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ABSTRACT to simulate particular situations (e.g., HIV infection [10, 17,
18], pulmonary tuberculosis [31]) or test specific theories
(e.g. immunological memory [26]). Some models specifically
target particular contexts; such is the case of the models de-
veloped by C. Beauchemin, used for the study of influenza
A infections. In [6], the influence of the disease’s spatial
distribution is investigated using a simple model capable of
reproducing the virus basic dynamical features. The initial
distribution of infected cells, regeneration rate of dead cells
and proliferation rate of immune cells are further investi-
gated in [3]. The same model was also used to reproduce
the dynamics of in vitro infection with influenza A [4], ef-
fectively combining in vitro and in silico tools.

In this paper we describe an immune-influenza A agent-
based model, with emphasis on low level molecular antigen-
. . . antibody interactions. The model was developed using the
Categories and Subject Descriptors LAIS simulator [13], and can be divided in three parts: a)
1.6.3 [Simulation and Modeling]: Applications epithelium, a tissue composed of epithelial cells, subject to
infection by influenza A; b) IS cells, which work together
in order to remove infections; and c) influenza A virions.

Computational models of the immune system and patho-
genic agents have several applications, such as theory test-
ing and validation, or as a complement to first stages of
drug trials. One possible application is the prediction of the
lethality of new Influenza A strains, which are constantly
created due to antigenic drift and shift. Here, we present an
agent-based model of immune-influenza A dynamics, with
focus on low level molecular antigen-antibody interactions,
in order to study antigenic drift and shift events, and an-
alyze the virulence of emergent strains. At this stage of
the investigation, results are presented and discussed from
a qualitative point of view against recent and generally rec-
ognized immunology and influenza literature.

Keywords Agents are modeled at the cellular (epithelial and IS cells)
Immune System, Influenza A, Simulation, Agent-based Mod- or virion (influenza A) level. The IS submodel has been
eling successfully used in the simulation of bacterial attack and
vaccine administration, demonstrating memory, specificity

1. INTRODUCTION 'and specializatif)n f(.aatur.es [14]. In.the preser}t case, the aim
is to study antigenic drift and shift events in influenza A,

There are several approaches to immune system (IS) and and analyze the virulence of emergent strains. The main
pathogen modeling [23], among which models based on dif- results of this work serve to clarify: a) the fine balance of
ferential equations are probably the most common [16]. This influenza antigens in a successful infection; b) the role of
methodology is mostly used for modeling particular aspects specific IS properties in dealing with influenza infection; c)
of the IS and pathogens, among which is its use on the study the difficulties antigenic drift can pose on the IS response;
of influenza dynamics [2, 8, 20] and treatment [5]. and d) the potential dangers of antigenic shift. Hopefully,
Agent-based modeling (ABM) techniques are well suited this type of models could serve a useful purpose in predict-
for describing the diversity of IS and pathogen dynamics, ing the virulence of annual influenza epidemics, and more
taking into account behavior distribution [22], simplified in- importantly, the uprising of a lethal influenza pandemic due
sertion of new entities or substances and natural consid- to antigenic shift. In section 2 the influenza virus is pre-
eration of non-linear interactions between agents, captur- sented from human and physiopathological points of view.
ing emergent phenomena [9]. Most agent-based approaches The LAIS simulator and the immune-influenza A model are
model a generic IS [7, 15, 21, 24, 29], and use such model described in sections 3 and 4, respectively. In section 5 sim-

ulations and results are presented and compared with im-
munology and influenza theory from literature. Finally, in
section 6 we conclude the presented work, underlining the
model’s potential, envisaging possible forms of solidifying
the produced results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
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SAC’09 March 8-12. 2009, Honolulu, Hawaii, U.S.A. Influenza is caused by a virus that attacks mainly the
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fever, myalgia and sore throat, among others. Most people
recover without requiring any medical treatment; however,
in high-risk groups (e.g. the elderly) the infection may lead
to severe complications of underlying diseases, pneumonia
and death. The disease spreads quickly at a global level in
seasonal epidemics, with significant economic impact. An-
nual epidemics are estimated to result in three to five mil-
lion cases of severe illness and between 250,000 and 500,000
deaths worldwide [32].

Among the several types of influenza virus which attack
humans, type A has the highest mutation rate and causes the
most aggressive symptoms, being responsible for all known
influenza pandemics [19, 28, 32].

