
Motion Level-of-Detail:
A Simplification Method on Crowd Scene

Junghyun Ahn

VR lab, EECS, KAIST
ChocChoggi@vr.kaist.ac.kr

http://vr.kaist.ac.kr/~zhaoyue

Kwangyun Wohn
VR lab, EECS, KAIST
wohn@vr.kaist.ac.kr
http://vr.kaist.ac.kr

Abstract
Recent technological improvement in character
animation has increased the number of
characters that can appear in a virtual scene.
Besides, skeletal and mesh structures are
expected to be more complex in the future.
Therefore, simulating massive characters’
joints in a real-time crowd environment
without any preprocessing is unaffordable. We
propose a preprocessing method called ‘motion
level-of-detail’ to overcome this limitation.
Our ‘motion level-of-detail’ framework not
only minimizes the simulation cost of the joints,
but also maintains the similarity between the
original and the simplified motion. ‘Joint
posture clustering (JPC)’, which is the skeletal
simplification method of our framework,
reduces skeletal node by the clusters of similar
postures. A cluster is a set of continuous
frames, where each frame has similar posture.
Because our approach depends on motion
trajectory, simplified result preserves the
quality of the motion. We also applied a
geometric simplification on deformable
character mesh, to increase performance. Our
approach was particularly useful for the
complex skeletal motions that have a
monotonous trajectory.

Keywords: motion level-of-detail, clustering,
crowd animation, character animation, mesh
simplification

1. Introduction
In the game and entertainment industry, a
number of researchers are now trying to
animate huge crowd scenes. As a result, the
simplification of a character’s motion is now a
challenge for character animation. Non real-
time application such as movie or animation,
computing time is not critical. However, a
character in the crowd scene does not take
much space on a rendered image. Therefore,

simulating detail motion on each character is a
waste of computing resource. Besides, in a
real-time application such as game or NVR
environment, adjusting computation vs.
animation quality is as much important as well
known computation vs. image quality.

In this paper, we present the ‘motion level-
of-detail’ framework which is an effective
preprocessing method in the real-time crowd
environment. We are subjected to motion
captured data, because game and movie
industry also prefer to utilize motion capture
rather than physical simulation. The ‘motion
level-of-detail’ framework was designed
similarly to the common real-time virtual
environment. As shown in figure 1, selected
motion from the motion database is mapped to
the selected character from the character
database. After the mapping process, character
is transformed to the virtual world. However, a
lot of joint transformation is required on each
process and generating motion without
preprocessing is inefficient. Therefore, to
enhance the performance of our framework, we
resolved the problem from the perspective of
simulation (skeletal simplification) and
rendering (geometric simplification).

Figure 1 : Motion level-of-detail framework

Skeletal simplification: Every motion includes
the hierarchy of articulated figure. This skeletal
structure can be defined as a tree, whose
node’s (joint) attributes (position, rotation)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147992767?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

change every frame. By simplifying the
skeleton, we can reduce the cost of
transforming joints, which is serious on crowd
scenes. Moreover, in the skinning process we
can reduce the overheads for vertex trans-
formation. Previous work has introduced a
simplification method of articulated figure
[1][2][20]. But these works need manual
preprocess and cannot be applied to crowd
motion. We describe these works in detail in
the next section.
Geometric simplification: Prior researchers
on geometric simplification focused on a rigid-
body mesh structure [3][4][5] to reduce
rendering cost. However, character mesh
dynamically deforms every frame. Because of
that, character mesh must be localized by each
body parts. To improve the rendering
performance, previous research has substituted
character geometry for an image [6][7][21].
We expect a tremendous improvement on
performance, but the motion is not realistic and
has many limitations on the camera work.

