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Abstract 

In most studies mathematical models are developed finding the expected waiting time 

to be a function of the headway. These models have in common that the proportion of 

passengers that arrive randomly at a public transport stop is less as headway in- creases. 

Since there are several factors of influence, such as social demographic or regional 

aspects, the reliability of public transport service and the level of passenger information, 

the threshold headway for the transition from random to coordinated passenger arrivals 

vary from study to study. This study’s objective is to investigate if an agent-based model 

exhibits realistic passenger arrival behavior at transit stops. This objective is approached 

by exploring the sensitivity of the agents’ arrival behavior towards (1) the degree of 

learning, (2) the reliability of the experienced transit service, and (3) the service 

headway. The simulation experiments for a simple transit corridor indicate that the 

applied model is capable of representing the complex passenger arrival behavior 

observed in reality. (1) For higher degrees of learning, the agents tend to over-optimize, 

i.e. they try to obtain the latest possible departure time exact to the second. An approach

is presented which increases the diversity in the agents’ travel alternatives and results in

a more realistic behavior. (2) For a less reliable service the agents’ time adaptation

changes in that a buffer time is added between their arrival at the stop and the actual

departure of the vehicle. (3) For the modification of the headway the simulation outcome

is consistent with the literature on arrival patterns. Smaller headways yield a more

equally distributed arrival pattern whereas larger headways result in more coordinated

arrival patterns.

Keywords: Multi agent simulation, Passenger arrival pattern, Time adaptation, Service 

reliability, Headway, Multinomial logit, Evolutionary algorithm, KISS principle, Public 

Transport, MATSim 

1. Introduction

The relation of public vehicle and passenger arrivals at stops is approached by 

several researchers [1-4]. In most studies mathematical models are developed 

finding the expected waiting time to be a function of the headway. These models 

have in common that the proportion of passengers that arrive randomly at a public 

transport stop is less as headway increases. Since there are several factors of 

influence, such as social demographic or regional aspects, the reliability of public 

transport service and the level of passenger information, the threshold headway for 

the transition from random to coordinated passenger arrivals vary from study to 

study and ranges from 5 to 12 minutes [4]. 

In macroscopic simulation packages like VISUM, trips are generated from origin- 

destination matrices valid for a time slice, e.g. from 8 a.m. to 9 a.m. Among all 
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paths starting within that time slice, the trip router then searches for the least cost 

path. The trip assigned to that path will start immediately with the path’s departure 

time. The router assumes that the passenger represented by the trip will adapt to the 

path regardless of the actual position of the path’s departure time within the time 

slice [5]. Due to the lack of activities within four-step models, this is a valid 

approach, but the trip assignment heavily depends on the combination of the size of 

time slices and the provided service frequency of the public transport system. More 

important, these models lack the possibility to simulate realistic arrival patterns at 

the transit stop. 

In this study, we examine how different passenger arrival patterns can be 

incorporated into the multi-agent transport simulation MATSim. We use a simple 

time adaptation approach that allows agents to adjust their activity scheduling 

decisions, e.g., to shorten, extend and shift activities. Our main objective is to 

investigate if the model exhibits realistic passenger arrival patterns at transit stops. 

This overall objective is approached by exploring the sensitivity of the agents’ 

behavior. Different simulation experiments are carried out for a simple corridor 

scenario to investigate three of the above mentioned factors of influence. (1) The 

agents’ degree of learning: We analyze under which conditions the agents over-

adapt resulting in unrealistic user behavior. (2) The reliability of  the experienced 

transit service: We investigate how the reliability of the experienced departure times 

affects passengers’ travel behavior. (3) The impact of public transport headways. 

We examine how passengers’ arrival patterns change with the headway, i.e., if the 

transition from random to coordinated arrival patterns can be observed in the model. 

 

2. Methodology 

This section describes the general simulation approach of MATSim (Section 2.1) 

and the special characteristics of public transport in MATSim (Section 2.2). Since 

the method- ology remains unaltered these two sections are based on [6]. 

Furthermore, Section 2.3 explains the agents’ departure time adaptation in MATSim 

that is of particular impor- tance in this paper. For further information of the 

simulation framework MATSim, see [7]. 

 

2.1. MATSim Overview 

In MATSim, each traveler of the real system is modeled as an individual agent. 

