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Abstract 
Recent technological improvement in character 
animation has increased the number of 
characters that can appear in a virtual scene. 
Besides, skeletal and mesh structures are 
expected to be more complex in the future. 
Therefore, simulating massive characters’ 
joints in a real-time crowd environment 
without any preprocessing is unaffordable. We 
propose a preprocessing method called ‘motion 
level-of-detail’ to overcome this limitation. 
Our ‘motion level-of-detail’ framework not 
only minimizes the simulation cost of the joints, 
but also maintains the similarity between the 
original and the simplified motion. ‘Joint 
posture clustering (JPC)’, which is the skeletal 
simplification method of our framework, 
reduces skeletal node by the clusters of similar 
postures. A cluster is a set of continuous 
frames, where each frame has similar posture. 
Because our approach depends on motion 
trajectory, simplified result preserves the 
quality of the motion. We also applied a 
geometric simplification on deformable 
character mesh, to increase performance. Our 
approach was particularly useful for the 
complex skeletal motions that have a 
monotonous trajectory. 
 
Keywords: motion level-of-detail, clustering, 
crowd animation, character animation, mesh 
simplification 

1. Introduction 
In the game and entertainment industry, a 
number of researchers are now trying to 
animate huge crowd scenes. As a result, the 
simplification of a character’s motion is now a 
challenge for character animation. Non real-
time application such as movie or animation, 
computing time is not critical. However, a 
character in the crowd scene does not take 
much space on a rendered image. Therefore, 

simulating detail motion on each character is a 
waste of computing resource. Besides, in a 
real-time application such as game or NVR 
environment, adjusting computation vs. 
animation quality is as much important as well 
known computation vs. image quality. 

In this paper, we present the ‘motion level-
of-detail’ framework which is an effective 
preprocessing method in the real-time crowd 
environment. We are subjected to motion 
captured data, because game and movie 
industry also prefer to utilize motion capture 
rather than physical simulation. The ‘motion 
level-of-detail’ framework was designed 
similarly to the common real-time virtual 
environment. As shown in figure 1, selected 
motion from the motion database is mapped to 
the selected character from the character 
database. After the mapping process, character 
is transformed to the virtual world. However, a 
lot of joint transformation is required on each 
process and generating motion without 
preprocessing is inefficient. Therefore, to 
enhance the performance of our framework, we 
resolved the problem from the perspective of 
simulation (skeletal simplification) and 
rendering (geometric simplification). 
 

Figure 1 : Motion level-of-detail framework 
 
Skeletal simplification: Every motion includes 
the hierarchy of articulated figure. This skeletal 
structure can be defined as a tree, whose 
node’s (joint) attributes (position, rotation) 
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change every frame. By simplifying the 
skeleton, we can reduce the cost of 
transforming joints, which is serious on crowd 
scenes. Moreover, in the skinning process we 
can reduce the overheads for vertex trans-
formation. Previous work has introduced a 
simplification method of articulated figure 
[1][2][20]. But these works need manual 
preprocess and cannot be applied to crowd 
motion. We describe these works in detail in 
the next section. 
Geometric simplification: Prior researchers 
on geometric simplification focused on a rigid-
body mesh structure [3][4][5] to reduce 
rendering cost. However, character mesh 
dynamically deforms every frame. Because of 
that, character mesh must be localized by each 
body parts. To improve the rendering 
performance, previous research has substituted 
character geometry for an image [6][7][21]. 
We expect a tremendous improvement on 
performance, but the motion is not realistic and 
has many limitations on the camera work. 