Our ‘motion level-of-detail’ framework
applied these skeletal (JPC) and geometric
simplification. Motion dependent method is
required to automate skeletal simplification in
any kind of motions. Therefore, we first
analyzed the trajectories of each joint. By
plotting each trajectory on the unit sphere, we
can separate the clusters of postures. Correct
clusters of postures are evaluated by an error
metric between two postures. The error values
are applied to our clustering table. Optimal
posture clusters are classified by the error
threshold and we applied the level-of-detail at
the run-time. A joint is dynamically simplified
using clustered information. Every clustered
area inside a joint trajectory keeps the key
posture. At the run-time, our system transforms
the key posture and current joint’s information
is updated to his parent, until current clustered
area of joint is finished.

JPC method automatically generates
multi-resolution motion and increase
performance without loss of animation quality.
However, variable motion, which postures of
joints change quickly are not much effective,
because of hierarchy reconstruction on every
cluster. We also implemented a simple mesh
simplification method to enhance performance.
Our method is useful in a real-time interactive
crowd environment.

After a reviewing related works in section
2, we analyze bottleneck of motion generation
in section 3. In section 4, we describe the joint
posture clustering (JPC) method. In section 5,
we show how we applied geometric
simplification to a character mesh structure.
Finally, in section 6, we show the results of our
implementation and experiments.

2. Related works
In this section we describe the research on
crowd animation. Crowd animation falls into
three major subjects: First for an ideal system
of crowd animation, the reality of the generated
scene must be satisfied; second, interactivity is
important because the user or animator of a
crowd system must be able to access the
individual characters of a scene; and finally,
enhancing the overall performance of the
system is important for a massive crowd scene.
Scene reality: To represent a realistic crowd
scene in the virtual world, crowd modeling is
required to control an individual character’s
motion [8][9]. Analyzing a human-like crowd
flow is also important. Some researchers
analyzed the crowd flow in an emergency
situation [10][11]. Another major factor for
maintaining reality is the set of behavioral
rules for each individual. Behavioral rules are
well defined for the fishes in an aquarium [12].
The behavior of the fish is simulated by the
current state of the virtual environment. The
behavior of human crowd has been similarly
defined [13][14]. Collision detection of
individuals in a crowd [15] and motion
transition [16] are also important behavioral
factors of the scene realism.
Interactivity: The behavioral rules defined for
each individual are inadequate for an animator
who designs crowd scene. The animator
sometimes needs interaction to convey the
intended behavior of each character. For this
type of situation, some of the early research on
the interaction and scripting of crowds is a
good reference [17] [18].
Performance: Simulating complex and
massive crowds every frame is time consuming.
The problem is more serious when simulating
many characters at the same time. The research
on improving performance of a crowd scene
covers two major topics.

The first major topic is the simplification
of the skeletal structure for a rapid physical
simulation. A manually simplified hierarchy

for motion blending has presented to enhance
performance of physical simulation and
facilitate convergence of the optimization [1].
Three basic principles DOF removal, node sub-
tree removal and symmetric movement
removal are introduced in this work. Another
work has introduced ‘full physics – kinematics
– center of mass’ model of a simple articulated
object to simplify physical simulation [2].
However, these skeletal simplifications are
unable to apply in the crowd motion using
motion capture data. We are also able to
reference recent work that has focused on real-
time network environment [20].

The other major topic is the application of
an image-based technique to each character
[6][7][21]. They sampled image sequence of
character’s motion from each direction and
used an imposter or billboard technique to
enhance performance. Although we can
estimate a good performance using image-
based techniques, the result of the sampled
motion is not realistic and the camera work has
many limitations. To overcome these
limitations, we propose a new simplification
framework in a real-time crowd environment.