The approach consists of an iterative loop that has the following steps:  

1. Plans Generation: All agents independently generate daily plans that encode 

among other things their desired activities during a typical day as well as the 

transport mode for every intervening trip. 

2. Traffic Flow Simulation: All selected plans are simultaneously executed in 

the simulation of the physical system. The traffic flow simulation is 

implemented as a queue simulation, where each road segment (= link) is 

represented as a first-in first-out queue with two restrictions [8, 9]: First, each 

agent has to remain for a certain time on the link, corresponding to the free 

speed travel time. Second, a link storage capacity is defined which limits the 

number of vehicles on the link; if it is filled up, no more agents can enter this 

link. 

3. Evaluating Plans: All executed plans are evaluated by a utility function which 

in this paper encodes the perception of travel time and monetary costs for car 

and public transport. For the public transport mode, the utility function also 

accounts for waiting, access, and egress times. 
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4. Learning: Some agents obtain new plans for the next iteration by modifying 

copies of existing plans. This modification is done by several strategy modules 

that correspond to the available choice dimensions. The choice between 

different plans is performed with respect to a multinomial logit model. As the 

number of plans is limited for every agent by memory constraints, adding a 

new plan to a person which already has the maximum number of plans 

permitted requires to discard one plan. From all plans of the choice set, 

including the newly obtained plan, the plan with the worst performance is 

discarded. 

The repetition of the iteration cycle coupled with the agent database enables the 

agents to improve their plans over many iterations. This is why it is also called 

learning mechanism. The iteration cycle continues until the agents are assumed to 

have a plausible number of different plans in their choice set.  

 

2.2. Public Transport in MATSim 

Each public transport line in MATSim is defined by its mode, e.g. train/bus, the 

stops or stations vehicles will serve, the route each vehicle will ply, the vehicles 

associated with the line, and the departures of each of the line’s vehicles. A public 

transport stop in MATSim is located at the end of a link. Agents using public 

transport can board and alight vehicles at stops only. Depending on the vehicle type, 

each boarding passenger and each alighting passenger delays the vehicle. The delay 

can be set for each type of vehicle. In addition, the vehicle’s doors can operate in 

two different modes. First, the parallel mode allows simultaneous boarding and 

alighting at different doors. Thus, the total delay of the vehicle is defined by the 

maximum of the total boarding delay and the total alighting delay plus an additional 

delay for door operations. The second mode of operation is called serial; this mode 

is used whenever a door can be used by boarding as well as by alighting passengers 

with alighting passengers giving priority. The total delay of the vehicle is then the 

sum of total alighting delay and total boarding delay plus the additional delay of 

operating the doors. Another important attribute is the capacity of each vehicle. A 

vehicle fully loaded cannot pick up any more passengers, in which case passengers 

will have to wait for the next vehicle to arrive. Vehicles of one line can serve 

different tours. Consequently, the delay of one vehicle can be transferred to the 

following tour if the scheduled slack time at the terminus is insufficient to 

compensate this delay. Hence, agents not responsible for the delay in the first place 

are influenced in their experienced travel time and may be delayed as well. Further 

delays may occur by vehicle-vehicle interaction. In the case of mixed-traffic 

operation, private cars and buses compete for the same limited road capacity and 

thus can be caught in the same traffic jam. Each stop can be configured to either 

block traffic or to allow overtaking whenever a transit vehicle stops, i.e. a bus stop 

located at the curb will block traffic; if the bus can pull in a bus bay, other vehicles 

can pass. For an in-depth analysis of MATSim’s public transport dynamics refer to 

[10] and [11]. 

 

2.3. MATSim’s Departure Time Adaptation 

In the present study, time is the only enabled choice dimension. During the 

iterative learning process, agents can adapt their departure times in order to extend, 

shorten or shift activities. Every iteration some agents are considered to generate 

and execute new plans, whereas the other agents choose among their existing plans. 