2.1 Physiopathology

Influenza, as most viruses, takes over the replicative ma-
chinery of host cells in order to grow and reproduce, with
cunning strategies to evade immune defenses. More specifi-
cally, influenza virus infects epithelial cells of the respiratory
tract.

Cytotoxic T cells (Tc) are crucial in the elimination of vi-
ral infection, killing infected cells via recognition of a com-
plex formed by viral antigenic peptide and MHC class I
self molecules [1, 27]. The release of IFN-y by Helper T
cells (Th) is another important aspect of the immune re-
sponse, promoting resistance to viral subversion. Usually,
in a primary viral encounter, the defensive role of antibody
is diminished, as viral particles take shelter in the intracel-
lular habitat, mostly infecting adjacent cells, thus limiting
their extracellular exposure. When an antibody response
is initiated, the infection is either widespread or controlled
by cell-mediated mechanisms. However, antibody plays an
important part in preventing reinfection: in secondary chal-
lenges specific memory B cells exist and are ready to produce
high affinity antibodies which will bind and neutralize free
virions before they gain entrance into host cells.

One of the strategies the influenza virus uses to escape de-
tection is changing antigens by drift or shift. In the first case,
drift occurs through point mutations in the viral genome
during replication, which can lead to a loss of immunity
from previously existing antibodies. Major antigen changes
take place during antigenic shift, which can occur when two
viruses simultaneously infect a host cell; the infected cell
acts as a “mixing vessel”, producing a new virus composed
of genome segments belonging to the original viruses [33].
Influenza A displays both these strategies; antigenic drift
causes seasonal influenza epidemics, while antigen shift, al-
though rarer, may cause serious influenza pandemics [19].
Influenza A carries two surface antigens, hemagglutinin (HA)
and neuraminidase (NA), both of which recognize the same
host receptor, sialic acid [30]. HA and NA define the virus
subtype accordingly to their reactivity [33]. Some well know
subtypes, due to their lethality, are HIN1 (Spanish flu, 1918),
H2N2 (Asian flu, 1957), H3N2 (Hong Kong Flu, 1968) and
H5N1 (avian flu, current pandemic threat) [19, 28]. HA
binds sialic acid, a necessary first step for gaining entry into
the host cell; NA on the other hand cleaves sialic acid to fa-
cilitate the release of progeny virus and promote the spread
of infection. A successful infection depends, among other
factors, on the balance of these two antigens [30].

3. LAIS SIMULATOR

The LAIS simulator is a multithreaded agent-based sim-
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ulation platform, offering a set of tools for the simulation of
biological systems. The platform is implemented in Java and
makes use of following open source libraries: a) the Repast
Agent Simulation Toolkit [25] classes that provide or sim-
plify spatial organization and visualization, event scheduling
and simulation output (e.g., charts, CSV files, movies); and
b) the Simple XML serialization library! that provides sim-
ple class development and instantiation using XML.

The two main actors in the LAIS framework are sub-
stances and agents. The simulator is organized in two layers:
a) a specialized cellular automaton (CA) responsible for sub-
stance diffusion, reaction and degradation; and, b) the agent
layer where the agents move and act. The communication
between these layers occurs when agents produce or consume
substances, or when an agent action depends on the un-
derlying substances. Current implementation restricts the
simulation to discrete time and two-dimensional space. The
multithreading capabilities of the simulator work by equally
distributing the CA cells through a number of threads de-
pendent on the number of available processor cores; this is
possible because during a simulation step, each CA cell be-
comes an independent processing unit [13].

3.1 Substances

Substances are uniquely identified by a 64 bit string, al-
lowing a repertoire of 204 ~ 10'° different substances. In
the model specification it is possible to attribute specific bi-
ological functions to different bit substrings. The biological
affinity between substances primarily depends on the exis-
tence of complementary zones, i.e., regions where the bio-
logical substances can “fit” with each other. To mimic the
IS, the bit string of substances that model IS antibodies are
composed by: a) a constant region responsible for secondary
functions such as macrophage binding or complement fixa-
tion, and b) a variable region which is used to determine the
binding affinity with antigen. The biological affinity is im-
plemented by the Hamming distance between two substance
bitstrings [11].