3. Motion bottleneck
Rendering bottleneck by processing a highly
detailed geometric model is well known in the
computer graphics field. However, a bottleneck
that occurs by joint processing is not a
common knowledge. In this section, we define
the process of motion generation and analyze
the performance by simulating joints.
3.1 Motion process
The process of generating a motion to a
character is shown in figure 2. During the
preprocessing, current animation system aligns
the selected motion / character structure and
calculates difference matrix between them. At
the run-time, the system transforms the joint
posture from the motion database and applies
the difference matrix. In the skinning process,
the vertices and normals of the character mesh
are deformed by the current generated joint
posture. Finally, the system transforms entire
posture result to the virtual scene. This
sequence can be defined as the ‘scene
generation’ of character animation. A motion
bottleneck occurs in that process.

Figure 2: Motion process

If the processing time for multiplying the
vertex on the transformation matrix is p, the
cost of multiplying the matrix is 4p. The total
complexity of a joint can be defined as
(8L+2N)p, where L is the number of joints
from the current node to the leaf node, and N is
the number of mesh vertices connected to the
current body segment.

To analyze the motion bottleneck in a
crowd scene, we conducted an experiment in
which we animated 1000 characters. Each
character consists of 946 polygons and 50 rigid
joints. The result of the experiment in figure 3
shows that the motion bottleneck is challenging,
especially for interactive crowd environment.

Figure 3: Computing time ratio on crowd scene

3.2 Defining motion
We defined motion as a tree structure in which
the head, hands and feet are leaf nodes and the
pelvis is the root. Motion is therefore assumed
to be a general tree definition such as T(N, E).
The joint values such as position and
orientation are assumed to be node attributes
and the joint link forms a rigid segment. We
define motion M on time t as follows:

))(),(()(tStJMtM =
)}(),...,(),...,(),(),({)(210 tjtjtjtjtjtJ nj=









=
=

=
 otherwise)}(,{

joint leaf k if},{
jointroot j if)}(),({

)(
tqNIL

NILNIL
tqtp

tj

j

jj

j

)}(),...,(),...,(),({)(21 tststststS nj=
)}(),(),({)(, tltjtjts pjjpjj =

Where J(t) is the set of joint nodes, S(t) is

the set of segment edges at time t, and jj(t) is
the j-th joint at time t. Only the root joint has
position values, because joint representation is
based on a local coordinate. Because the leaf

nodes are end-effectors, the position and
orientation values on the leaf are unavailable.
Every joint has a parent, except for the root.
Therefore, j=0 is excluded from S(t). The
parameter sj(t) is the link between the j-th joint
and the j-th parent with its length lj,p(t).

4. Joint posture clustering (JPC)
The rotational effect of a local joint is updated
every frame even though the difference is
insignificant. By plotting the joint trajectory on
a unit sphere, we found some groups of frames
that needed no transformation.

We grouped similar postures by analyzing
the entire motion trajectory. By this method, n
frames of motion were reduced to m groups of
posture (m<n). To minimize the error cost of
the motion difference between the original
motion M(t) and the simplified motion M’(t),
the original motion became a superset of the
simplified motion (M(t) ⊃ M’(t)). The
simplified joint maintains the key posture of
the current cluster and sends its own
information to the parent joint.
4.1 Error evaluation
To generate optimal clusters, we defined the
error cost between postures. The difference
between two postures at joint j is defined as
equation (1):

),(),(),(,, refjorirefjposrefj ttEttEttE α+= (1)

The error is the sum of the position and the
orientation error. The time t is the current
frame and tref is the estimated key frame. The
constant α is the weighting value of the
orientation difference, and the weighting value
is set to zero when joint j has no twist rotation.
By using this measurement we clustered each
group of postures. The position error was
generated by the local joint trajectory and the
angle difference between the two postures. The
orientation error is defined as the logarithm of
the quaternion. Position and orientation error
are formulated by measurement values as
shown in figure 4.

Local joint trajectory: If the base pose vector
from joint j to its child is vj, and the orientation
of the joint at time t is qj(t), the trajectory vj’(t)

of the local joints at time t is expressed as
equation (2):

||)(||/))()(()(' ,
1 tltqvtqtv cjjjjj

−⋅⋅= (2)

The trajectory information vj’(t) is the
vector position plotted on the unit sphere. The
scalar value lj,c(t) is the segment length
between joint j and its child joint c.

