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Abstract
This paper describes an effort to integrate human behavior models from a range of ability, stress, emotion,
decision theoretic, and motivation literatures into a game-theoretic framework appropriate for representing
synthetic asymmetric agents and scenarios. Our goal is to create a common mathematical framework (CMF)
and an open agent architecture that allows one to research and explore alternative behavior models to add
realism to software agents - e.g., physiology and stress, personal values and emotive states, and cultural
influences. Our CMF is based on a dynamical, game-theoretic approach to evolution and equilibria in Markov
chains representing states of the world that the agents can act upon. In these worlds the agents' utilities
(payoffs) are derived by a deep model of cognitive appraisal of intention achievement including assessment of
emotional activation/decay relative to value hierarchies, and subject to (integrated) stress and related
constraints. We present the progress to date on the mathematical framework, and on an environment for
quickly editing opponents in terms of the various elements of the cognitive appraiser, utility generators, value
hierarchies, and Markov chains. We illustrate the approach via an example training game for counter-terrorism
and crowd management. Future research needs are elaborated including validity issues and ways to overcome
the gaps in the behavioral literatures that confront developers of asymmetric forces.
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ABSTRACT: This paper describes an effort to integrate human behavior models from a range of ability, stress, 
emotion, decision theoretic, and motivation literatures into a game-theoretic framework appropriate for representing 
synthetic asymmetric agents and scenarios. Our goal is to create a common mathematical framework (CMF) and an 
open agent architecture that allows one to research and explore alternative behavior models to add realism to software 
agents - e.g., physiology and stress, personal values and emotive states, and cultural influences. Our CMF is based on a 
dynamical, game-theoretic approach to evolution and equilibria in Markov chains representing states of the world that 
the agents can act upon. In these worlds the agents' utilities (payoffs) are derived by a deep model of cognitive 
appraisal of intention achievement including assessment of emotional activation/decay relative to value hierarchies, 
and subject to (integrated) stress and related constraints. We present the progress to date on the mathematical 
framework, and on an environment for quickly editing opponents in terms of the various elements of the cognitive 
appraiser, utility generators, value hierarchies, and Markov chains. We illustrate the approach via an example training 
game for counter-terrorism and crowd management. Future research needs are elaborated including validity issues 
and ways to overcome the gaps in the behavioral literatures that confront developers of asymmetric forces. 

 
1. Introduction 
 

A common concern amongst agent developers is to 
increase the realism of the agents’ behavior and cognition. 
In training, wargaming, and operations rehearsal 
simulators there is a growing realization that greater 
cognitive subtlety and behavioral sensitivity in the agents 
leads to both (1) a greater ability to explore alternative 
strategies and tactics when playing against them and (2) 
higher levels of skill attainment for the human trainees: 
e.g., see [1] and [2]. For this to happen, the tactics, 
performance, and behavior of agents must change as one 
alters an array of behavioral and cognitive variables. As a 
few examples, one would like agent behavior to 
realistically change as a function of: the culture they come 
from (vital for mission rehearsal against forces from 
different countries); their level of fatigue and stress over 
time and in different situations; and/or the group 
effectivity in, say, the loss of an opposing force’s leader.  
At present, however, this does not happen, and in most of 
the available combat simulators the agents conduct 
operations endlessly without tiring, never make mistakes 
of judgment, and uniformly (and predictably) carry out 

the doctrines of symmetric, sometimes vanquished 
opponents, such as the Warsaw Pact, among others. 
 
Closely related to the topic of emulating human behavior 
is that of “believability” of agents. The basic premise is 
that characters should appear to be alive, to think broadly, 
to react emotionally and with personality   to appropriate 
circumstances. There is a growing graphics and animated 
agent literature on the believability topic (e.g., see [3], [4] 
and [5]), and much of this work focuses on using great 
personality to mask the lack of deeper reasoning ability.  
However, in this paper we are less interested in the 
kinesthetics, media and broadly appealing personalities, 
than we are in the planning, judging, and choosing types 
of behavior -- the reacting and deliberating that goes on 
“under the hood” of embodied agents. Finally, and 
perhaps most importantly the human behavior literature is 
fragmented and it is difficult for agent developers to find 
and integrate published models of deeper behavior. Our 
research involves developing an integrative framework 
for emulating human behavior in order to make use of 
published behavioral results to construct agent models.  
We are not attempting basic research on how humans 
think but on how well existing models might work 



  

together in agent settings.  That is, the framework 
presented here is intended for experiments on how to 
integrate and best exploit published behavioral models, so 
as to improve the realism of agent behaviors when one 
seeks to model individual differences such as stress, 
emotion, and culture. 
 
