1,879 research outputs found

    NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator

    Get PDF
    Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development

    Chain Shape Matching for Simulating Complex Hairstyles

    Get PDF
    Animations of hair dynamics greatly enrich the visual attractiveness of human characters. Traditional simulation techniques handle hair as clumps or continuum for efficiency; however, the visual quality is limited because they cannot represent the fine-scale motion of individual hair strands. Although a recent mass-spring approach tackled the problem of simulating the dynamics of every strand of hair, it required a complicated setting of springs and suffered from high computational cost. In this paper, we base the animation of hair on such a fine-scale on Lattice Shape Matching (LSM), which has been successfully used for simulating deformable objects. Our method regards each strand of hair as a chain of particles, and computes geometrically derived forces for the chain based on shape matching. Each chain of particles is simulated as an individual strand of hair. Our method can easily handle complex hairstyles such as curly or afro styles in a numerically stable way. While our method is not physically based, our GPU-based simulator achieves visually plausible animations consisting of several tens of thousands of hair strands at interactive rates

    An enhance framework on hair modeling and real-time animation

    Get PDF
    Master'sMASTER OF SCIENC

    Fast Penetration Depth Estimation for Elastic Bodies

    Get PDF
    We present a fast penetration depth estimation algorithm between deformable polyhedral objects. We assume the continuum of non-rigid models are discretized using standard techniques, such as finite element or finite difference methods. As the objects deform, the pre-computed distance fields are deformed accordingly to estimate penetration depth, allowing enforcement of non-penetration constraints between two colliding elastic bodies. This approach can automatically handle self-penetration and inter-penetration in a uniform manner. We demonstrate its effectiveness on moderately complex simulation scenes

    Animating Virtual Human for Virtual Batik Modeling

    Get PDF
    This research paper describes a development of animating virtual human for virtual batik modeling project. The objectives of this project are to animate the virtual human, to map the cloth with the virtual human body, to present the batik cloth, and to evaluate the application in terms of realism of virtual human look, realism of virtual human movement, realism of 3D scene, application suitability, application usability, fashion suitability and user acceptance. The final goal is to accomplish an animated virtual human for virtual batik modeling. There are 3 essential phases which research and analysis (data collection of modeling and animating technique), development (model and animate virtual human, map cloth to body and add a music) and evaluation (evaluation of realism of virtual human look, realism of virtual human movement, realism of props, application suitability, application usability, fashion suitability and user acceptance). The result for application usability is the highest percentage which 90%. Result show that this application is useful to the people. In conclusion, this project has met the objective, which the realism is achieved by used a suitable technique for modeling and animating

    Realistic Hair Simulation: Animation and Rendering

    Get PDF
    International audienceThe last five years have seen a profusion of innovative solutions to one of the most challenging tasks in character synthesis: hair simulation. This class covers both recent and novel research ideas in hair animation and rendering, and presents time tested industrial practices that resulted in spectacular imagery
    corecore