass spring-damper models, from a single mass-spring-damper system, Model 1, through to a 3 layer mass-spring-damper system, Model 4, were constructed using Matlab to model the mat’s behaviour during impact. A fifth model compromised of a 3 layer mass-spring-damper system was developed using visual Nastran 4D. The results showed that Models 4 and 5 were able to match the loading phase of the impact with simulation times of less than one second for Model 4 and 28 seconds for Model 5. Both Models 4 and 5 successfully reproduced the key force time characteristics of the mat-ground interface, such as peak forces, time of peak forces, inter-peak minima and initial rates of loading and could be incorporated into a gymnast-mat model

    Simulation levels of detail for plant motion

    Full text link
    In this paper we describe a method for simulating motion of realistically complex plants interactively. We use a precomputation stage to generate the plant structure, along with a set of simulation levels of detail. The levels of detail are made by continuously grouping branches starting from the tips of the branches and working toward the trunk. Grouped branches are simulated as single branches that have similar simulation characteristics to the original branches. During run-time, we traverse the plant and determine the allowable error in the simulation of branch motion. This allows us to choose the appropriate simulation level of detail and we provide smooth transitions from level to level. Our level of detail approach affects only the simulation parameters, allowing geometry to be handled independently. Using this method we can significantly improve simulation times for complex trees

    Multilinear motion synthesis with level-of-detail controls

    Get PDF
    Interactive animation systems often use a level-of-detail(LOD) control to reduce the computational cost by eliminatingunperceivable details of the scene. Most methodsemploy a multiresolutional representation of animationand geometrical data, and adaptively change the accuracylevel according to the importance of each character.Multilinear analysis provides the efficient representation ofmultidimensional and multimodal data, including humanmotion data, based on statistical data correlations. Thispaper proposes a LOD control method of motion synthesiswith a multilinear model. Our method first extracts asmall number of principal components of motion samplesby analyzing three-mode correlations among joints, time,and samples using high-order singular value decomposition.A new motion is synthesized by interpolatingthe reduced components using geostatistics, where theprediction accuracy of the resulting motion is controlledby adaptively decreasing the data dimensionality. Weintroduce a hybrid algorithm to optimize the reductionsize and computational time according to the distancefrom the camera while maintaining visual quality. Ourmethod provides a practical tool for creating an interactiveanimation of many characters while ensuring accurate andflexible controls at a modest level of computational cost

    An Interactive Forest

    Get PDF
    International audienceWe present a prototype of a forest in which a video game player can move and interact physically with the trees. The trees are procedurally built on-the-fly at each redraw. Two animation approaches are combined: a procedural method which handles most of the trees efficiently, and a physically-based method which allows user interaction with the trees. The physically-based method is dynamically applied only where needed. Physical data is computed only where the physical method is applied, and deleted afterwards. Smooth transitions between animation methods are performed. Levels of detail are used for rendering and for procedural animation. Our method allows the display and the animation, including user action, of a 256-tree forest at interactive rates

    Motion Level-of-Detail: A Simplification Method on Crowd Scene

    Get PDF
    Recent technological improvement in character animation has increased the number of characters that can appear in a virtual scene. Besides, skeletal and mesh structures are expected to be more complex in the future. Therefore, simulating massive characters' joints in a real-time crowd environment without any preprocessing is unaffordable. We propose a preprocessing method called 'motion level-of-detail' to overcome this limitation. Our 'motion level-of-detail' framework not only minimizes the simulation cost of the joints, but also maintains the similarity between the original and the simplified motion. 'Joint posture clustering (JPC)', which is the skeletal simplification method of our framework, reduces skeletal node by the clusters of similar postures. A cluster is a set of continuous frames, where each frame has similar posture. Because our approach depends on motion trajectory, simplified result preserves the quality of the motion. We also applied a geometric simplification on deformable character mesh, to increase performance. Our approach was particularly useful for the complex skeletal motions that have a monotonous trajectory

    Simulation levels of detail for plant motion

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references (leaves 28-30).In this paper we describe a method for simulating motion of realistically complex plants interactively. We use a precomputation stage to generate the plant structure, along with a set of simulation levels of detail. The levels of detail are made by continuously grouping branches starting from the tips of the branches and working toward the trunk. Grouped branches are simulated as single branches that have similar simulation characteristics to the original branches. During run-time, we traverse the plant and determine the allowable error in the simulation of branch motion. This allows us to choose the appropriate simulation level of detail and we provide smooth transitions from level to level. Our level of detail approach affects only the simulation parameters, allowing geometry to be handled independently. Using this method we can significantly improve simulation times for complex trees