If an agent is considered for choice generation, a plan is randomly chosen from the 

agent’s choice set. A replication of that plan is then modified by using a simple time 
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allocation approach: For all activities of the plan, the end time (= departure time) is 

shifted by a random time period with a predefined maximum range. The actual time 

shift value will be a random draw between 0 h and the maximum value, i.e. allowing 

both for small and large shifts. The newly generated plan is then executed and 

evaluated. Time shifts that result in a higher utility are kept in the agent’s choice set 

with a higher probability than time shifts that yield a lower utility. For instance, 

time shifts resulting in a departure time of the agent where there is no transit supply 

will result in a very low utility and are thus discarded immediately. Hence, it is 

crucial that the maximum time shift range will enable the agents to reach other 

potential departures within a single mutation step. Otherwise, the agents may stuck 

in a local optimum. In more complex scenarios, the time shift period of an agent 

might be limited by other constrains as opening and closing times of facilities. Thus, 

an agent might try to shift its departure by two hours but will discard this plan 

because the penalty for being too late at the working place does not compensate the 

shorter travel time. This rather simple departure time adaptation approach follows 

the KISS principle of avoiding all unnecessary complexity [12]. The following 

sections demonstrate that from this approach a more complex behavior of the 

traveling agents can emerge. 

 

3. Scenario 
 

3.1. Supply 

For the simulation experiments we consider a single transit corridor with a total 

length of 1 km. The network consists of two transit stops A and B that are located at 

both corridor’s endpoints. Between 7 a.m. and 9 a.m. the corridor is served by a 

constant number of transit vehicles that run from A to B. The headway of this 

service is altered in each simulation experiment (see Section4). The transit vehicles 

are assumed to have an unlimited capacity; that is, occurrences of boarding denials 

can be excluded. The door operation mode is serial. Boarding and alighting times 

are set differently in each simulation experiment (see Section4). As the free speed is 

set to 36 km/h, the free travel time amounts to 100 sec. Alternative modes of 

transportation are not considered in this study. The agents are also not allowed to 

walk from transit stop A to B; that is, they have to use the public transport. 

 

3.2. Demand 

On the demand side, 2000 agents are considered. Each agent has two activity 

locations and one intermediate public transport trip. The first activity is located at 

transit stop A and the second one at transit stop B. During the simulation, agents 

adjust their departure times in order to shift, extend or shorten activity durations. 

The initial departure times are uniformly distributed from 7 a.m. to 9  a.m. 

For evaluating the travel options a utility based approach is used. The total utility 

of an executed daily plan consists of a trip and an activity related utility: 

                                                                                         (1) 

where Vp is the total utility of a plan; n is the total number of activity locations; 

Vperf ,i is the (usually positive) utility for performing an activity i; and Vtr,i is the 

(usually negative) utility for traveling to activity i. The first and the last activity are 

handled as one activity, thus there are as many trips between activities as there are 

activities. The trip related utility is calculated as  follows: 
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                                                             (2) 

where ti,v,pt is the in-vehicle time; βv,pt is the marginal utility of the in-vehicle 

time (−6 utils/h); ti,w,pt is the waiting time; and βw,pt is the marginal utility of 

waiting  (−6 utils/h). For calculating the utility earned by performing an activity, a 

logarithmic form is used, thus, for longer activity durations the marginal utility is 

decreasing, but remains positive [13]. 

 

 

                   (3) 

 

where tperf is the duration of an activity; t* is the “typical” duration of an activity 

(12 h); and βperf is the marginal utility of performing an activity at its typical 

duration (+6 utils/h). t0,i is a scaling parameter that has no effect as long as activities 

cannot  be dropped from the plan. 

The parameters used in this study are of synthetic nature and chosen in a way that 

the agents have enough time to spend at their activity locations. Thus, the 

differences in utility from extending or shortening the activity are very small. For 

more realistic scenarios the parameters for the marginal utility of performing an 

activity, traveling, waiting etc., can be replaced by estimated parameters that depict 

stated or revealed preferences [see, e.g., 6], or the parameters can be used to 

calibrate the model [see, e.g., 14]. Also for the typical duration of an activity, real 

world values can be used, e.g., 8 hours for the work activity. Note that the effective 

marginal utilities for in-vehicle and waiting times are obtained by adding the 

marginal opportunity cost of time to the base values. The opportunity cost of time is 

incurred from shortening the activity before or after the trip when a trip takes 

longer. The present investigation does not include a fare model and thus no marginal 

utility of money is given; otherwise, a (marginal) value of travel time savings would 

be given by dividing the effective marginal utilities of time by the marginal utility 

of money. 