Angle difference: Using the equation (2), we
can simply calculate the difference angle
between t and tref as follows:

)
||)(||

)(')('
arccos(),(2

, tl
tvtv

tt
cj

refjj
refj

⋅
=θ (3)

Weighting factor: A joint with many children,
which has a higher weighting value than a joint
near a leaf, propagates a large error cost. The
parameter rj(t) is the weighting factor that is
applied to the position difference. It is defined
as follows:

∑=
leaf

c
cjj tltr)()(,

 (4)

Figure 4: Measurement values

Position error: The positional error cost
between the original and the clustered postures
at joint j, which means the position difference
by simplifying t posture to tref, is defined as
equation (5):

||),()(||),(, refjjrefjpos tttrttE θ⋅= (5)

Orientation error: Minimizing an error with
only the trajectory of joint can cause a loss of
the twisted rotation on each joint. We applied a
rotational measurement of joint j using the
logarithm of quaternion [16][19], which means
the orientation difference by simplifying t
posture to tref. The equation is expressed as
follows:

||))()(log(||2),(1
, refjjrefjori tqtqttE ⋅= − (6)

4.2 Clustering table
To generate the optimum cluster that does not
exceed the error threshold, we used n x n
difference map (clustering table) of joint
postures, where n is the total number of frames.
The table forms a matrix of the error cost
between two postures in a motion sequence.
The elements of the table are Ej(t, tref), and if t
= tref, the value of the element is zero, because
the same postures have no difference. A cluster
is selected when the top-left coordinate (tref, t)
has the same value and the size of the mask is
m x m (m≤ n). At least one row inside the
mask must be lower than the error threshold.

Figure 5 shows the process of generating
optimal cluster from the joint difference map.

Every diagonal value is 0 and the map is
almost symmetric. Difference between
symmetric pairs are occurred by the weighting
factor rj(t). We used only the upper triangle,
since the table is almost symmetric. The lower
triangle was used only for the process of
retrieving the key posture. The optimum set of
the clusters are derived by the following
algorithm:

STEP 1: Generate available range on each row
LOOP START

STEP 2: Search MAX range
STEP 3: Set range to final cluster list
STEP 4: Delete current MAX range
STEP 5: Refresh remaining range

LOOP END
STEP 6: Retrieve key posture on each cluster

In step 1, the range of each row is
generated from the diagonal element (upper
triangle element) until the element of the table
is higher than the error threshold. Every top-
left coordinate of the mask must satisfy (tref, t).

Figure 5: Optimal cluster generation by using clustering table (joint difference map)

In step 5, we must refresh the remaining
range because an intersected area exists
between removed range and remaining range.
If the size of the refreshed range is 1, the range
is also removed. The cluster length must be
greater than 2.
4.3 Key posture
After the final cluster list was generated, we
extracted the key posture of the clustered area.
The entire cluster maintains the key posture in
the motion sequence. The key posture is the
minimum sum of the elements in the same row.
The key posture is generated as equation (7),
where m is the range of the optimal cluster.

∑
m

t
refjt ttE

ref
)),((min (7)

As the result, the minimum reference

frame 165 means that every frame from 160
until 166 is maintained to posture 165.
Maintaining posture 165 is the minimum cost
of error compared with other reference frames.

Figure 6 shows the trajectory of a joint
after the JPC process. As the error threshold
increases, the number of clusters decreases.

Figure 6: Clustered trajectory

If the motion database consists of long size

motions, we need to reduce the problem,
because the problem complexity is O(n2).
Before constructing the table, we applied the
angle velocity of the motion to separate the
range of the table. As we described in equation
(6), the position error is in r, Θ form. Therefore
the reduction measurement can be defined as
Epos, j(t, t-1).