    View-dependent dynamics of articulated bodies

    Get PDF
    Special Issue: CASA'2008 Special IssueInternational audienceWe propose a method for view-dependent simplification of articulated-body dynamics, which enables an automatic trade-off between visual precision and computational efficiency. We begin by discussing the problem of simplifying the simulation based on visual criteria, and show that it raises a number of challenging questions. We then focus on articulated-body dynamics simulation, and propose a semi-predictive approach which relies on a combination of exact, a priori error metrics computations, and visibility estimations. We suggest several variants of semi-predictive metrics based on hierarchical data structures and the use of graphics hardware, and discuss their relative merits in terms of computational efficiency and precision. Finally, we present several benchmarks and demonstrate how our view-dependent articulated-body dynamics method allows an animator (or a physics engine) to finely tune the visual quality and obtain potentially significant speedups during interactive or off-line simulations

    Dynamic Real-Time Deformations using Space and Time Adaptive Sampling

    Get PDF
    International audienceThis paper presents the first robust method for animating dynamic visco-elastic deformable objects that provides a guaranteed frame rate. The approach uses an automatic space and time adaptive level of detail technique, in combination with a large-displacement (Green) strain tensor formulation. The body is hierarchically partitioned into a number of tetrahedral regions and mass samples. The local resolution is determined by a quality condition that indicates where and when the resolution is too coarse. As the object moves and deforms, the sampling is refined to concentrate the computational load into the regions that deform the most. Our model consist of a continuous equation solved using a local explicit finite element method. We demonstrate that our adaptive Green strain tensor formulation virtually suppresses unwanted artifacts in the dynamic behavior, compared to adaptive mass-spring and other adaptive approaches. In particular, damped elastic vibration modes are shown to be nearly unchanged for several levels of refinement. Results are presented in the context of a virtual reality system. The user interacts in real-time with the dynamic object (such as a liver) through the control of a rigid tool, attached to a haptic device driven with forces derived from the method.Nous présentons une méthode robuste pour calculer les déformations dynamiques d'objets visco-élastiques, avec une garantie de temps-réel. L'idee maîtresse est d'utiliser une adaptation automatique, dans le temps et dans l'espace, du niveau de détail à laquelle la simulation est calculée, en combinaison avec un modèle élastique autorisant les grands déplacements (tenseur de Green). Le corps déformable est divisé en une hiérarchie de maillages tétrahédraux, du plus grossier aux plus fin. La résolution locale des calculs est déterminée par un critère de qualité qui nous dit quand et où raffiner ou déraffiner le modèle. Lors des déformations, la puissance de calcul se concentre ainsi tout naturellement sur les régions ou les déformations sont les plus grandes. Notre modèle repose sur une équation de l´elasticité des milieux continus, intégrée en utilisant une méthode d'éléments finis explicites. Nous avons montré expérimentalement que notre simulation adaptative basée sur le tenseur de Green supprime les artéfacts du comportement dynamique qui pouvaient être observés lorsque la même méthodologie était appliquée à d'autres modèles (masses-ressorts, tenseur de Cauchy, etc). En particulier, les modes de vibration du matériau semblent sensiblement les mêmes à tous les niveaux de résolution, ce qui s'est révélé indispensable pour faire fonctionner le modèle. Nous présentons nos résultats dans le contexte d'un système de réalité virtuelle ou l'utilisateur intéragit avec l'objet via un outil rigide, contrôlé par une interface à retour d'effort

    Resolution independent curved seams in clothing animation using a regular particle grid

    Get PDF
    We present a method for representing seams in clothing animation, and its application in simulation level of detail. Specifically we consider cloth represented as a regular grid of particles connected by spring-dampers, and a seam specified by a closed set of parametric trim curves in the cloth domain. Conventional cloth animation requires the tessellation of seams so that they are handled uniformly by the dynamics process. Our goal is a seam definition which does not constrain the attached clothing panels to be of the same resolution, or even constant resolution, while not being a hindrance to the dynamics process. We also apply our seams to cloth defined on a regular grid, as opposed to the irregular meshes commonly used with seams. The determination of particles interior to the cloth panel can be done using wellknown graphics operations such as scan-conversion. Due to the particle-based nature of the simulation, the dynamics approach combines easily with existing implicit and explicit methods. Finally, because the seams are resolution independent, the particle density per clothing panel can be adjusted as desired. This gives rise to a simple application of the given seams approach illustrating how it may be used for simulation level of detail
    corecore