In particular, we are interested in emergent macro-
behavior due to micro-decisions of bounded-rational 
agents and with developing a framework that promotes 
the study of specific phenomena (i.e., emotions, stress, 
and cultural values) that lead to limits of rationality. What 
motivates agents to select actions that sub-optimize their 
own utility as well as that of groups whose causes they 
seek to advance? To explore this question, we have been 
researching a framework that allows one to investigate the 
duality of mind-body interaction in terms of the impact of 
environment and physiology on stress and, in turn, of 
stressors on rationality. Our framework also attempts to 
integrate value systems and emotion-based appraisals of 
decision options along with the stress constraints. That is, 
we have been working towards a framework that permits 
one to examine the impacts of stress, culture, and emotion 
upon decisionmaking . With such a framework, one 
should, as an example, be able to readily model and 
visually render what makes one protesting crowd throw 
stones while another peacefully demonstrates. 
 
As soon as one opens the door to modeling the impact of 
stress, culture, and emotion on rationality, one must be 
amenable to the idea that competing views, results, 
models, and approaches have to be examined and 
potentially integrated. The point of such a research 
program should not be to argue for one approach or 
theory over another, but to provide ways to readily study 
alternative models of whatever contributes to the 
phenomena of interest.  

 
1.1 Role of Emotion and Concern Ontologies in Agent 
Behavior 
 
“Emotive computing” is often taken to mean the linking 
of the agent state to facial and body expressions, vocal 
intonation, and humorous or quirky animation effects: 
e.g., see [6], [7] and [4]. However, recent theories identify 
emotions as vital to the decision-making process and to 
manage competing motivations [8].  According to these 
theories, integrating emotion models into our agents will 
yield not only more believable decision-makers, but also 
more realistic behavior by providing a deep model of 
utility.  These agents will delicately balance, for example, 
threat elimination versus self-preservation, in much the 
same way it is believed that people do. These theories 
suggest that without adding emotional construal of events, 
the agents won’t know what to focus upon and what to 
ignore, and won’t know how to balance the set of next -

step alternative actions against larger concerns, as in the 
case of Damasio’s pre-frontal cortex damaged patients 
who spend the entire day mired in highly logical decision 
analyses of banalities, even at the cost of their own self-
interest and survival. 
 
Important implementations of these ideas and theories 
were attempted in the “believable agents” movement such 
as [4] and [5] which seek to improve the believability of 
characters’ behavior in fictional settings with the help of 
an emotion model. The OCC model is probably the most 
widely implemented of the emotion models (e.g., [9], [10] 
and [11]) and it explains the mechanisms by which 
events, actions, and objects in the world around us 
activate emotional construals. In both Oz [4] and the 
Affective Reasoner [5] projects, emotion was largely 
modeled as a reactive capability that helped characters to 
recognize situations and to reflect broad and believable 
personality characteristics. Later versions of Oz include a 
behavior planner, but the link between emotion construals 
and behavioral choice is never well articulated in their 
published accounts. On the other hand, [12] and [13] 
concretely extend the OCC model via the use of an event 
planner into a deeper, deliberative reasoning mode where 
agents were able to construe the value of plans and plan 
elements (events that haven’t happened yet). In the 
current paper, we extend this still further so that agents 
can construe the value not only of plan elements (future 
events), but so they also can construe the impact of 
objects and behavior standards both on themselves and on 
those they like/dislike. We go beyond this too to the area 
of what is probably unconscious construals of stressors 
such as fatigue, time pressure, and physiological 
pressures. This means we attempt a fairly full 
implementation of the OCC model for reactions and 
deliberations of all types of events, actions, and objects.  
 
This approach provides a generalizable solution to 
another issue in the OCC model. The OCC model 
indicates what emotions arise when events, actions, or 
objects in the world are construed, but not what causes 
those emotions or what actions an agent is likely to take 
as a result. There is no connection between emotion and 
world values, even though other theories suggest such a 
link [8], [10] and [11]. In contrast, concern or value 
ontologies are readily available in the open literature (e.g., 
the ten commandments or the Koran for a moral code, 
military doctrine for action guidance, etc.) and may 
readily be utilized to implement an agent of a given type 
in the framework we present here. Ideally, one would like 
to tie such concern ontologies indirectly to the emotional 
processes of the agent, so that situation recognition as 
well as utilities for next actions are derived from emotions 
about ontologies and so that both reacting and 
deliberating (judging, planning, choosing, etc.) are 
affected by emotion.  