Table 1. Overview of the Simulation Experiments of this Paper 

 

4. Simulation Experiments 

In this study the maximum number of plans per agent is set to 4. A plan is 

modified with a probability of 10 %. For the departure time adaptation, the 

maximum time shift period is set to 2 h (see Section 2.3). The simulation 

experiments are carried out for different iteration numbers, assumptions about the  

public transport service reliability and various headways. The complete overview of 

the 36 configurations of the simulation experiments can be seen in Table 1. 

Learning: Perfection vs. Imperfection We allow the learning mechanism to run 

for 100, 1000 and 10000 iterations (see Section2.1). The adequate number of 

 

 

2 min 

10 min 
 

  

Each setting 
with and without
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iterations usually depends on the agents’ choice dimensions and the size of the 

scenario. Studies with less than 100 iterations are rather unusual, e.g., [15] and [16] 

use 400 to 2000 iterations for their case studies. Thus, a learning mechanism of 100 

iterations is chosen as the starting point for further investigation. Common practice 

is to switch-off the creation of new plans after a certain number of iterations. In all 

three cases, 100 additional iterations are run without time allocation mutation. 

Agents then only choose among plans of their individual choice sets with respect to 

a multinomial logit model. 

One of the research questions is to find out how many iterations are actually 

needed for the relaxation process to complete. As stated in the introduction, another 

question is under which conditions the agents over-adapt so that the model shows an 

unrealistic user behavior. For example, passengers may learn to arrive at the stop 

just in time to be able to board the vehicle the second before it departs. Furthermore, 

we will analyze the importance of running the simulation for a couple of iterations 

without plan modification, i.e. with fixed choice set. 

Service reliability we consider two different cases: In the first case, we focus 

on departure time adaptation of passengers to a 100 % reliable service. Therefore, 

the delays of transit vehicles due to passengers boarding/alighting are set to zero. 

The second setup assumes the public transport service to be less reliable. Boarding 

and alighting times are set to 1 sec per person. Hence, actual travel times and 

headways can differ from the schedule. The agents randomly change their travel 

alternatives from iteration to iteration (random plan modification, plan selection 

according to a multinomial logit model). That is, the number of boarding agents per 

vehicle changes as well. Since, the delay of a transit vehicle depends on the number 

of boarding passengers, the delays will vary from iteration to iteration. 

We will investigate how public transport reliability affects the passengers’ travel 

behavior. 

Headway variation: Considering typical urban situations, three different 

headways are simulated: 2 min which is common for important public transit lines 

during peak times, e.g., metro lines, 10 min which is a typical headway for less 

important public transit lines during peak times, and 60 min which is common for 

less important public transit lines, e.g., night buses. The headway refers to the 

scheduled time interval between transit vehicles that arrive at transit stop A. 

We will analyze if and how the passengers’ arrival patterns change with the 

headway. For the 2 min headway a random arrival at the transit stop seems 

plausible, whereas for the relatively long headway of 60 min a coordinated arrival 

seems more reasonable. The 10 min headway will presumably indicate the transition 

from random to coordinated arrival. 

 

5. Results 
 

5.1. Learning: Perfection vs.  Imperfection 

Up to iteration 100, 1000 and 10000, 10 % of the agents are considered for 

experimental plan modification. These agents also have to execute the newly 

generated plan even though it may yield a much lower utility than the already 

existing plans of the agent’s choice set. This might even result in an agent getting 

stuck, in case he/she is forced to depart after the last vehicle’s departure. By running 

the simulation for an additional 100 iterations in which agents only choose among 

their existing plans, i.e., with a fixed choice set, this experimental behavior is 
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excluded. The results show that with additional iterations agents do not miss the last 

departure. 

Figure1illustrates the effect of the additional 100 iterations with fixed choice set. 

The histograms depict the agents’ arrival times at the first stop A for the day time 

period from 7:30 to 8:30. The red line indicates the realized departure time of a 

transit vehicle. Both graphs show the results for the scenario with delay and 10 min 

headway. Figure 1a depicts the arrival times for iteration 1000.  Figure1bshows the 

arrival pattern for the simulation experiment with 100 additional iterations with 

fixed choice set. Without fixing the choice set for additional 100 iterations, agents 

arrive within the first 5 minutes right after a transit vehicle’s departure (see Figure 

1a). These experimental plans are discarded in the following 100 iterations and thus 

are not present in the graph of iteration 1100 (Figure 1b). That is, in the simulation 

experiment with fixed choice set for the last 100 iterations (iteration 1100), the 

overall travel behavior seems to be much better adapted. However, a less adapted 

and more experimental travel behavior may be wanted by the modeler to reflect the 

imperfection of the real world travel behavior. 