5. Geometric Simplification
Motion reconstructed by JPC method should be
more improved by combining a common
geometric simplification. In character
animation, however, the mesh deforms
dynamically on each frame. Every vertices and
weighting values are linked to the joint
segment and thirty percent of full-body mesh
vertices are shared by more than two joint
segments. Shared vertices are deformed from
the local coordinate by weighting values.

We divided the vertex list by each joint
and applied progressive mesh [3] to each joint
segment. Before applying the mesh
simplification, we divided the local vertex list
into the shared vertex area and the non-shared
vertex area. The weighting value of the shared
vertex is (0<w<1), and of the non-shared
vertex, (w=1).

6. Experiments and Results
6.1 Experiment result
Skeletal simplification: JPC method extracts
maximum size of the cluster inside error bound.
Therefore, the original frame posture and the
key posture of the cluster are different. As we
shown in figure 8, 9, 10, low error motion is
more similar to the original motion. We did
experiments about motion with small number
of joints (figure 8) vs. large number of joints
(figure 9) and variable motion (figure 9) vs.
monotonous motion (figure 10).

Table 1 shows average simplified joints
rate (%) per frame. The simplification rate of a
motion with large number of joints is higher
than a motion with small number of joints,
because joint density of the former is higher
than the latter motion. The joint trajectory of a
monotonous motion can extract larger size of
cluster than a variable motion, because the

Figure 7: Mesh simplification result

monotonous motion has smaller trajectory area
than the variable motion.

Figure 8: Dance (28 joints, variable motion)

Figure 9: Push (80 joints, variable motion)

Figure 10: Look (80 joints, monotonous motion)

Motion Original E=5.0 E=50.0 E=100.0 E=300.0

Dance 0.0 32.1 70.8 94.1 95.8

Push 0.0 54.9 84.3 94.3 96.4

Look 0.0 73.4 92.6 97.8 98.2
Table 1: Average simplified joints (%)

Overall simulation: We implemented a real-
time crowd environment with ‘motion level-of-
detail’ framework to compare the processing
time of each experiment result. As we shown
in figure 11, we loaded 256 characters with 28
joints dance motion. A character model has
471 vertices and we applied geometric
simplification on each character. We also
applied skeletal simplification using JPC
method. The experiment result is depicted in
figure 12. The processing time of a frame using
only geometric simplification is a little bit
better than the skeletal simplification. However,
by applying both mesh and skeletal
simplification, we obtained a better result than
any other experiments. If the articulated figure

is more complex and the number of characters
in the crowd scene increase, the processing
time of the simplification must be enhanced.

Figure 11: Crowd scene with 256 characters

Figure 12: Experiment result of the crowd scene

6.2 Conclusion and future work
In this paper, we presented the ‘motion level-
of-detail’ framework to enhance processing
time of the real-time crowd environment. To
maintain the visual quality, we applied a
motion dependent skeletal simplification
method. Moreover, geometric simplification is
considered to our framework to improve our
system performance. We controlled the detail
of the motion and the geometry by the distance
between the camera and the character’s
position. As the result of our experiments, the
image and the animation quality was affordable.
Our preprocessing method was particularly
useful to the monotonous motion and complex
articulated figure’s motion with many joints.
Because of the tree reconstruction time,
variable motion was less efficient than the
monotonous motion.

Using our method to the complex crowd
scene like urban or game environment, we
expect a more enhanced performance, since in
that kind of environment a lot of characters are
occluded during the motion sequence. We
estimate that the number of characters and the

complexity of joint and mesh structure in the
crowd scene will increase in the near future.
The simplification method in the crowd scene
will surely be a more challenging issue.

Future improvement is needed to our
framework. First, we didn’t consider about
view-dependent simplification. By applying
view-dependent method, we should be able to
recover more enhanced result. In this paper, we
applied traditional geometric simplification,
and we simplified motion and mesh
independently. Another work we need to
improve is embedding the local geometric part
to the joint segment. By embedding the
geometry to the joint segment, we should be
able to control the motion and the mesh detail
simultaneously and expect a more affordable
simplification result.

