618 research outputs found

    Relationship between electroencephalographic data and comfort perception captured in a Virtual Reality design environment of an aircraft cabin

    Get PDF
    Successful aircraft cabin design depends on how the different stakeholders are involved since the first phases of product development. To predict passenger satisfaction prior to the manufacturing phase, human response was investigated in a Virtual Reality (VR) environment simulating a cabin aircraft. Subjective assessments of virtual designs have been collected via questionnaires, while the underlying neural mechanisms have been captured through electroencephalographic (EEG) data. In particular, we focused on the modulation of EEG alpha rhythm as a valuable marker of the brain's internal state and investigated which changes in alpha power and connectivity can be related to a different visual comfort perception by comparing groups with higher and lower comfort rates. Results show that alpha-band power decreased in occipital regions during subjects' immersion in the virtual cabin compared with the relaxation state, reflecting attention to the environment. Moreover, alpha-band power was modulated by comfort perception: lower comfort was associated with a lower alpha power compared to higher comfort. Further, alpha-band Granger connectivity shows top-down mechanisms in higher comfort participants, modulating attention and restoring partial relaxation. Present results contribute to understanding the role of alpha rhythm in visual comfort perception and demonstrate that VR and EEG represent promising tools to quantify human-environment interactions

    Neuroimaging in social anxiety disorder—a meta-analytic review resulting in a new neurofunctional model.

    Get PDF
    Social anxiety disorder (SAD) is one of the most frequent anxiety disorders. The landmark meta-analysis of functional neuroimaging studies by Etkin and Wager (2007) revealed primarily the typical fear circuit as overactive in SAD. Since then, new methodological developments such as functional connectivity and more standardized structural analyses of grey and white matter have been developed. We provide a comprehensive update and a meta-analysis of neuroimaging studies in SAD since 2007 and present a new model of the neurobiology of SAD. We confirmed the hyperactivation of the fear circuit (amygdala, insula, anterior cingulate and prefrontal cortex) in SAD. In addition, task-related functional studies revealed hyperactivation of medial parietal and occipital regions (posterior cingulate, precuneus, cuneus) in SAD and a reduced connectivity between parietal and limbic and executive network regions. Based on the result of this meta-analysis and review, we present an updated model of SAD adopting a network-based perspective. The disconnection of the medial parietal hub in SAD extends current frameworks for future research in anxiety disorders.This is the author's accepted manuscript. The final version is printed by Elsevier in Neuroscience & Biobehavioral Reviews here: http://www.sciencedirect.com/science/article/pii/S0149763414002012

    Constructing Virtual Asymmetric Opponents from Data and Models in the Literature: Case of Crowd Rioting

    Get PDF
    This paper describes an effort to integrate human behavior models from a range of ability, stress, emotion, decision theoretic, and motivation literatures into a game-theoretic framework appropriate for representing synthetic asymmetric agents and scenarios. Our goal is to create a common mathematical framework (CMF) and an open agent architecture that allows one to research and explore alternative behavior models to add realism to software agents - e.g., physiology and stress, personal values and emotive states, and cultural influences. Our CMF is based on a dynamical, game-theoretic approach to evolution and equilibria in Markov chains representing states of the world that the agents can act upon. In these worlds the agents\u27 utilities (payoffs) are derived by a deep model of cognitive appraisal of intention achievement including assessment of emotional activation/decay relative to value hierarchies, and subject to (integrated) stress and related constraints. We present the progress to date on the mathematical framework, and on an environment for quickly editing opponents in terms of the various elements of the cognitive appraiser, utility generators, value hierarchies, and Markov chains. We illustrate the approach via an example training game for counter-terrorism and crowd management. Future research needs are elaborated including validity issues and ways to overcome the gaps in the behavioral literatures that confront developers of asymmetric forces