LAIS represents substances as real valued concentrations,
allowing to: a) model diffusion and reaction phenomena in
the CA layer; and b) simulate the substances present on the
agent surface, in the agent layer. Antigens are modeled as
substances and thus differentiated from pathogenic agents
themselves.

New substances can be dynamically created during sim-
ulation as the result of: a) different substances produced
by mutation of cloning agents; and, b) substance merging.
Merging can be either affinity dependent, such as in the
antigen-antibody complex formation or independent, such
as in the case of the complex formed by MHC and the anti-
gen peptide.

The simulator offers the possibility to group the substances
into families in order to: a) simplify the process of tracking
substances with similar functions, e.g. in B cell response,
where a multitude of different antibodies are temporarily
produced; and, b) allow the definition of substance merging
rules affecting specific families. In the latter case, model
specification is considerably facilitated and the substance
merging simulation becomes computationally feasible.

3.2 Agents

http://simple.sourceforge.net/
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Figure 1: The LAIS agent model.

Agents have a set of conditions which evaluate state, su-
perficial substance concentration and the local CA cell, an-
alyzing local substance concentration, as well as substances
displayed by other agents. These conditions are grouped in
lists of conditions; each list of conditions is associated to
a list of actions. A “condition list - action list” mapping
is called a “gene”. In order to perform the actions in a
list, all the conditions in the associated condition list must
yield true. Fig. 1 shows the schematics of a LAIS agent.
Conditions and actions are hard-coded Java classes, but ac-
cept instantiation parameters, making them flexible. The
grouping of conditions and actions with different instanti-
ation parameters permits a vast range of behaviors. If a
particular behavior cannot be achieved using available con-
ditions and actions, it is relatively simple to code additional
ones, following specific interfaces. The agent set of genes
can be referred as the agent’s genotype. Agent movement
is controlled by these conditions; movement can be random,
inertial (higher probability of moving forward) or substance
dependent (simulating chemotaxis, cell movement directed
by a chemical concentration gradient [1]).

Evolution takes place when an agent creates another agent,
either by a cloning process (e.g., cellular division) or by pro-
ducing a different type of agent (e.g., an infected immune
cell producing viruses); these processes are carried away by
actions defined in the agent’s genetic code. In such cases,
conditions and actions are also cloned. These have a mu-
tation parameter which can modify referenced substances;
because the IS and pathogens interact via superficial sub-
stances, this mechanism forms the basis for IS-pathogen
coevolution, namely IS recognition of previously unknown
pathogens and pathogen evasion from IS detection. LAIS
also supports the exchange of genetic code (at gene level)
[17], adding another level of complexity for modeling realis-
tic evolving systems.

4. MODEL DESCRIPTION

One of the most complex challenges when developing a
IS model is to find a balance between scale, granularity and
computational feasibility. Features that are included in the
model should not only be theoretically and experimentally
sound, but also relevant in the context of the simulations
to perform. Knowledge gaps, incomplete data and excluded

system features imply that models are incomplete, always
abstract to some point. However, an incomplete model can
still do a good job of simulating reality. Biological systems
can also work without various parts; they are robust, having
redundant features and components with overlapping func-
tions. As such, if a model captures the principal components
of a biological system, there is no reason why it cannot yield
realistic simulations [12].

The model here presented includes several distinct enti-
ties and substances which approximately reflect aspects we
consider the most relevant of immune-influenza A dynam-
ics. Tables 1 and 2 respectively summarize characteristics
of agents and substances included in the model. A complete
model description, which includes the genetic code of the
agents, is available in [13].

S. SIMULATIONS AND RESULTS

The simulations presented in this section were performed
using a 14x14 toroidal hexagonal grid. During a steady-state
phase, were no infection or IS response is taking place, the
number of distinct agents varies between 400 and 500. At
peak immune responses, the number of distinct agents can
reach 2 x 10°.

These simulations yielded a considerable quantity of data,
of which we present and interpret the most relevant, either
in the form of graphs or textual descriptions during analysis
and discussion of simulations.

5.1 Influenza subtypes and antigenic drift

The balance of sialic acid affinity between HA and NA
antigens is of major importance for efficient virus replication
[30]. In this experiment, four simulations are performed,
each with the deployment of one influenza subtype at ticks
50 and 500. Each subtype has a different set of superficial
antigens, with specific affinities for sialic acid (the superficial
receptor of epithelial cells). Table 3 shows the different anti-
gens bit string and affinity with sialic acid (whose bit string
is 04D2h), prior to mutation; only the 16 less significant bits
are relevant for this affinity; bits 16 to 31 (in italic) are used
to determine affinity with TCR when antigen is complexed
with MHC. These affinity values are merely demonstrative,
and do not correlate with sialic acid affinity of “real” HA
and NA types.