  

2. Cognitive Architecture and Framework  
 
The research described here is not to propose the best 
cognitive architecture or agent algorithms but to propose a 
reasonable framework within which the many 
contributions from the literature can be integrated, 
investigated, and extended as needed. That framework 
includes four somewhat arbitrarily separated subsystems 
plus a memory that form the stimulus-response capability 
of an agent as shown in Figure 2. There are a large 
number of similar frameworks in the literature: e.g. a 
useful comparison of 60 such models may be found in 
Crumley & Sherman [14]. The model we depict here 
shows an agent that receives stimuli and formulates 
responses that act as stimuli and/or limits for subsequent 
systems. The flow of processing in a purely reactive 
system would be counter-clockwise starting at the 
“stimuli” label, however, we are also interested in a 
deliberative system, one that can ponder its responses and 
run clockwise from the “cognitive system” to seek stimuli 
to support alternative response testing.  
 

 
Figure 1 – Top Level of the Integrative Architecture for 
Researching Alternative Human Behavior Models for 

Generic Agents  
 

The agent model of interest to us is that of a modified 
Markov Decision Process (MDP). That is, the agent seeks 
to traverse a hierarchical and multi-stage Markov chain 
which is the set of nested games such as the one depicted 
partially in the case study (Sect. 3). In order for the agent 
to be aware of this chain one would need to place it into 
the agent’s working memory as G(A,C), a set of possible 
goals and tasks that the agent might wish to work its way 
through as the game unfolds. More broadly, working 
memory should store and process beliefs, desires, and 
intentions. In keeping with the BDI agent model, the 

beliefs are those processed in the game theoretic sense of 
observing the world and of forming and remembering 
simple statistical models of the actions of those near us in 
the situation of interest. Desires are not well-defined in 
the BDI model, so here we define them as the future-
focused affective states of hope and fear as generated by 
the emotion system (Section 3.3). Intentions are the 
planned actions and sets of orders that the agent is seeking 
to carry out (amn in A). 
 
2.1 Stress and the Physiological Subsystem 
 
The physiological subsystem of Figure 1 initially reacts to 
a set of stimuli that are perceived from and/or experienced 
in the environment. This subsystem includes all sensory 
apparatus, but also grouped into here are a number of 
physical processes that may be thought of as reservoirs 
that can be depleted and replenished up to a capacity. At 
present we model eight physiological reservoirs or 
stressors, including: energy, sleep, nutrients, noise and 
light impacts, and other physical capacities: [15] provides 
more detail. For each of these there are a large number of 
stressors that moderate an agent’s ability to perform up to 
capacity, and that in some cases send out alarms, for 
example when pain occurs or when other thresholds are 
exceeded (e.g., hunger, fatigue, panic, etc.). An important 
criterion for such a module is that it supports study of 
common questions about performance moderators: e.g., 
the easy addition or deletion of reservoirs of interest to a 
given study or training world (e.g., pain from virtual 
injuries, stress from proximity to land mines, etc.), 
individual differences in reacting to the same stressors, 
and/or how to model reservoir behaviors either linearly 
(our present approach) or non-linearly such as with bio-
rhythms. Another vital criterion for such a module is that 
it should support studying alternative mechanisms for 
combining the many low level stressors and performance 
moderator functions into a single stress level. It is the 
overall stress that effects each of the other subsystems, 
and one would like a framework that shows how to 
compute an integrated level and then each of the 
subsequent modules need capabilities to reflect how their 
functioning is effected – emotions about stress, judgments 
under stress, and stressed motor/expressive acts. 

 

In particular, we model integrated stress or iSTRESS as a 
result of three prime determinants – (1) event stress (ES) 
which tracks agents’ adverse and positive events, (2) time 
pressure (TP) which is a normalized ratio of available vs. 
required time for the tasks at hand, and (3) effective 
fatigue (EF) which integrates a normalized metric based 
on current level of many of the physiological reservoirs. 
Each of these is quantitatively derived and then 
emotionally filtered since a stoic will construe the same 
facts differently than a nervous type. The next section 
describes the emotional filtering. The quantitative factors 
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that go into these modifiers are then summarized via the 
following where f{.} is currently a linear additivity 
model:   

 
iSTRESS(t) = f{ES(t), TP(t), EF(t)}             [1.0] 
 

 

Figure 2 - The Classic Performance Moderator Function 
is an Inverted-U 

 
It is one thing to quantitatively derive an integrated metric 
called iSTRESS, but it is another to interpret its meaning 
and to translate that meaning into overall agent coping 
style. The approach we’ve adopted for accomplishing this 
translation is derived from Janis & Mann [16] who 
provide what is probably the most widely sited taxonomy 
of decision strategies for coping under stress, time 
pressure, and risk. We interpret this taxonomy as the steps 
of the inverted U-curve of Figure 2 and define it below. 
The taxonomy includes a decisional balance sheet that 
indicates how stress, time pressure, and risk drive the 
decision maker from one coping strategy to another and 
we depict these items across the X-axis of Figure 2.  
 