    Human emotion simulation in a dynamic environment

    Get PDF
    The aim of this work is to contribute to the believability of the simulated emotions for virtual entities to allow them display human like features. Endowing virtual entities with such features requires an appropriate architecture and model. For that, a study of emotional models from different perspective is undertaken. The fields include Psychology, Organic Components, Attention study and Computing. Two contributions are provided to reach the aim. The first one is a computational emotional model based on Scherer’s theory (K. Scherer, 2001). This contribution allows to generate a series of modifications in the affective state from one event by contrast to the existing solutions where one emotion is mapped to one single event. Several theories are used to make the model concrete. The second contribution make use of attention theories to build a paradigm in the execution of tasks in parallel. An algorithm is proposed to assess the available resources and allocate them to tasks for their execution. The algorithm is based on the multiple resources theory by Wickens (Wickens, 2008). The two contributions are combined into one architecture to produce a dynamic emotional system that allows its components to work in parallel. The first contribution was evaluated using a questionnaire. The results showed that mapping one event into a series of modifications in the affective state can enhance the believability of the simulation. The results also showed that people who develop more variations in the affective state are more perceived to be feminine

    INNOVATING CONTROL AND EMOTIONAL EXPRESSIVE MODALITIES OF USER INTERFACES FOR PEOPLE WITH LOCKED-IN SYNDROME

    Get PDF
    Patients with Lock-In-Syndrome (LIS) lost their ability to control any body part beside their eyes. Current solutions mainly use eye-tracking cameras to track patients' gaze as system input. However, despite the fact that interface design greatly impacts user experience, only a few guidelines have been were proposed so far to insure an easy, quick, fluid and non-tiresome computer system for these patients. On the other hand, the emergence of dedicated computer software has been greatly increasing the patients' capabilities, but there is still a great need for improvements as existing systems still present low usability and limited capabilities. Most interfaces designed for LIS patients aim at providing internet browsing or communication abilities. State of the art augmentative and alternative communication systems mainly focus on sentences communication without considering the need for emotional expression inextricable from human communication. This thesis aims at exploring new system control and expressive modalities for people with LIS. Firstly, existing gaze-based web-browsing interfaces were investigated. Page analysis and high mental workload appeared as recurring issues with common systems. To address this issue, a novel user interface was designed and evaluated against a commercial system. The results suggested that it is easier to learn and to use, quicker, more satisfying, less frustrating, less tiring and less prone to error. Mental workload was greatly diminished with this system. Other types of system control for LIS patients were then investigated. It was found that galvanic skin response may be used as system input and that stress related bio-feedback helped lowering mental workload during stressful tasks. Improving communication was one of the main goal of this research and in particular emotional communication. A system including a gaze-controlled emotional voice synthesis and a personal emotional avatar was developed with this purpose. Assessment of the proposed system highlighted the enhanced capability to have dialogs more similar to normal ones, to express and to identify emotions. Enabling emotion communication in parallel to sentences was found to help with the conversation. Automatic emotion detection seemed to be the next step toward improving emotional communication. Several studies established that physiological signals relate to emotions. The ability to use physiological signals sensors with LIS patients and their non-invasiveness made them an ideal candidate for this study. One of the main difficulties of emotion detection is the collection of high intensity affect-related data. Studies in this field are currently mostly limited to laboratory investigations, using laboratory-induced emotions, and are rarely adapted for real-life applications. A virtual reality emotion elicitation technique based on appraisal theories was proposed here in order to study physiological signals of high intensity emotions in a real-life-like environment. While this solution successfully elicited positive and negative emotions, it did not elicit the desired emotions for all subject and was therefore, not appropriate for the goals of this research. Collecting emotions in the wild appeared as the best methodology toward emotion detection for real-life applications. The state of the art in the field was therefore reviewed and assessed using a specifically designed method for evaluating datasets collected for emotion recognition in real-life applications. The proposed evaluation method provides guidelines for future researcher in the field. Based on the research findings, a mobile application was developed for physiological and emotional data collection in the wild. Based on appraisal theory, this application provides guidance to users to provide valuable emotion labelling and help them differentiate moods from emotions. A sample dataset collected using this application was compared to one collected using a paper-based preliminary study. The dataset collected using the mobile application was found to provide a more valuable dataset with data consistent with literature. This mobile application was used to create an open-source affect-related physiological signals database. While the path toward emotion detection usable in real-life application is still long, we hope that the tools provided to the research community will represent a step toward achieving this goal in the future. Automatically detecting emotion could not only be used for LIS patients to communicate but also for total-LIS patients who have lost their ability to move their eyes. Indeed, giving the ability to family and caregiver to visualize and therefore understand the patients' emotional state could greatly improve their quality of life. This research provided tools to LIS patients and the scientific community to improve augmentative and alternative communication, technologies with better interfaces, emotion expression capabilities and real-life emotion detection. Emotion recognition methods for real-life applications could not only enhance health care but also robotics, domotics and many other fields of study. A complete system fully gaze-controlled was made available open-source with all the developed solutions for LIS patients. This is expected to enhance their daily lives by improving their communication and by facilitating the development of novel assistive systems capabilities

