380 research outputs found

    Simulating antigenic drift and shift in influenza A

    Get PDF
    Computational models of the immune system and pathogenic agents have several applications, such as theory testing and validation, or as a complement to first stages of drug trials. One possible application is the prediction of the lethality of new Influenza A strains, which are constantly created due to antigenic drift and shift. Here, we present an agent-based model of immune-influenza A dynamics, with focus on low level molecular antigen-antibody interactions, in order to study antigenic drift and shift events, and analyze the virulence of emergent strains. At this stage of the investigation, results are presented and discussed from a qualitative point of view against recent and generally recognized immunology and influenza literature

    Influenza A Gradual and Epochal Evolution: Insights from Simple Models

    Get PDF
    The recurrence of influenza A epidemics has originally been explained by a “continuous antigenic drift” scenario. Recently, it has been shown that if genetic drift is gradual, the evolution of influenza A main antigen, the haemagglutinin, is punctuated. As a consequence, it has been suggested that influenza A dynamics at the population level should be approximated by a serial model. Here, simple models are used to test whether a serial model requires gradual antigenic drift within groups of strains with the same antigenic properties (antigenic clusters). We compare the effect of status based and history based frameworks and the influence of reduced susceptibility and infectivity assumptions on the transient dynamics of antigenic clusters. Our results reveal that the replacement of a resident antigenic cluster by a mutant cluster, as observed in data, is reproduced only by the status based model integrating the reduced infectivity assumption. This combination of assumptions is useful to overcome the otherwise extremely high model dimensionality of models incorporating many strains, but relies on a biological hypothesis not obviously satisfied. Our findings finally suggest the dynamical importance of gradual antigenic drift even in the presence of punctuated immune escape. A more regular renewal of susceptible pool than the one implemented in a serial model should be part of a minimal theory for influenza at the population level

    Localized contacts between hosts reduce pathogen diversity

    Get PDF
    We investigate the dynamics of a simple epidemiological model for the invasion by a pathogen strain of a population where another strain circulates. We assume that reinfection by the same strain is possible but occurs at a reduced rate due to acquired immunity. The rate of reinfection by a distinct strain is also reduced due to cross-immunity. Individual based simulations of this model on a 'small-world' network show that the proportion of local contacts in the host contact network structure significantly affects the outcome of such an invasion, and as a consequence will affect the patterns of pathogen evolution. In particular, hosts interacting through a 'small-world' network of contacts support lower prevalence of infection than well-mixed populations, and the region in parameter space for which an invading strain can become endemic and coexist with the circulating strain is smaller, reducing the potential to accommodate pathogen diversity. We discuss the underlying mechanisms for the reported effects, and we propose an effective mean-field model to account for the contact structure of the host population in 'small-world' network

    Novel Inhibitor Design for Hemagglutinin against H1N1 Influenza Virus by Core Hopping Method

    Get PDF
    The worldwide spread of H1N1 avian influenza and the increasing reports about its resistance to the current drugs have made a high priority for developing new anti-influenza drugs. Owing to its unique function in assisting viruses to bind the cellular surface, a key step for them to subsequently penetrate into the infected cell, hemagglutinin (HA) has become one of the main targets for drug design against influenza virus. To develop potent HA inhibitors, the ZINC fragment database was searched for finding the optimal compound with the core hopping technique. As a result, the Neo6 compound was obtained. It has been shown through the subsequent molecular docking studies and molecular dynamic simulations that Neo6 not only assumes more favorable conformation at the binding pocket of HA but also has stronger binding interaction with its receptor. Accordingly, Neo6 may become a promising candidate for developing new and more powerful drugs for treating influenza. Or at the very least, the findings reported here may provide useful insights to stimulate new strategy in this area

    Genetic Diversity in the SIR Model of Pathogen Evolution

    Get PDF
    We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR). We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts), where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R0(1+s)) is higher than the fitness of the resident strain (R0). We show that this invasion probability is given by the relative increment in R0 of the new pathogen (s). By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A

    Planning for the next influenza H1N1 season: a modelling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The level of herd immunity before and after the first 2009 pandemic season is not precisely known, and predicting the shape of the next pandemic H1N1 season is a difficult challenge.</p> <p>Methods</p> <p>This was a modelling study based on data on medical visits for influenza-like illness collected by the French General Practitioner Sentinel network, as well as pandemic H1N1 vaccination coverage rates, and an individual-centred model devoted to influenza. We estimated infection attack rates during the first 2009 pandemic H1N1 season in France, and the rates of pre- and post-exposure immunity. We then simulated various scenarios in which a pandemic influenza H1N1 virus would be reintroduced into a population with varying levels of protective cross-immunity, and considered the impact of extending influenza vaccination.</p> <p>Results</p> <p>During the first pandemic season in France, the proportion of infected persons was 18.1% overall, 38.3% among children, 14.8% among younger adults and 1.6% among the elderly. The rates of pre-exposure immunity required to fit data collected during the first pandemic season were 36% in younger adults and 85% in the elderly. We estimated that the rate of post-exposure immunity was 57.3% (95% Confidence Interval (95%CI) 49.6%-65.0%) overall, 44.6% (95%CI 35.5%-53.6%) in children, 53.8% (95%CI 44.5%-63.1%) in younger adults, and 87.4% (95%CI 82.0%-92.8%) in the elderly.</p> <p>The shape of a second season would depend on the degree of persistent protective cross-immunity to descendants of the 2009 H1N1 viruses. A cross-protection rate of 70% would imply that only a small proportion of the population would be affected. With a cross-protection rate of 50%, the second season would have a disease burden similar to the first, while vaccination of 50% of the entire population, in addition to the population vaccinated during the first pandemic season, would halve this burden. With a cross-protection rate of 30%, the second season could be more substantial, and vaccination would not provide a significant benefit.</p> <p>Conclusions</p> <p>These model-based findings should help to prepare for a second pandemic season, and highlight the need for studies of the different components of immune protection.</p
    corecore