Our ‘motion level-of-detail’ framework 
applied these skeletal (JPC) and geometric 
simplification. Motion dependent method is 
required to automate skeletal simplification in 
any kind of motions. Therefore, we first 
analyzed the trajectories of each joint. By 
plotting each trajectory on the unit sphere, we 
can separate the clusters of postures. Correct 
clusters of postures are evaluated by an error 
metric between two postures. The error values 
are applied to our clustering table. Optimal 
posture clusters are classified by the error 
threshold and we applied the level-of-detail at 
the run-time. A joint is dynamically simplified 
using clustered information. Every clustered 
area inside a joint trajectory keeps the key 
posture. At the run-time, our system transforms 
the key posture and current joint’s information 
is updated to his parent, until current clustered 
area of joint is finished. 

JPC method automatically generates 
multi-resolution motion and increase 
performance without loss of animation quality. 
However, variable motion, which postures of 
joints change quickly are not much effective, 
because of hierarchy reconstruction on every 
cluster. We also implemented a simple mesh 
simplification method to enhance performance. 
Our method is useful in a real-time interactive 
crowd environment. 

After a reviewing related works in section 
2, we analyze bottleneck of motion generation 
in section 3. In section 4, we describe the joint 
posture clustering (JPC) method. In section 5, 
we show how we applied geometric 
simplification to a character mesh structure. 
Finally, in section 6, we show the results of our 
implementation and experiments. 

2. Related works 
In this section we describe the research on 
crowd animation. Crowd animation falls into 
three major subjects: First for an ideal system 
of crowd animation, the reality of the generated 
scene must be satisfied; second, interactivity is 
important because the user or animator of a 
crowd system must be able to access the 
individual characters of a scene; and finally, 
enhancing the overall performance of the 
system is important for a massive crowd scene. 
Scene reality: To represent a realistic crowd 
scene in the virtual world, crowd modeling is 
required to control an individual character’s 
motion [8][9]. Analyzing a human-like crowd 
flow is also important. Some researchers 
analyzed the crowd flow in an emergency 
situation [10][11]. Another major factor for 
maintaining reality is the set of behavioral 
rules for each individual. Behavioral rules are 
well defined for the fishes in an aquarium [12]. 
The behavior of the fish is simulated by the 
current state of the virtual environment. The 
behavior of human crowd has been similarly 
defined [13][14]. Collision detection of 
individuals in a crowd [15] and motion 
transition [16] are also important behavioral 
factors of the scene realism. 
Interactivity: The behavioral rules defined for 
each individual are inadequate for an animator 
who designs crowd scene. The animator 
sometimes needs interaction to convey the 
intended behavior of each character. For this 
type of situation, some of the early research on 
the interaction and scripting of crowds is a 
good reference [17] [18]. 
Performance: Simulating complex and 
massive crowds every frame is time consuming. 
The problem is more serious when simulating 
many characters at the same time. The research 
on improving performance of a crowd scene 
covers two major topics. 

The first major topic is the simplification 
of the skeletal structure for a rapid physical 
simulation. A manually simplified hierarchy 



for motion blending has presented to enhance 
performance of physical simulation and 
facilitate convergence of the optimization [1]. 
Three basic principles DOF removal, node sub-
tree removal and symmetric movement 
removal are introduced in this work. Another 
work has introduced ‘full physics – kinematics 
– center of mass’ model of a simple articulated 
object to simplify physical simulation [2]. 
However, these skeletal simplifications are 
unable to apply in the crowd motion using 
motion capture data. We are also able to 
reference recent work that has focused on real-
time network environment [20]. 

The other major topic is the application of 
an image-based technique to each character 
[6][7][21]. They sampled image sequence of 
character’s motion from each direction and 
used an imposter or billboard technique to 
enhance performance. Although we can 
estimate a good performance using image-
based techniques, the result of the sampled 
motion is not realistic and the camera work has 
many limitations. To overcome these 
limitations, we propose a new simplification 
framework in a real-time crowd environment. 