With more iterations, the agents have more time to adjust their travel behavior 

and the overall adaptation becomes more and more perfect. The resulting 

phenomenon of adaptation and possible over-adaptation is illustrated in Figure2. 

Again, the histograms refer to the passengers’ arrivals at the first stop A. The three 

histograms show the results for the 60 min headway scenario without any delay 

induced by boarding and alighting agents. The graphs focus on the simulation 

outcome after additional 100 iterations without plan modification. In iteration 200, 

the majority of the agents pick an arrival time before the departure of the transit 

vehicle. Nevertheless, some agents 
 

        
(a) Delay, 10 min, Iteration 1000   (b) Delay, 10 min, Iteration 1100 

Figure 1. The Additional 100 Iterations without Plan Modification (with Fixed 
Choice Set) Remove Experimental Plans. The Results here were Gener- ated 

“with Delay” but Look Similar “without Delay” 

arrive after 8 o’clock and are forced to wait for the next departure. In iteration 1100, 

the agents manage to cluster right before the departure of the vehicle. This becomes 

more extreme in iteration 10100 with all agents arriving within 2 minutes before the 

departure. However, in reality, this behavior is not possible due to a lack of perfect 

knowledge, i.e., departure times are unknown or congestion may prevent passengers 

from transferring as planned. Therefore, in terms of model calibration, it may make 

sense to stop departure time adaptation at an earlier stage to prevent agents from 

unrealistic behavior. 
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(a) No Delay, 60 min, Iteration 200  (b) No Delay, 60 min, Iteration 1100 

 
(c) No Delay, 60 min, Iteration 10100 

Figure 2. More Iterations Directly Translate into Agents Over-optimizing 

5.2. Service Reliability 

Figure 3 depicts the passenger arrival pattern for a 60 min headway and 10100 

iterations. In Figure 3a boarding and alighting times are set to zero and the 8:00 

transit vehicle departs right on time. All agents arrive within two minutes before the 

departure. In contrast, in Figure 3b boarding and alighting passengers are assumed 

to need time to board vehicles, and in the process to delay transit vehicles. 

Therefore, the vehicle needs more time to handle all boardings, and in consequence 

departs later. As indicated by the red line, the transit vehicle leaves at 8:16 instead 

of 8:00. When analyzing the simulation experiment with delayed transit vehicles 

(Figure 3b), two opposite effects are observed, 

(1) Adaptation to delays As a first effect, passengers adapt their activity 

scheduling decisions according to the departure times of the transit vehicles. That is, 

many agents arrive at the stop well after the scheduled departure time. This effect 

becomes apparent 


           
(a) No Delay, 60 min, Iteration 10100     (b) Delay, 60 min, Iteration 10100 

  (same as Figure 2c) 

Figure 3. Modeling the Boarding Delay Results in a more Realistic Arrival 
Pattern at the Stop 

in Figure 3b showing agents arriving after the scheduled departure time of 8:00. The 

agents’ choice sets function as a memory that allows for adaptation according to an 

experienced schedule. Agents start to incorporate the experienced delay of the 
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transit service into their daily plans. Hence, passengers arrive late on purpose well 

knowing that the vehicle is still at the stop handling other passengers. Only few 

agents are arriving for the scheduled departure time, i.e., before 8:00. According to 

the utility functions and parameter settings described in Section 3.2, agents that 

arrive late spend more time at the previous activity location and therefore earn a 

higher positive utility. Additionally, they face shorter waiting times and therefore a 

higher trip related utility. 

(2) Adaptation to unreliability As a second effect, agents also adapt their 

departures according to the experienced reliability of the schedule. This effect is 

shown in Figure3bwhere no agents arrive at the transit stop right before the realized 

departure time (gap between black bars and red line). The strategy of incorporating 

the exact vehicle delays becomes futile if transit vehicles display different delays 

from one iteration to the next. In case the queue of boarding passengers is 

interrupted, the transit vehicle departs and agents arriving later need to wait for the 

next departure. Therefore, the strategy depends on a considerably large number of 

agents to reliably delay the departure. Fewer agents before one’s own arrival 

increase the risk of missing a particular transit vehicle. As mentioned earlier, 

arriving at the latest moment yields the shortest travel time and thus the highest 

utility. At the same time, it increases the period of time some other agents need to 

delay the vehicle and thus increases the risk of being stranded. As a consequence, 

the agents increase the reliability of their plan by adding a buffer, i.e., agents arrive 

well before the delayed departure. 