In particular, we use the framework without further 
elaboration here to label the cutoff points for the 
integrated stress, or the iSTRESS variable and to 
constrain the decision making since a given stress level 
dictates the agent’s ability to collect and process both 
information and action alternatives (a ∈A) when in a 
given state, s. 
All but the third of the coping patterns vigilance regarded 
by Janis & Mann [16] as "defective." The first two, while 
occasionally adaptive in routine or minor decisions, often 
lead to poor decision-making if a vital choice must be 
made. Similarly, the last two patterns may occasionally be 
adaptive but generally reduce the DM's chances of 
averting serious loss. The authors note, vigilance, 

although occasionally maladaptive if danger is imminent 
and a split-second response is required, generally leads to 
decisions of the best quality". Some authors have since 
refined these ideas as with Klein et al. [17] who shows 
that experts work effectively in the “near panic” mode 
where they immediately recognize a best or near best 
alternative without vigilant scanning of other alternatives.    
 
Unfortunately, Janis & Mann [16] do not provide either 
(1) precise threshold values (Ω i) that indicate when 
decision makers trigger a change in coping style, or (2) 
any insight into how to integrate the many diverse stimuli, 
factors, or PMFs that determine stress and time pressure 
or risk. For these purposes, at present we use logic rules 
to combine these three factors. For example, such rules 
must account for facts such as a Very High value of 
anyone of the factors could push the agent to panic. 
However, panic is more likely if at least one factor is very 
high and another is high. Or alternatively, if one factor is 
very high and both of the others are moderately high, 
panic might also result.  
 
The results of physiology and stress are thus a bounding 
on the parameters that guide the agent’s decision or 
cognitive subsystem and that dictate the coping style it is 
able to select. These parameters and decision style 
constraints do not in themselves provide any guidance on 
how to construe the situation, on the sense-making that 
needs to go on. For that we turn to the emotion 
subsystem. 

 
2.2 Emoti on Appraisal as a Deep Model of Utility 
 
In particular, the emotion subsystem receives stimuli from 
the sensors as adjusted and moderated by the 
physiological system. It includes a long term associative 
or connectionist memory of its concern ontologies that are 
activated by the situational stimuli as well as any 
internally recalled stimuli. These stimuli and their impact 
on the concern ontologies act as releasers of alternative 
emotional construals and intensity levels. These 
emotional activations in turn provide the somatic markers 
that serve as situation recognition and that help us to 
recognize a problem that needs action, potential decisions 
to act on, and so on. In order to support research on 
alternative emotional construal theories this subsystem 
must include an easily alterable set of activation/decay 
equations and parameters for a variable number of 
emotions. Further, since construals are based on concern 
ontologies, this module must serve as a concerns ontology 
processor and editor. Simply by authoring alternative 
concern ontologies, one should be able to capture the 
behaviors of alternative “types” of people and 
organizations and how differently they would assess the 
same events, actions, and artifacts in the world. This 
requires the emotion module to derive the elements of 
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utility and payoff that the cognitive system will use to 
access alternative actions.  
 
In the next section we will examine how to combine 
multiple emotions into a utility estimate for a given state. 
For now we will only examine how our different 
emotions arise when confronted by a new state, s, of the 
world, or in reaction to thinking about being in that state. 
In general, we propose that any of a number of ξ diverse 
emotions could arise with intensity, I, and that this 
intensity would be somehow correlated to importance of 
one’s values or concern set (C) and whether those 
concerns succeed or fail for the state in question.  We 
express this as   
 

∑ ∑
∈ ∈

=
ξ

ξ

Jj Cijklc

jijlk NOrcWsI )],(f2*)1(f*)([)(       [2.0] 

 
Where, 
Iξ(sk) = Intensity of emotion, ξ, due to the kth state of the 
world 
Jξ = The set of all agents relevant toξ .   J1 is the set 
consisting only of the self, and J2 is the set consisting of 
everyone but the self, and J is the union of J1 and J2. 
Wij(Cijkl ) = Weighted importance of the values of agent j 
that succeed and fail in one’s ith concern set. 
Cijkl  = A list of paths through the ith ontology of agent j 

triggered to condition l  (0=success or 1=failure) by state 
k. 
f1(rjk) = A function that captures the strength of 
positive and negative relationships one has with the j 
agents and objects that are effected or spared in state k 
f2(O,N) = A function that captures temporal  
factors of the state and how to discount and  
merge one’s emotions from the past, in the  
present, and for the future 
 
This expression captures the major dimensions of concern 
in any emotional construal – values, relationships, and 
temporal aspects. For the sake of simplicity, we assume 
linear additivity of multiple arousals of the same emotion 
from the i=1,I different sets of values that the state may 
precipitate.  
 