3. Motion bottleneck 
Rendering bottleneck by processing a highly 
detailed geometric model is well known in the 
computer graphics field. However, a bottleneck 
that occurs by joint processing is not a 
common knowledge. In this section, we define 
the process of motion generation and analyze 
the performance by simulating joints. 
3.1 Motion process 
The process of generating a motion to a 
character is shown in figure 2. During the 
preprocessing, current animation system aligns 
the selected motion / character structure and 
calculates difference matrix between them. At 
the run-time, the system transforms the joint 
posture from the motion database and applies 
the difference matrix. In the skinning process, 
the vertices and normals of the character mesh 
are deformed by the current generated joint 
posture. Finally, the system transforms entire 
posture result to the virtual scene. This 
sequence can be defined as the ‘scene 
generation’ of character animation. A motion 
bottleneck occurs in that process. 
 

Figure 2: Motion process 
 

If the processing time for multiplying the 
vertex on the transformation matrix is p, the 
cost of multiplying the matrix is 4p. The total 
complexity of a joint can be defined as 
(8L+2N)p, where L is the number of joints 
from the current node to the leaf node, and N is 
the number of mesh vertices connected to the 
current body segment. 

To analyze the motion bottleneck in a 
crowd scene, we conducted an experiment in 
which we animated 1000 characters. Each 
character consists of 946 polygons and 50 rigid 
joints. The result of the experiment in figure 3 
shows that the motion bottleneck is challenging, 
especially for interactive crowd environment. 
 

Figure 3: Computing time ratio on crowd scene 
 

3.2 Defining motion 
We defined motion as a tree structure in which 
the head, hands and feet are leaf nodes and the 
pelvis is the root. Motion is therefore assumed 
to be a general tree definition such as T(N, E). 
The joint values such as position and 
orientation are assumed to be node attributes 
and the joint link forms a rigid segment. We 
define motion M on time t as follows: 
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Where J(t) is the set of joint nodes, S(t) is 

the set of segment edges at time t, and jj(t) is 
the j-th joint at time t. Only the root joint has 
position values, because joint representation is 
based on a local coordinate. Because the leaf 



nodes are end-effectors, the position and 
orientation values on the leaf are unavailable. 
Every joint has a parent, except for the root. 
Therefore, j=0 is excluded from S(t). The 
parameter sj(t) is the link between the j-th joint 
and the j-th parent with its length lj,p(t). 

4. Joint posture clustering (JPC) 
The rotational effect of a local joint is updated 
every frame even though the difference is 
insignificant. By plotting the joint trajectory on 
a unit sphere, we found some groups of frames 
that needed no transformation. 

We grouped similar postures by analyzing 
the entire motion trajectory. By this method, n 
frames of motion were reduced to m groups of 
posture (m<n). To minimize the error cost of 
the motion difference between the original 
motion M(t) and the simplified motion M’(t), 
the original motion became a superset of the 
simplified motion (M(t) ⊃ M’(t)). The 
simplified joint maintains the key posture of 
the current cluster and sends its own 
information to the parent joint. 
4.1 Error evaluation 
To generate optimal clusters, we defined the 
error cost between postures. The difference 
between two postures at joint j is defined as 
equation (1):  
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The error is the sum of the position and the 
orientation error. The time t is the current 
frame and tref is the estimated key frame. The 
constant α is the weighting value of the 
orientation difference, and the weighting value 
is set to zero when joint j has no twist rotation. 
By using this measurement we clustered each 
group of postures. The position error was 
generated by the local joint trajectory and the 
angle difference between the two postures. The 
orientation error is defined as the logarithm of 
the quaternion. Position and orientation error 
are formulated by measurement values as 
shown in figure 4. 
 
Local joint trajectory: If the base pose vector 
from joint j to its child is vj, and the orientation 
of the joint at time t is qj(t), the trajectory vj’(t) 

of the local joints at time t is expressed as 
equation (2): 
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The trajectory information vj’(t) is the 
vector position plotted on the unit sphere. The 
scalar value lj,c(t) is the segment length 
between joint j and its child joint c. 
 
