18,247 research outputs found
Development of an efficient finite element model for the dynamic analysis of the train-bridge interaction
The design of high-speed railway bridges comprises a set of demands, from safety
and serviceability aspects, to new types of equipment and construction solutions. In order to perform
an accurate and realistic evaluation of the corresponding dynamic behavior, adequate
analysis tools that take into account the complexity of the train-bridge system are required.
These computational tools must be based on efficient algorithms to allow for the completion of
detailed dynamic analyses in a reasonable amount of time. The classical methods of analysis
may be unsatisfactory in the evaluation of the dynamic effects of the train-bridge system and
fully assessment of the structural safety, track safety and passenger comfort. A direct and versatile
technique for the simulation of the train-bridge interaction was implemented in the FEMIX
code, which is a general purpose finite element computer program. The presented case study is
an application of the proposed formulation, which proved to be very accurate and efficient
Testing demand responsive shared transport services via agent-based simulations
Demand Responsive Shared Transport DRST services take advantage of
Information and Communication Technologies ICT, to provide on demand transport
services booking in real time a ride on a shared vehicle. In this paper, an
agent-based model ABM is presented to test different the feasibility of
different service configurations in a real context. First results show the
impact of route choice strategy on the system performance
On the Modular Specification of NFPs: A Case Study
The modular specification of non-functional properties of systems is a current challenge of Software Engineering, for which no clear solution exists. However, in the case of Domain-Specific Languages some successful proposals are starting to emerge, combining model-driven techniques with aspect-weaving mechanisms. In this paper we show one of these approaches in practice, and present the implementation we have developed to fully support it. We apply our approach for the specification and monitoring of non-functional properties using observers to a case study, illustrating how generic observers defining non-functional properties can be defined in an independent manner. Then, correspondences between these observers and the domain-specific model of the system can be established, and then weaved into a unified system specification using ATL model transformation. Such a unified specification can also be analyzed in a natural way to obtain the required non-functional properties of the system.This work is partially funded by Research Projects TIN2011-23795 and TIN2011-15497-E
Mind the Gap – Passenger Arrival Patterns in Multi-agent Simulations
In most studies mathematical models are developed finding the expected waiting time to be a function of the headway. These models have in common that the proportion of passengers that arrive randomly at a public transport stop is less as headway in-creases. Since there are several factors of influence, such as social demographic or regional aspects, the reliability of public transport service and the level of passenger information, the threshold headway for the transition from random to coordinated passenger arrivals vary from study to study. This study's objective is to investigate if an agent-based model exhibits realistic passenger arrival behavior at transit stops. This objective is approached by exploring the sensitivity of the agents' arrival behavior towards (1) the degree of learning, (2) the reliability of the experienced transit service, and (3) the service headway. The simulation experiments for a simple transit corridor indicate that the applied model is capable of representing the complex passenger arrival behavior observed in reality. (1) For higher degrees of learning, the agents tend to over-optimize, i.e. they try to obtain the latest possible departure time exact to the second. An approach is presented which increases the diversity in the agents' travel alternatives and results in a more realistic behavior. (2) For a less reliable service the agents' time adaptation changes in that a buffer time is added between their arrival at the stop and the actual departure of the vehicle. (3) For the modification of the headway the simulation outcome is consistent with the literature on arrival patterns. Smaller headways yield a more equally distributed arrival pattern whereas larger headways result in more coordinated arrival patterns
Flight Gate Assignment with a Quantum Annealer
Optimal flight gate assignment is a highly relevant optimization problem from
airport management. Among others, an important goal is the minimization of the
total transit time of the passengers. The corresponding objective function is
quadratic in the binary decision variables encoding the flight-to-gate
assignment. Hence, it is a quadratic assignment problem being hard to solve in
general. In this work we investigate the solvability of this problem with a
D-Wave quantum annealer. These machines are optimizers for quadratic
unconstrained optimization problems (QUBO). Therefore the flight gate
assignment problem seems to be well suited for these machines. We use real
world data from a mid-sized German airport as well as simulation based data to
extract typical instances small enough to be amenable to the D-Wave machine. In
order to mitigate precision problems, we employ bin packing on the passenger
numbers to reduce the precision requirements of the extracted instances. We
find that, for the instances we investigated, the bin packing has little effect
on the solution quality. Hence, we were able to solve small problem instances
extracted from real data with the D-Wave 2000Q quantum annealer.Comment: Updated figure
- …