There are several emotion models from the psychology 
literature that can help to provide greater degrees of detail 
for such a model, particularly a class of models known as 
cognitive appraisal theories.  These include the models 
mentioned earlier [9], [10] and [11] that take as input a set 
of things that the agent is concerned about and how they 
were effected recently, and determine which emotions 
result. Most of them fit into the structure of equation 2.0 
but they have different strengths to bring to bear. At 
present we have decided to pursue the OCC model [9] to 
see how it helps out. In the OCC model, there are 11 pairs 

of oppositely valenced emotions (ξ). One pair we use here 
as an example is pride-shame. Another pair we mentioned 
earlier was hope-fear for future events.  One can 
experience both emotions of a given pair at the same time 
and if their intensities are equal, they cancel out from a 
utility perspective. 
 
The OCC model assumes a decision making agent has 3 
types of concern trees about the world: goals for action, 
standards that people should follow, and preferences for 
objects. Let us suppose as in Figures 3a & b that we have 
a terrorist agent who has two concern trees (let |C| = 2): 
one for standards (i=1) about how agents should act and 
one for preferences about objects or artifacts in the world 
(i=2). Of course any such agent would have many more 
concern trees and each might be more richly filled in, but 
these will suffice for the sake of the example. And in fact, 
the stopping rule on filling in concern trees for any agent 
is the limit of what behavior is needed from them in the 
scenario or micro-world in question. One can see from 
Figure 3 that concern trees bottom out in leaf nodes that 
can be tested against elements (events, actions, nearby 
objects, etc.) of the current state, k. Further, concern trees 
hold an agent’s previously learned values or importance 
weights. Each link of a concern tree is labeled with a 
weight, w, and the sum of child weights always sums to 
1.0 for the sake of convenience. The children can be 
either strictly or non-exclusively conjunctive or 
disjunctive. 
 
Thus far in our research we have derived the structure and 
weights on these trees manually as part of the process of 
building agents for a given micro-world, though one 
could in principle derive these trees via machine learning 
and knowledge discovery when interacting with a news 
event dataset about a given terrorist group. The way we 
use these trees in Equation 2.0 is as an evaluation function 
for Wi. That is, when a given state of the world causes a 
leaf node to fail or succeed, that leads to the wi being 
multiplied together up the branch of the tree from leaf 
node to root, and the overall Wi of that concern tree is 
computed. We gave details of how this works in Johns & 
Silverman [18]. 
 
Consider how the use of the trees of Figure 3a&b result in 
the weighting on a strategy resulting in being dead. Upon 
the agent contemplating his death (k=”dead”), no 
preferences are caused to succeed or fail by being dead.  
Consequently, no preference-based emotions would be  
generated from this agent’s object preference ontology. 
However, k=’dead’ does effect the agent’s standards tree 
and one standard (i = 1) directly succeeds and one fails.  
He feels pride at having attempted his mission 
(c=”attempt current mission”) for two reasons: he has 
fulfilled his commitment to the organization, and has 
attempted something to correct a perceived injustice. 



  

3a – Terrorist’s Standards for Agent 
Behavior/Action 

3b – Terrorist’s Preferences for Artifacts or Objects 
 

Figure 3 – Concern Ontologies Showing Part of the 
Standards and Preferences of a Sample Terrorist 

 
However, his mission involved returning home safely, 
which is clearly thwarted by failing to survive.  
Consequently, he will feel shame at his incompetence as 
well. 
 
On balance, in the current state, pride slightly outweighs 
shame at being a martyr. Whether an agent’s decision 
subsystem would choose death, however, is also a 
function of its iSTRESS or Ω  level and of its current goal 
tree construals, a topic we omitted from this example due 
to space considerations, though we illustrate a goal tree 
construal in Sec.3. Also omitted from this discussion are 
several other dimensions of the agent’s reasoning in social 
situations, a few examples of which are: (1) construing 
relationships to others in the scenario that the agent likes, 
dislikes, etc.; (2) explicit modeling of partial knowledge 
of the emotions of those others to further guide his own 
actions; (3) assigning credit/blame to others for various 
actions and events; and (4) managing likelihood and 
temporal factors. The OCC model provides a number of 

inroads into how to handle these and we address them 
rather fully, along with a number of open research 
questions, in Silverman [15]. 
 