Angle difference: Using the equation (2), we 
can simply calculate the difference angle 
between t and tref as follows: 
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Weighting factor: A joint with many children, 
which has a higher weighting value than a joint 
near a leaf, propagates a large error cost. The 
parameter rj(t) is the weighting factor that is 
applied to the position difference. It is defined 
as follows: 
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Figure 4: Measurement values 
 
Position error: The positional error cost 
between the original and the clustered postures 
at joint j, which means the position difference 
by simplifying t posture to tref, is defined as 
equation (5): 
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Orientation error: Minimizing an error with 
only the trajectory of joint can cause a loss of 
the twisted rotation on each joint. We applied a 
rotational measurement of joint j using the 
logarithm of quaternion [16][19], which means 
the orientation difference by simplifying t 
posture to tref. The equation is expressed as 
follows: 
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4.2 Clustering table 
To generate the optimum cluster that does not 
exceed the error threshold, we used n x n 
difference map (clustering table) of joint 
postures, where n is the total number of frames. 
The table forms a matrix of the error cost 
between two postures in a motion sequence. 
The elements of the table are Ej(t, tref), and if t 
= tref, the value of the element is zero, because 
the same postures have no difference. A cluster 
is selected when the top-left coordinate (tref, t) 
has the same value and the size of the mask is 
m x m (m≤ n). At least one row inside the 
mask must be lower than the error threshold. 

Figure 5 shows the process of generating 
optimal cluster from the joint difference map. 

Every diagonal value is 0 and the map is 
almost symmetric. Difference between 
symmetric pairs are occurred by the weighting 
factor rj(t). We used only the upper triangle, 
since the table is almost symmetric. The lower 
triangle was used only for the process of 
retrieving the key posture. The optimum set of 
the clusters are derived by the following 
algorithm: 
 
STEP 1: Generate available range on each row 
LOOP START 

STEP 2: Search MAX range 
STEP 3: Set range to final cluster list 
STEP 4: Delete current MAX range 
STEP 5: Refresh remaining range 

LOOP END 
STEP 6: Retrieve key posture on each cluster 
 

In step 1, the range of each row is 
generated from the diagonal element (upper 
triangle element) until the element of the table 
is higher than the error threshold. Every top-
left coordinate of the mask must satisfy (tref, t). 

 
Figure 5: Optimal cluster generation by using clustering table (joint difference map) 



In step 5, we must refresh the remaining 
range because an intersected area exists 
between removed range and remaining range. 
If the size of the refreshed range is 1, the range 
is also removed. The cluster length must be 
greater than 2. 
4.3 Key posture 
After the final cluster list was generated, we 
extracted the key posture of the clustered area. 
The entire cluster maintains the key posture in 
the motion sequence. The key posture is the 
minimum sum of the elements in the same row. 
The key posture is generated as equation (7), 
where m is the range of the optimal cluster. 
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As the result, the minimum reference 

frame 165 means that every frame from 160 
until 166 is maintained to posture 165. 
Maintaining posture 165 is the minimum cost 
of error compared with other reference frames. 

Figure 6 shows the trajectory of a joint 
after the JPC process. As the error threshold 
increases, the number of clusters decreases. 
 

 
Figure 6: Clustered trajectory 

 
If the motion database consists of long size 

motions, we need to reduce the problem, 
because the problem complexity is O(n2). 
Before constructing the table, we applied the 
angle velocity of the motion to separate the 
range of the table. As we described in equation 
(6), the position error is in r, Θ form. Therefore 
the reduction measurement can be defined as 
Epos, j(t, t-1). 

5. Geometric Simplification 
Motion reconstructed by JPC method should be 
more improved by combining a common 
geometric simplification. In character 
animation, however, the mesh deforms 
dynamically on each frame. Every vertices and 
weighting values are linked to the joint 
segment and thirty percent of full-body mesh 
vertices are shared by more than two joint 
segments. Shared vertices are deformed from 
the local coordinate by weighting values. 