The four antigens presented in table 3 allow to experi-
ment with four influenza subtypes: HIN1, HIN2, H2N1 and
H2N2. Again, these do not correlate with the real subtypes.

5.1.1 Analysis of results

The HIN1 subtype has high affinity HA and NA, mean-
ing it can rapidly infect cells (due to HA), and proliferate
in larger quantities (due to NA). In principle, this should be
the most lethal strain. However, that is not the case. Its
rapid proliferation, killing and infecting epithelial cells too
fast (fig. 2), limits its own expansion; the sudden high num-
ber of extracellular virions draws the attention of humoral
mechanisms; the presence of a large number of locally in-
fected cells provokes a strong Th cell reaction, due to B cell
and APC antigen presentation; this leads to the production
of IFN-v (limiting the spread of the infection) and the ac-
tivation of Tc cells; these destroy locally infected epithelial
cells, putting a definitive stop to the viral infection. In its
first strike, the HIN1 strain lasted approximately 215 ticks,
with a maximum of 80 simultaneous epithelial infections (fig.
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Table 1: Agents included in immune-influenza A model.

Agent Type Behavior

Influenza A

Pathogen (virus) Infect and insert genetic code in epithelial cells, forcing them to produce in-

fluenza A virions; infection is dependent on HA antigen-sialic acid affinity, while
virion release is dependent on NA antigen-sialic acid affinity.

Epithelial cell Epithelium

Tc cell Immune System
plex).

Th cell Immune System

B cell Immune System

Non-moving agents; display sialic acid at surface.
Kill infected cells (i.e., cells displaying MHC Class I + antigenic peptide com-

Produce substances which assist other immune cells.
Produce antibody; present antigen to Th cells via MHC Class II.

APC cell Immune System  Phagocyte (ingest) pathogenic agents and antigens, with greater probability if
pathogen is covered with antibody (opsonized); present antigen to Th cells via
MHC Class II.
Table 2: Substances included in immune-influenza A model.
Substance Source Location Effector function
Interferon-~, IFN-~ Th, Tc Local Inhibits sialic acid production in epithelial cells, pro-
tecting them from infection; increases probability of
epithelial cell apoptosis.
Interleukin-2, 1L.-2 Th, Tc Local Induces proliferation of activated Th, Tc and B cells.
Interleukin-12, IL-12 APC Local Induces Th proliferation and IFN-v production.

Antibodies (family) B

Antigens (family) Influenza A

MHC Class I Epithetial cells Superficial
MHC Class II APC, B Superficial
TCR CDS8 Tc Superficial
TCR CD4 Th Superficial
Fc receptor APC Superficial

Sialic acid Epithetial cells Superficial

Local, Superficial

Local, Superficial

Variable region binds antigen depending on affinity;
constant region (Fc) binds Fc receptors on APC cells.
HA antigens bind sialic acid promoting infection, NA
antigens cleave sialic acid promoting virion release.
When complexed with antigenic peptide, can bind
TCR CDS8 in Tc cells, depending on affinity.

When complexed with antigenic peptide, can bind
TCR CD4 in Th cells, depending on affinity.

Binds MHC Class I + antigenic peptide complex
present on the surface of infected epithelial cells, pro-
moting the destruction of such cells.

Binds MHC Class II + antigenic peptide complex
present on the surface of APCs and B cells, promoting
assistance to such cells.

Binds antibody constant region, promoting more effi-
cient phagocytosis.

Recognized by HA and NA influenza antigens.

Table 3: Influenza antigens bit string and affinity
with sialic_acid.

