105 research outputs found

    The Siltcatcher: A Sediment-Capture System for Wetland Creation and Coastal Protection in Western Lake Pontchartrain

    Get PDF
    The West Lake Pontchartrain region faces a number of long-term environmental challenges due to anthropogenic climate disturbance and landscape modification, including sea level rise, increased storm surge risk, shoreline erosion, and wetland degradation. In response, this thesis applies recent research in the fields of landscape architecture and civil engineering to propose a dynamic, natural-systems solution for wetland creation and shoreline protection. The project envisions a series of breakwater-like structures in western Lake Pontchartrain positioned to slow water released from the nearby Bonnet CarrĆ© Spillway, causing suspended sediment to settle and create self-building and self-sustaining wetlands capable of keeping pace with future sea level rise. This hybrid grey-green system would reduce erosion of the western Lake Pontchartrain shoreline, provide storm protection for the communities of St. James and St. John the Baptist Parishes, create valuable wildlife habitat, and provide ecosystem services and cultural opportunities for local residents. This proposal seeks to contribute to the ongoing discourse regarding ā€œEngineering with Natureā€ principles and explore the interdisciplinary potential suggested by their adoption. The projectā€™s design methodology embraces a wide range of tools used by both landscape architecture and engineering including field work, mapping, drawing, image-making, and model making. The research identifies physical and numerical hydrodynamic modeling as key tools for the design of coastal infrastructure and integrates their use into a recursive, non-linear design process typical of architectural practice. In doing so, it seeks to expand the range of tools typically used by landscape architects for design ideation and visualization and posit alternative interdisciplinary workflows for the conceptualization and design of large-scale infrastructure. The resulting proposal complements the already-planned West Shore Lake Pontchartrain Hurricane Protection Levee and Maurepas River Reintroduction projects, providing a forward buffer in keeping with the ā€œMultiple Lines of Defenseā€ strategy promulgated by the Lake Pontchartrain Basin Foundation. In contrast with conventional mono-functional infrastructure, the system proposed in this research offers multiple co-benefits for both human and non-human constituencies. Finally, the design strategies derived from this research represent a novel form of coastal infrastructure with potential applicability to a broad range of sites and scales along the Louisiana coast

    Estuarine geomorphodynamic assessment of environmental change and stressor impacts: a geographic information systems and remote sensing (geoinformatic) modelling approach for sustainable management of southeast Australian coastal ecosystems