The agents’ risk aversion depends on the headway, i.e. the time until the next 

transit vehicle arrives in case a departure is missed. For the 10 min headway (see 

Figure1), the number of arriving passengers at the transit stop is observed to 

decrease right before the transit vehicle departs. Most of the agents prefer to arrive 

earlier to ensure not to miss the departure. For the 2 min headway, the risk aversion 

is irrelevant and buffers are not present (not shown). 

 

5.3. Public Transport Headways 

The literature review indicates a more coordinated arrival pattern for larger 

headways. MATSim’s simple plan modification strategy is able to reflect this as 

shown in Figure4: 

All three graphs show the period of time between two departures for a headway 

of 60 min, 10 min, and 2 min. In the 60 min headway scenario, the arrivals 

accumulate towards the departure. In the 10 min headway scenario, this effect 

becomes less clear. Whereas in the 2 min headway scenario, the arrivals are more or 

less equally distributed. 
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(a) Delay, 60 min, Iteration 200  (b) Delay, 10 min, Iteration 200 

 
(c) Delay, 2 min, Iteration 200 

Figure 4. Larger Headways Result in more Coordinated Arrival Patterns 

 

Figure 5. Waiting Time Distribution of the Complete Population for each 
Headway (Delay, Iteration 200) 

This effect becomes even clearer when analyzing the complete population over all 

de- partures: Figure 5 shows the distribution of the waiting time considering all 

departures. Agents waiting as long as the headway have a ratio of waiting time to 

headway of 100 %. Agents arriving just in time have a ratio of 0 %. For the 60 min 

scenario, the arrivals are coordinated with the departure of the vehicle, i.e., over 84 

% of the agents arrive 15 min before the departure or even later. In the other 

scenarios, the arrivals are less coordinated, e.g., in the 2 min scenario, less than 50 

% of the agents arrive 30 sec or less before the departure. 

The simulation experiments indicate that the simple random time allocation 

module together with a realistic scoring function is indeed able to show the trend of 

real world effects: Random passenger arrivals for short headways; timed passenger 

arrivals for larger headway. 

The explanation for the observed arrival patterns starts with the way travel alter - 

natives are chosen from the agents’ choice sets, i.e., the multinomial logit model. 

For all headways, plans are generated following the same method, which yields the 

same probability for each departure time to be added to the choice set. For smaller 

head- ways, the relative utility differences of plans with randomly shifted departure 

times is small since missing a departure means only little additional waiting time for 
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the next vehicle; in consequence, the probability of the multinomial logit model to 

choose such a plan is still fairly high. Therefore, from iteration to itera tion travel 

behavior is more variable and the experienced schedule is less reliable. In 

consequence, passengers arrive more randomly at stops. Contrarily, for larger 

headways, the plan modification results in longer waiting times for the next 

departure. Thus, the relative utility differences are larger. In this case, the 

probability of the multinomial logit model to choose such a plan is much lower, and 

thus the plan with the highest utility is executed more constantly.  

The diversity of travel alternatives is also related to the way in which the agents’ 

choice set is modified over the iterations. As described in Section2.1, in case an 

agent’s choice set contains already the maximum number of permitted plans per 

agent and this agent generates a new plan (with modified departure times), from all 

plans in the choice set, including the newly generated plan, the plan with the worst 

performance is removed. This may lead to fairly similar plans and explains the 

observed over-optimization, i.e., for longer simulation runs (see Figure2c). 

 

6. Discussion 

An approach to increase the diversity in travel behavior is the path size logit 

model which gives a penalty to plans that are very similar to others [e.g., 17]. In this 

paper   we propose a rather simple approach that removes a plan once it is found to 

be similar to another plan of the choice set. If no plan is considered similar to 

another plan the standard MATSim behavior is preserved as described in Section  2.1. 