Acknowledgements
This research has been funded by ‘Seoul
Institutes of the Arts’. We would like to thank
‘KAIST VR Lab’, ‘Kaydara Motion Builder™’
and ‘HiWin’ for providing character motions
and models.

References
[1] Z. Popovic and A. Witkin. Physically

based motion transformation. ACM
SIGGRAPH 99, pages 11-20, 1999.

[2] D. Carlson and J. Hodgins. Simulation
levels of detail for real-time animation.
Graphics Interface 97, 1997.

[3] H. Hoppe. Progressive mesh. ACM
SIGGRAPH 96, pages 99-108, 1996.

[4] M. Garland and P. Heckbert. Mesh
simplification with quadric error metrics.
ACM SIGGRAPH 97, pages 209-216,
1997.

[5] H. Kim and K. Wohn. Multiresolution
model generation with geometry and
texture. VSMM 2001, 2001.

[6] F. Tecchia and Y. Chrysanthou. Real-
time rendering of densely populated
urban environments. 10th Eurographics
Workshop on Rendering, pages 45–56,
2000.

[7] A. Aubel, R. Boulic and D. Thalmann.
Real-time display of virtual humans:
Level of details and impostors. IEEE
Transactions on Circuits and Systems for
Video Technology, Special Issue on 3D
Video Technology, 10(2): 207–217, 2000.

[8] E. Bouvier, E. Cohen and L. Najman.
From crowd simulation to airbag
deployment: particle systems, a new
paradigm of simulation. Journal of
Electronic Imaging, 6(1): 94-107, 1997.

[9] S. Musse and D. Thalmann. Hierarchical
model for real time simulation of virtual
human crowds. IEEE Transactions on
Visualization and Computer Graphics,
7(2): 152-164, 2001.

[10] D. Helbing. A fluid-dynamic model for
the movement of pedestrians. Complex
Systems, pages 391–415, 1992.

[11] S. Shekhar and Q. Lu. Evacuation
planning algorithms: A capacity
constrained routing approach. 2002.

[12] X. Tu and D. Terzopoulos. Artificial
fishes: physics, locomotion, perception,
behavior. ACM SIGGRAPH 94, 1994.

[13] D. Brogan and J. Hodgins. Group
behaviors for systems with significant
dynamics. Autonomous Robots, 4: 137-
153, 1997.

[14] S. Musse and D. Thalmann. A model of
human crowd behavior. Workshop of
Computer Animation and Simulation of
Eurographics 97, 1997.

[15] C. Reynolds. Flocks, herds and schools:
A distributed behavioral model. ACM
SIGGRAPH 87, 1987.

[16] T. Kim, S. Park and S. Shin. Rythmic
motion synthesis based on motion beat
analysis. ACM SIGGRAPH 03, 2003.

[17] B. Blumberg and T. Galyean. Multi-level
direction of autonomous creatures for
real-time virtual environments. ACM
SIGGRAPH 95, pages 47–54, 1995.

[18] K. Perlin and A. Goldberg. Improv: A
system for scripting interactive actors in
virtual worlds. ACM SIGGRAPH 96,
pages 205–216, 1996.

[19] J. Lee, J. Chai, P. Reitsma, J. Hodgins
and N. Pollard. Interactive control of
avatars animated with human motion data.
ACM SIGGRAPH 02, 2002.

[20] T. Di Giacomo, C.Joslin, S. Garchery, N.
Magnenat-Thalmann. Adaptation of
Facial and Body Animation for MPEG-
based Architectures. IEEE Cyberworlds,
pages 221, 2003.

[21] F. Tecchia, C. Loscos and Y.
Chrysanthou. Image Based Crowd
Rendering. IEEE CG&A March/April,
pages 36-43, 2002.