Antigen  Bit string  Affinity
HA1 0707 7B21h  0.8125
HA2 1616 0622n  0.3125
NA1 202D 1B2Dh  0.8125
NA2 3C3C 0BDDh  0.5000

2).
The HIN2 and H2N1 strains proved to be more infectious,
lasting about 275 ticks in their first strike (figs. 3 and 4, re-
spectively). HIN2 can infect cells quickly (high affinity HA),
but the number of released virions is low (low affinity NA),
resulting in a maximum of less than 20 virions simultane-
ously present in the extracellular milieu; however, a maxi-
mum of 80 simultaneous epithelial infections indicates this is
not an handicap, on the contrary, the low virus titer allows it
to remain concealed from humoral mechanisms, with barely

detectable Th and B cell responses. As a consequence, lit-
tle humoral memory was created. In the second strike, the
strain provokes a state of chronic illness lasting a record
value of 390 ticks, the highest value of all eight infections
(four primary, four secondary), with virus titer never reach-
ing the 30 unit mark. On the other hand, the maximum
viral titer in the primary H2N1 infection is of 46 units (the
highest of all eight infections), but correspondently provokes
the most powerful humoral response (figs. 8); the immune
memory created quickly eliminated the strain during the
second strike, lasting no more than 130 ticks.

The H2N2 strain, with low affinity HA and NA, proved
to be the least resistant and the least infectious (fig. 5).

5.1.2 Balance between HA and NA antigens

This experiment demonstrated the fine balance between
HA and NA antigens and their importance in a successful
infection, as discussed in [30]. A high affinity HA antigen
seems to be more important for kick starting the infection,
while NA functions like a throttle, determining the number
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Figure 2: Healthy and infected epithelial cells dur-
ing challenge from H1N1 subtype.
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Figure 3: Healthy and infected epithelial cells dur-
ing challenge from H1N2 subtype.

of released virions. As observed in the simulations, high
affinity NA is probably not an optimum companion for high
affinity HA. More testing is required in order to better ex-
plore HA-NA balance, and its exact effect on the success
of an infection. Such a study must take into account that
influenza strains may have other infectivity parameters, and
that antigenic drift causes noise which can difficult the anal-
ysis of results. In this last case, the solution is to perform
a greater number of tests for the same parameters, in order
to obtain more statistically significant results.

5.1.3  Effects of antigenic drift in immune response,
immune memory and antibody effectiveness

Antigenic drift can be asserted indirectly by considering
the number of different antigens present in the simulation
environment. The IS tries to respond with the production
of a larger diversity of antibody, in a reaction to the stimulus
from the many different antigens.

In all cases, except for HIN2, immune memory was ac-
quired against the invading strain. However, the effective-
ness of memory is reduced when compared to a simulation of
non-mutating bacteria using the same simulation platform
and basic IS model [14]; in this case, it was possible to ob-
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Figure 4: Healthy and infected epithelial cells dur-
ing challenge from H2N1 subtype.
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Figure 5: Healthy and infected epithelial cells dur-
ing challenge from H2N2 subtype.

serve a relatively high degree of antigen-antibody complex;
this occurs because B cells are stimulated by a single anti-
gen, resulting in plasma cells which produce high affinity
antibody; this antibody binds large quantities of antigen,
resulting in also large quantities of antigen-antibody com-
plex. In the case presented here, figs. 6, 7, 8 and 9 show
that very small quantities of antigen-antibody complex are
produced. This happens due to antigenic drift; each newly
created influenza virion can be different from its precursor,
deploying different types of antigen, not yet known to the
latest versions of antibody [27].

5.1.4 Role of Tc cells

As described in literature, the average number of Tc cells
during an immune response is one order of magnitude above
the number of Th cells [1], which was confirmed by the ob-
tained results. Sudden drops in infected epithelial numbers,
visible in figs. 2, 3, 4 and 5, occur practically at the same
time when effector Tc cells begin to be massively produced,
thus demonstrating their cytotoxic function.

5.1.5 Estimate of temporal resolution
With the data gathered so far, it is possible to perform an
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estimate of the temporal resolution of the simulations. In
[27], it is suggested that the appearance of specific antibody
occurs about 6 days after initial influenza infection. In our
simulations, specific antibody appears in average 150 ticks
after initial infection (figs. 6, 7, 8 and 9), indicating about
25 ticks per day temporal resolution. A similar result can
be obtained by another path: a typical influenza infection
usually lasts for about a week, with most people recovering
within one to two weeks [32], so let’s consider an eight day
infection period. The four primary infections have an aver-
age duration of 220 ticks (not shown), producing a similar
temporal resolution estimate of 27.5 ticks per day.