    Human Behavior Models for Agents in Simulators and Games: Part I: Enabling Science with PMFserv

    Get PDF
    This article focuses on challenges to improving the realism of socially intelligent agents and attempts to reflect the state of the art in human behavior modeling with particular attention to the impact of personality/cultural values and affect as well as biology/stress upon individual coping and group decision-making. The first section offers an assessment of the state of the practice and of the need to integrate valid human performance moderator functions (PMFs) from traditionally separated sub-fields of the behavioral literature. The second section pursues this goal by postulating a unifying architecture and principles for integrating existing PMF theories and models. It also illustrates a PMF testbed called PMFserv created for implementating and studying how PMFs may contribute to such an architecture. To date it interconnects versions of PMFs on physiology and stress (Janis-Mann, Gillis-Hursh, others); personality, cultural and emotive processes (Damasio, Cognitive Appraisal-OCC, value systems); perception (Gibsonian affordance); social processes (relations, identity, trust, nested intentionality); and cognition (affect- and stress-augmented decision theory, bounded rationality). The third section summarizes several usage case studies (asymmetric warfare, civil unrest, and political leaders) and concludes with lessons learned. Implementing and inter-operating this broad collection of PMFs helps to open the agenda for research on syntheses that can help the field reach a greater level of maturity. Part II presents a case study in using PMFserv for rapid scenario composability and realistic agent behavior

    A data-driven approach towards a realistic and generic crowd simulation framework

    Get PDF
    Jacob Sinclair studied and developed a data-driven approach towards a realistic and generic crowd simulation framework. He found that by using virtual reality and questionnaires, we can gather all types of real world data. He also found that an AI framework developed using all types of data can produce similar results to the real world. This AI framework has the potential to be used to improve areas such as emergency management and response, traffic control, building design, video games, etc

    Toward Realism in Human Performance Simulation

    Get PDF
    This chapter focuses on challenges to improving the realism of socially intelligent agents and attempts to reflect the state of the art in human behavior modeling with particular attention to the impact of values, emotion, and physiology/stress upon individual and group decision-making. The goal is to help those interested in constructing more realistic software agents for use in human performance simulations in both training and analysis settings. The first two sections offer an assessment of the state of the practice and of the need to make better use of human performance moderator functions (PMFs) published in the behavioral literature. The third section pursues this goal by providing an illustrative framework for integrating existing PMF theories and models, such as those on physiology and stress, cognitive and emotive processes, individual differences, and group and crowd behavior, among others. The fourth section presents asymmetric warfare and civil unrest case studies to examine some of the concerns affecting implementation of PMFs such as verification, validation, and interoperability with existing simulators, artificial life emulators, and artificial intelligence components. The final section of this chapter concludes with lessons learned and with some challenges if the field is to reach a greater level of maturity
    • …
    corecore