A plan is considered similar to another plan if all similarity checkers consider the 

plan similar. In this paper, only the activity end times are checked for. That is, two 

plans with the same activity end times are considered similar. Depending on the use 

case, the proposed approach can be extended and further similarity checkers can be 

introduced. Additional similarity checkers may for example include the mode of 

transportation, the route or the activity locations. From two plans considered as 

similar the older one is preserved and the newer one will be deleted. 

As first tests indicate, this effectively prevents agents from over -adapting, i.e., 

arriving at a stop only seconds before the vehicle departs. For instance, Figure  6 

shows the results of the proposed approach for the 60 min headway. There, plans are 

considered similar if the activity end times lie within an interval of 5 minutes. The 5 

minutes are motivated by the observed tendency that passengers do not plan their 

trips to the exact minute. Again, agents are allowed to adapt and show a coordinated 

arrival pattern similar to the one shown in Figure 2. However, the comparison of 

iteration 1100 and 10100 indicates that the adaptation stops at a certain level and no 

over-adaptation occurs. 

Another issue is that this study assumes the capacity of transit vehicles to be 

unlimited. This was done for the purpose of removing all interfering effects; the 

software itself is capable of including the effect of finite vehicle sizes. The same 

passenger behavior as in the present study will be observed in cases where boarding 

denials due to capacity constraints are not the limiting factor, e.g., for modes with 

large vehicle sizes like train services or for areas where passengers can avoid an 

over-subscribed transit service by taking a different transit line or changing the 

mode of transport. 

In case boarding denials caused by capacity constraints are the limiting factor, the 

passenger behavior will be different. In the extreme case where the sum of all bus 

depar- 
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(a) No Delay, 60 min, Iteration 200  (b) No Delay, 60 min, Iteration 110 

 
(c) No Delay, 60 min, Iteration 10100 

Figure 6. Removing Similar Plans from the Choice Set Effectively Prevents 
Agents from Over-optimizing 

tures has less capacity then there is demand, the score of an agent will be dominated 

by the agent’s ability to reach its destination at all. In consequence, assuming a first-

come first-serve policy at the station, the agents are forced to arrive as early as 

possible at the transit stop. Depending on its position in the waiting queue at the  

station, the agent would either be able to board one of the buses, or not. The actual 

vehicle would matter much less than the capability to board at all, and being earlier 

at the stop than the competing agents would be the only thing that matters. 

 

7. Conclusion 

This study investigates arrival patterns of passengers at transit stops within the 

frame- work of an agent-based simulation. Different simulation experiments are 

carried out for a simple transit corridor. Passenger arrival patterns are analyzed 

focusing on three aspects: the agents’ degree of learning, the service reliability, and 

the headway. 

It is demonstrated that complex behavior can emerge from the simple adaptation 

approach of MATSim: Agents try to obtain the latest possible arrival time at the 

transit stop in order to minimize the waiting time. Agents incorporate the 

experienced delay of the vehicle and arrive late on purpose well knowing that the 

vehicle is still handling other passengers. Adding delay effects imposed by 

boarding/alighting passengers also affects the reliability of the public transport 

service: Besides being behind schedule, the actual departure time of a vehicle varies 

from iteration to iteration depending on the number of boarding passengers. This 

less reliable service induces a second effect of how agents adapt their activity 

scheduling decisions: Agents increase the reliability of their plans by adding a 

buffer time between their arrival at the stop and the actual departure of the vehicle. 

More iterations are observed to translate directly into better adapted users. 

Depending on the scenario configuration, agents need a different number of 

adaptation iterations to show a realistic arrival pattern: For a reliable transit service, 

fewer iterations might better reflect the imperfection of real world travelers. For a 

less reliable service, more iterations are required to model the users’ adaptation to 

the experienced vehicle departures, eventually reflecting real world travel behavior 

in a better way. Simulating an additional 100 iterations without plan modification 

(with fixed choice set) removes ex- perimental/imperfect travel alternatives. A 
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simple approach is proposed that modifies the model such that realistic arrival 

patterns are obtained in the steady state of the iterations, irrespective of the number 

of previous iterations. 

The results are consistent with the literature on arrival patterns for different 

headways. Smaller headways yield a more equally distributed arrival pattern. Larger 

headways result in more coordinated arrival patterns. That is, the realistic passenger 

arrival patterns at transit stops emerge endogenously from the simulation. 
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