5.2 Antigenic shift

Antigenic shift is a major antigenic change which occurs at
irregular intervals, being the main responsible for influenza
pandemics. In the influenza virus family, only influenza A
is susceptible to this event. Antigenic shift can lead to the
evolution of new human influenza A virus through the acqui-
sition of a new HA gene encoding a different subtype from
an avian influenza, or by the adaptation of an avian virus,
causing it to become transmissible between humans [19].

In this experiment we infect the host with two different
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influenza strains, HIN2 and H2N1, which were studied sep-
arately in the previous subsection. The goal is to verify the
occurrence of antigenic shift, and if it leads to the creation
of a more infectious subtype.

At tick 50, 25 units of HIN2 and 25 units of H2N1 are
deployed in the simulation environment. Contrary to what
was verified in the previous subsection, H2N1 seems to adapt
better in a competitive situation; as can be verified in fig.
10, H2N1 virion titer is constantly superior to that of HIN2.

The appearance of HIN1 subtype confirms the existence
of antigenic shift; at tick 175, the emergent HIN1 subtype
experiences a fast rise, surpassing the impact of the HIN2
subtype, which never really takes off, as opposed to what
was observed in the previous experience. However, the emer-
gent HIN1 subtype does not become more infectious than
the original HIN2, which becomes the IS main adversary.
The overall infection was eliminated in 250 ticks, slightly
faster than what was verified in some of the previous cases.
The higher number of initially inserted virions would sug-
gest that this combination is “weaker” than the insertion of
isolated strains; however, the elevated number of viral titter
may also have conducted to a faster humoral response, ac-
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celerating the removal of infection; this is corroborated by
fig. 12, which indicates a 100 tick interval between virion
insertion and beginning of humoral response; in the previous
cases this value was closer to 150 ticks (figs. 6 and 8). The
H2NT1 original strain reached a maximum value of 65 units
of circulating virion, fig. 10, higher than any of the previ-
ous cases. From ticks 150 to 190, there were more infected
epithelial cells than healthy ones (fig. 11), a situation which
never occurred while the subtypes were studied in isolation.
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When the B cell response takes place, cells undergoing
somatic hypermutation do not often become plasma cells; in
fact, plasma cell number barely surpasses half the number of
cells in somatic hypermutation, confirming the difficulty in
keeping pace with continuously mutating and recombining
antigens. This is further verified in fig. 12, showing elevated
antigen diversity (the highest in all influenza simulations).
Production of antigen 4+ antibody complex was very low, in
spite of the variety of produced antibodies.

Several Tc cells become activated at tick 75 due to recog-
nition of MHC Class I + antigen complex presented by ep-
ithelial cells; however, they lack the ability of becoming ef-
fector without the help of Th cells, which only occurs from

tick 150 onward, when the humoral response takes place. At
this stage, IFN-v kicks in, slowing the spread of infection; a
few effector Tc cells also begin to eliminate infected epithe-
lials. At tick 200, a spike in Tc clonal expansion and effec-
tor production results in the rapid extermination of infected
cells (fig. 11); when the remaining virion infect healthy cells,
the massive quantity of Tc effector clones immediately elimi-
nates such cells, severely limiting the replication capabilities
of the virus. After the infection is fully removed and IFN-~
dissipated, epithelial cells begin to populate epithelial free
spaces.
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Figure 12: Substance family diversity during anti-
genic shift simulation.

6. CONCLUSIONS

Simulation results were within our initial expectations. A
novel simulation of immune-influenza A dynamics was devel-
oped and successfully tested against theoretical data from
literature - unfortunately, this area of investigation lacks
comprehensive experimental data. The antigenic drift simu-
lations demonstrated the importance of HA and NA balance
in a successful infection, while clarifying the role of specific
IS cells in the immune response; the difficulties antigenic
drift can pose on the IS response were also asserted. In the
antigenic shift experiment, though the event was observed,
the appearance of a lethal strain was not verified. To fur-
ther study this event, more subtypes should be taken into
account and other infectivity parameters, such as virion ex-
tracellular survival time, should be considered.

Given the stochastic nature of these simulations and con-
sidering the complexity of simultaneous antigenic drift and
shift, each set of parameters should be tested a sufficient
number of times in order to be adequately explored from a
statistical point of view. Nonetheless, the achieved results
demonstrate that this model could be a starting point for
predicting the impact of influenza epidemics and the prob-
ability of pandemic outbreak.
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