    Get PDF
    Increased habitation and global warming is posing growing threats to the coastal zone and estuarine settings through direct and indirect environmental and anthropogenic modification of sensitive coastal systems and their relevant catchments. It is essential to understand the impact of the different stressors on the coastal environment under current conditions and within the historical record in order to predict future responses of estuaries and coastal wetlands. Short-term remote sensing and GIS modelling and field assessment have made a significant contribution to our knowledge on estuarine and coastal wetland dynamism within the last few decades. This thesis assesses the potential impacts of anthropogenic modifications, climatic factors and sea level rise on estuarine eco-geomorphic intertidal sedimentary landforms and their associated coastal wetlands in southeastern Australia based on three estuarine systems on the south coast of NSW: the estuarine Comerong Island, Wandandian deltaic estuary, and Towamba estuary. The thesisā€™ short-term evaluation approach shows that the degradation levels on estuarine platforms are dependent on catchment development, sediment characteristics, ecosystem stability and sea level rise inundation. During anticipated climate change and rising sea level conditions, estuaries depend on their sediment source areas, especially on modifications to their river catchment. Catchments with high anthropogenic modification levels, like the dam infrastructure in the Shoalhaven River catchment, influence sediment availability and transportation with clear impacts on eco-geomorphic coastal platform losses. In contrast, mostly unmodified but high-sloped catchments, such as the Towamba example, may have other negative effects on the estuary since the sediments are poorly sorted and coarser noncohesive quartz-dominated particles cause the geomorphic landforms and associated ecosystems to be more vulnerable to erosion and lead to less stable vegetation. Regions with small moderately modified catchments, such as the Wandandian site, allow ideal geomorphic processes to occur. Here, sediment is weathered slowly and moved downstream naturally to a secure inner estuarine deltaic setting where fine sandy/silty particles accumulate and provide more geomorphic stability. Associated vegetation assemblages ensure the progradation and steady growth of the deltaic eco-geomorphic system. The thesis assessment shows the eco-geomorphic-dynamism of the Towamba estuary, which has a mostly unmodified catchment surface (only 14% anthropogenic modifications), has grown a total of 0.17 km2 since 1949. This growth rate indicates that the Towamba estuary future scenarios will mostly be filled at the completion of the 21st Century. In comparison, the partially modified (22.1%) catchment has prograded the Wandandian deltaic shorelines resulting in the total growth of 0.24 km2 during the study period (1949-2016). However, results on Comerong Island show significant changes in the spatial extent, elevation, and shorelines with total net losses of 0.3 km2 over the investigated timespan (1949-2014). Changes included northern accretion (0.4 km2), and western, middle and southern erosion (0.7 km2) of the island. The thesis emphasises the dynamic character of the estuarine eco-geomorphic system, particularly using Normalised Difference Vegetation Index (NDVI) as a vegetation canopy assessment approach. This approach illustrates the significant correlations between vegetation and climatic and geomorphic influences at the study sites, indicating that these factors are the main drivers of vegetation canopy disturbance on intertidal sedimentary landforms during the 21st Century. Locally, map-algebra expression shows the spatial distribution of the NDVI identifies areas that need to be managed in relation to the causes and drivers. This modelling confirms the LiDAR-DEMs-driven character of the existing situations to their influencing factors, which also control the estimated future-scenarios and illustrate clear inundatable landform zones at the study sites by 2100. Results indicate that the rise of sea level will have tremendous effects on the coastal eco-geomorphic systems, particularly wetlands, throughout southeastern Australia and equivalent systems overseas by the end of this century. This thesis develops possible mitigation and adaptation strategies and sustainable solutions that might be utilized to minimize the indirect devastating consequences of climate change and anthropogenic modifications, particularly damming rivers, which cause direct sedimentation problems as implied by the Tallowa Dam case study. The thesis shows that intertidal sedimentary landforms will have a future negative or positive vegetarian response according to their evolving morphological character. Within a short-term timescale, the whole eco-geomorphic system will interact with many environmental and anthropogenic variables (particularly sedimentation rates) to evolve its own character over a longer timescale. Therefore, the long term assessment approach can be directed by having a better understanding of the existing situation and accurately identifying the past drivers. Future projections indicate that indirect anthropogenic-induced global warming will have a great effect on estuaries and coastal wetlands in the 21st Century. This research helps to provide an important framework for quantifying the current situation, future stressors and vulnerability responses during any intensification of natural and artificial coastal hazards, which may be of concern to the general public and environmental scientists who are currently focusing their attention on the best way to preserve estuaries and their wetland ecosystems at the current stage of global warming and human settlement

    Multiple stable states and catastrophic shifts in coastal wetlands: Progress, challenges, and opportunities in validating theory using remote sensing and other methods

    Get PDF
    open5siThe analysis by K.B. Moffett was partially supported by National Science Foundation grant EAR-1013843 to Stanford University. Any opinions, findings, and onclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The analysis by W. Nardin was partially supported by Office of Naval Research Award N00014-14-1-0114 to Boston University. The analysis by C. Wang was partially supported by National Natural Science Funds of China (41376120 and 41401413). The analysis by C. Wang and S. Temmerman was also partially supported by the European Union Programme Erasmus Mundus External Cooperation Window (EMECW)-Lot 14-China. K.B. Moffett thanks B.C. Smith for the analysis for the Wax Lake Delta example of Section 4.2 and S.M. Gorelick for the funding leading to the San Francisco Bay example of Section 4.3. W. Nardin thanks S. Fagherazzi and C. Woodcock for the funding leading to the Mekong River Delta example of Section 4.1. S. Silvestri thanks M. Marani for inspiring ideas and research on coastal wetland processes.Multiple stable states are established in coastal tidal wetlands (marshes, mangroves, deltas, seagrasses) by ecological, hydrological, and geomorphological feedbacks. Catastrophic shifts between states can be induced by gradual environmental change or by disturbance events. These feedbacks and outcomes are key to the sustainability and resilience of vegetated coastlines, especially as modulated by human activity, sea level rise, and climate change. Whereas multiple stable state theory has been invoked to model salt marsh responses to sediment supply and sea level change, there has been comparatively little empirical verification of the theory for salt marshes or other coastal wetlands. Especially lacking is long-term evidence documenting if or how stable states are established and maintained at ecosystem scales. Laboratory and field-plot studies are informative, but of necessarily limited spatial and temporal scope. For the purposes of long-term, coastal-scale monitoring, remote sensing is the best viable option. This review summarizes the above topics and highlights the emerging promise and challenges of using remote sensing-based analyses to validate coastal wetland dynamic state theories. This significant opportunity is further framed by a proposed list of scientific advances needed to more thoroughly develop the field.openMoffett K.B.; Nardin W.; Silvestri S.; Wang C.; Temmerman S.Moffett K.B.; Nardin W.; Silvestri S.; Wang C.; Temmerman S
    • ā€¦
    corecore