2.3 Game Theory and the Cognitive Subsystem 
 
The cognitive subsystem serves in our model as the point 
where the diverse emotions, stressors, memories, and 
other factors are all integrated into a decision for action 
(or inaction) to transition to a next state (or return to the 
same state) in the Markov decision process sense. In 
essence, at each node of the Markov chain (and at each 
tick of the simulator’s clock) each agent must be able to 
process the following information: the state name (or ID); 
the allowable transitions and what action might cause 
those state transitions (anm in A(iSTRESS));  current 
intentions as provided in a task list or plan and the 
intentions of their prior actions; expectations of what 
other agents are going to do in this state based on recent 
history and other memories/beliefs G(A, U, C);  desires 
for actions based on the 11 pairs of emotional scales 
(Iξ(sk) where ξ = 1,22); stress-based coping level (Ω i 
where i = 1,5); and a mood, µ, that we discuss below. 
Using all this information as stimuli, the agent must select 
a decision style, Φ, also defined below, and process the 
stimuli to produce a best response (BR) that maximizes 
expected, discounted rewards or utilities in the current 
iteration of the game. The cognitive subsystem is thus 
governed by the following equation: 
 
BEST REPLY (BRt) =  Φµ , iSTRESS, Ω{Umn (s t , amnt ), pmn}, 
subject to amnt  ∈   A(iSTRESS)       [3.3] 
 
Where, 
Φµ , iSTRESS, Ω{.} = as defined below for the 
alternative values of µ, iSTRESS, and Ω  
pmn = perceived probability =  (1 – ∆) em + ∆mτ  pmτ   

umn = (1-δ)x(U from equation 3.1) 
∆ = memory coefficient (discounting the past) 
τ = number periods to look back 
      0 action m not 
situationally relevant 
em  = 1.0 action m is situationally relevant  
δ = expectation coefficient (discounting the future) 
A(iSTRESS) = action set available after integrated stress 
appraisal (see Section 2.1) 

 
We assume utilities for next states are released from the 
emotional activations. The previous section used the OCC 
model to help generate up to 11 pairs of emotions with 
intensities (Iξ) for the current and/or next state of iterative 
play. Utility may be thought of as the simple summation 
of all positive and negative emotions for an action leading 
to a state. Since there will be 11 pairs of oppositely 



  

valenced emotions in the OCC model, we normalize the 
sum as follows so that utility varies between –1 and +1: 
 
  U = Σ  Iξ(sk)/11  [3.1] 
         ξ 
While one can argue against the idea of aggregating 
individual emotions, this summation is consistent with the 
somatic marker theory. One learns a single impression or 
feeling about each state and about actions that might bring 
about or avoid those states. The utility term, in turn, is 
derived dynamically during each iteration from an 
emotional construal of the utility of each action strategy 
relative to that agent’s importance-weighted concern 
ontology minus the cost of carrying out that strategy. We 
further introduce a modifier on the emotional construal 
function – the first is a discount factor, δ, that more 
heavily weights game achievement the closer the agent is 
to the end of that stage of the game. Thus an agent might 
be conservative and construe survival as more important 
early in the game, yet be willing to make more daring 
maneuvers near the end point:e.g., see Anderson, 2001.  
 
It is useful to now turn to the discussion of the decision 
processing style function, Φµ, iSTRESS, Ω. There is a large 
literature on decision style functions (e.g., among many 
others see [19], [20], [15], [16] and [17]), and the 
discussion here is merely to indicate that there is a rich set 
of possibilities that one can explore within the framework 
proposed here.  
 
For example, under perfect conditions, humans are 
presumed to be rational and behave according to Bayes 
Theorem and expected utility, yet as conditions degrade, 
they initially follow the dictums of subjective expected 
utility theory [19] and, eventually, of Recognition Primed 
Decisionmaking [17] or panic. Cognitive Continuum 
Theory [20] and Conflict Theory [16] provide compelling 
explanations of when each decision model is likely to 
prevail, and we adopt and adapt the latter for now. 
 
2.4 Motor/Expressivity Subsystem 
 
We complete the discussion of earlier Figure 1 by turning 
now to the motor/expressive subsystem. This module 
contains libraries of stored procedures that allow the agent 
to interact with the microworld and that allow it to display 
its motor and expressive outputs. Based on stimuli from 
all the other subsystems, the motor subsystem recalls, 
activates, and adjusts the relevant stored procedures so it 
can perform the actions intended to reach the (best reply) 
next state. In attempting to carry out the actions the motor 
system seeks to carry out best reply actions and perform 
up to the limits that the physiologic system imposes and 
by expressing the emotions that currently dominate. To 
support this effort, those procedures include functions that 

allow them to portray alternative behaviors (e.g., fatigue 
leads to slower rate of movement across the screen). Also, 
the motor system serves as a stimuli to the other systems. 
For example crouching for a long period might cause 
fatigue, pain, emotive distress, and so on. 
 