We divided the vertex list by each joint 
and applied progressive mesh [3] to each joint 
segment. Before applying the mesh 
simplification, we divided the local vertex list 
into the shared vertex area and the non-shared 
vertex area. The weighting value of the shared 
vertex is (0<w<1), and of the non-shared 
vertex, (w=1). 
 

 

6. Experiments and Results 
6.1 Experiment result 
Skeletal simplification: JPC method extracts 
maximum size of the cluster inside error bound. 
Therefore, the original frame posture and the 
key posture of the cluster are different. As we 
shown in figure 8, 9, 10, low error motion is 
more similar to the original motion. We did 
experiments about motion with small number 
of joints (figure 8) vs. large number of joints 
(figure 9) and variable motion (figure 9) vs. 
monotonous motion (figure 10). 

Table 1 shows average simplified joints 
rate (%) per frame. The simplification rate of a 
motion with large number of joints is higher 
than a motion with small number of joints, 
because joint density of the former is higher 
than the latter motion. The joint trajectory of a 
monotonous motion can extract larger size of 
cluster than a variable motion, because the 

Figure 7: Mesh simplification result 



monotonous motion has smaller trajectory area 
than the variable motion. 
 

Figure 8: Dance (28 joints, variable motion) 
 

Figure 9: Push (80 joints, variable motion) 
 

 
Figure 10: Look (80 joints, monotonous motion)

 

Motion Original E=5.0 E=50.0 E=100.0 E=300.0

Dance 0.0 32.1 70.8 94.1 95.8 

Push 0.0 54.9 84.3 94.3 96.4 

Look 0.0 73.4 92.6 97.8 98.2  
Table 1: Average simplified joints (%) 

 
Overall simulation: We implemented a real-
time crowd environment with ‘motion level-of-
detail’ framework to compare the processing 
time of each experiment result. As we shown 
in figure 11, we loaded 256 characters with 28 
joints dance motion. A character model has 
471 vertices and we applied geometric 
simplification on each character. We also 
applied skeletal simplification using JPC 
method. The experiment result is depicted in 
figure 12. The processing time of a frame using 
only geometric simplification is a little bit 
better than the skeletal simplification. However, 
by applying both mesh and skeletal 
simplification, we obtained a better result than 
any other experiments. If the articulated figure 

is more complex and the number of characters 
in the crowd scene increase, the processing 
time of the simplification must be enhanced. 
 

Figure 11: Crowd scene with 256 characters 
 

 
Figure 12: Experiment result of the crowd scene
 
6.2 Conclusion and future work 
In this paper, we presented the ‘motion level-
of-detail’ framework to enhance processing 
time of the real-time crowd environment. To 
maintain the visual quality, we applied a 
motion dependent skeletal simplification 
method. Moreover, geometric simplification is 
considered to our framework to improve our 
system performance. We controlled the detail 
of the motion and the geometry by the distance 
between the camera and the character’s 
position. As the result of our experiments, the 
image and the animation quality was affordable. 
Our preprocessing method was particularly 
useful to the monotonous motion and complex 
articulated figure’s motion with many joints. 
Because of the tree reconstruction time, 
variable motion was less efficient than the 
monotonous motion. 

Using our method to the complex crowd 
scene like urban or game environment, we 
expect a more enhanced performance, since in 
that kind of environment a lot of characters are 
occluded during the motion sequence. We 
estimate that the number of characters and the 



complexity of joint and mesh structure in the 
crowd scene will increase in the near future. 
The simplification method in the crowd scene 
will surely be a more challenging issue. 

Future improvement is needed to our 
framework. First, we didn’t consider about 
view-dependent simplification. By applying 
view-dependent method, we should be able to 
recover more enhanced result. In this paper, we 
applied traditional geometric simplification, 
and we simplified motion and mesh 
independently. Another work we need to 
improve is embedding the local geometric part 
to the joint segment. By embedding the 
geometry to the joint segment, we should be 
able to control the motion and the mesh detail 
simultaneously and expect a more affordable 
simplification result. 
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