3. Case Study: Emergent Crowd Behaviors  
 
We have attempted an initial, prototype implementation 
of our cognitive agent architecture to demonstrate how 
one might apply it to model the impact of alternative 
personas and motivations upon crowd behavior. This is 
not the final word on how to model crowd motivations 
and behavior, rather this is an attempt to illustrate the 
range and flexibility that the architecture supports.  
 
The population of the city is initially meandering among 
random places along set paths. Upon becoming aware of 
the protest via a message broadcast to all agents, each 
individual decides whether or not to attend the protest, 
and if so in what capacity – either to observe or to 
participate. Figure 4 shows a small group at the outset of 
the protest, marching around in picket line formation in 
front of a security guard.  While the choice of action here 
is often the same among various agents, the motivations 
for doing so can vary significantly.  In fact, one agent is 
attending on a mission for the guerilla group, with the 
express purpose of causing a public disruption. This 
simple scenario requires one to model terrorists, 
defenders, civilians, crowd dynamics, population opinion 
evolution, and so on. 

Figure 4 – Screen Shot of the Protest Scene Showing 
Observers on the Road, Picketers Holding Placards, and a 
Sole Security Agent Facing the Crowd. 



  

 
To support viewing the internals of all these agents, on 
the left side of Figure 4 is a set of agent 
identifiers/pulldowns and window tabs. One of the 
pulldowns allows the user to select a terrorist, defender, 
or civilian (including up to five types of civilians such as 
unemployed male, employed male, female, etc) to inspect. 
For the selected agent, there are several tabbed windows 
also on the left side of Figure 1  – general, accessors, 
physiology, stress, emotion, and strategy – that allow one 
to inspect what that agent experiences, feels, and thinks 
about the microworld.  From these various tabs one can 
thus piece together the agent’s beliefs, desires, and 
intentions of the moment.  
 
Let us examine a portion of the scenario in more detail so 
one can better see how the diverse agents determine their 
motives, and carry out their actions. The instigator agent 
sent by the guerilla group to the protest has a portion of 
his Markov chain that deals with encountering security, 
taunting them, and precipitating violent reactions from 
them. Using sources such as [18], [21] and [22] we have 
derived a representative concern ontology as shown in 
Figure 5 that includes strong weightings on his goals for 
belonging (to his terrorist cell), esteem from taking action 
(they tend to be young males who are action-prone), and 
self-actualization due to reaching for ideals of freedom. 
Each of these is grounded in lower level goals that are 
positively aroused by taking action against the security 
forces.  

 
Social psychologists have studied factors that contribute 
to aggressive crowd behavior: e.g., see McPhail [23] and 
Horowitz [24] among others. There is not uniform 
agreement on the particulars, but in general the common 
factors that tend to contribute include: presence of 
weapons, authoritarian government, lining up behind a 
barricade, drawing lines between “us” and “you”, 
dramatizing issues (e.g., in a speech) and making victims, 
large spatially concentrated crowds, and presence of 
television camera and crew. Also, rioters do not tend to be 
criminals, but they do tend to be the unemployed, single, 
young males without children. The bulk of attendees 
drawn to participate in the example protest are those very 
folks. They are therefore susceptible to crowd effects, and 
to a tipping event that sets them on a rampage including 
rioting and looting. 

 
The tipping event occurs when the instigator is struck by 
the checkpoint guard (a neophyte in proper crowd 
dispersal tactics), an event that is observed by those near 
the front and communicated loudly. Coupled with the 
increasingly real possibility of becoming the target of 
violence themselves, the majority of agents strongly 
concerned with personal and family safety (employed 
males, females, etc) are prone to simply disperse. There 

are insufficient security forces present for the relative size 
and density of this crowd, a fact of which the young males 
are aware.  The erupting chaos provides a perfect 
diversion for, the young unemployed males to target 
nearby stores and loot them for material items.  

 
 

Figure 5 – Overview of the Goal Portion of the Concern 
Ontology of an Agent Provocateur 

 
4. Conclusions and Next Steps  
 
To summarize, diverse communities are interested today 
in building realistic human-like behaviors into virtual 
personas. The animation and graphics approaches have 
lead to kinesthetically appealing and reactive agents. A 
few such investigators are now seeking to make them 
more behaviorally and cognitively realistic by reaching 
out to the artificial life, evolutionary computing and 
rational agent approaches. These approaches offer many 
benefits, but they need to be grounded in the behavioral 
literature if they are to be faithful to how humans actually 
behave and think. The behavioral literature, however, 
while vast, is ill-p repared for and cannot be directly 
encoded into models useful in agent architectures.  This 
sets the stage for the goals and objectives of the current 
research. 
 
A major challenge of this research, is the validity of the 
concern system ontologies and behavioral models we 
derive from the literature and try to integrate within our 
framework. As engineers, we are concerned with validity 
from several perspectives including the (1) data-



  

groundedness of the models and ontologies we extract 
from the literature, and (2) correspondence of behavioral 
emergence and collectives with actual dynamics observed 
in the real world.  In terms of data-groundedness, we 
conducted an extended review of the behavioral literature 
[15] and found a great many physiological studies that 
seem to be legitimately grounded and that possess model 
parameter significance from a statistical sense. However, 
these tend to be restricted to the performance moderator 
functions that feed into the individual reservoirs or 
components of the physiological subsystem. As soon as 
one tries to integrate across moderators and synthesize the 
iSTRESS (or even effective fatigue), one rapidly departs 
from grounded theories and enters into the realm of 
informed opinion. The problem only grows worse for the 
emotion subsystem, and for the cognitive layer if one 
hopes to incorporate behavioral decision theory, crowd 
models, and the like. And the informed opinions one 
encounters in the behavioral literature are not consistent. 
One must choose one’s HBMs and opinion leaders.  
 
We have tried to provide one such collection of HBMs in 
this paper. This is not the penultimate integrative HBM, 
rather it is at present a humble structure. We have striven 
initially for satisfying a workability test. That is, we set 
out to attempt to learn what we could gain by having 
viable models integrated across all 4 subsystems and 
across factors within each subsystem. In that regard, our 
efforts to date are successful. We now have an integrated 
fabric stitching together the models of varying 
groundedness and of different opinion leaders. We can 
rather easily plug in a new opinion leader’s model and 
play it within our framework to study its impact, its 
properties, and its strengths and weaknesses.   
 
Finally, we offer no defense at present for our failure to 
have conducted correspondence tests. Its true that the 
agents may be observed to progress through various Ω 
levels (unconflicted adherence during daily routine, 
vigilant upon arriving at the protest, and panic during the 
looting) and the OCC model makes use of the reservoirs, 
crowd proximity, and an array of goals, preferences, and 
standards to generate emotions that appear consistent with 
what crowds probably feel. However, we simply haven’t 
matured this research to the point yet where we are able to 
recreate specific historical crowd events from the real 
world, and to see how well our models are able to 
simulate actual emergent behavior. That is, however, a 
vital next step for benchmarking and tuning our models. 
 
Despite validity concerns, there have been some lessons 
learned to date: 
 
• The literature is helpful for improving the realism of 
behavior models  – We have completed an in-depth survey 
of the literature and have found a number of models that 

can be used as the basis of cognitive models for agent 
behavior. In fact the problem is less that there aren’t any 
models, so much as the fact that there are too many and 
none of them are integrated. The bulk of the effort we 
undertook to date is to document those models, and to 
figure out how to integrate them into a common 
mathematical framework. 
 
• There are benefits (and costs) of modeling stress-
emotion-decision processing as an integrated topic – In 
attempting to create an integrated model, the benefits of 
this approach are that it is more realistic to try and deal 
with the interplay. Certainly these dimensions are 
connected in people, and the ability to address all of them 
in simulations opens up a large number of possibilities for 
improving agent behavior and for confronting trainees 
with more realistic scenes.  
 
• Concern ontologies are vital but require ontological 
engineering– The approach we presented in this paper 
relies on a common mathematical framework (expected 
utility) to integrate many disparate models and theories so 
that agents can assess preferences and standards and 
determine next actions they find desirable subject to stress 
induced limitations and bias tendencies. However, to do 
this properly for any given simulation will also require 
extensive ontological engineering to flesh out the lower 
levels of the concern ontologies. Our current efforts are 
aimed at adding a set of tools for authoring, maintaining, 
and visualizing these ontologies.  
 
• Emotion models are useful for utility and decision 
making not just for expressivity – A related contribution 
of this paper lies in the use of ontology-derived emotion 
to help derive utilities dynamically. In standard decision 
theoretic models there is no basis for agents to compute 
their own utility functions. Instead these are derived by 
subject matter experts and inserted directly into the 
agent’s decision module. In the approach postulated here, 
the subject matter experts would interact at a stage earlier, 
at the stage of helping to define the concern ontologies so 
that the agents can derive their own utility functions, 
values, and tradeoffs. This approach frees experts from 
having to infer utilities, and it places the debate more 
squarely on open literature accounts of value sets and 
concern ontologies.  
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