104 research outputs found

    Behavior quantification as the missing link between fields: Tools for digital psychiatry and their role in the future of neurobiology

    Full text link
    The great behavioral heterogeneity observed between individuals with the same psychiatric disorder and even within one individual over time complicates both clinical practice and biomedical research. However, modern technologies are an exciting opportunity to improve behavioral characterization. Existing psychiatry methods that are qualitative or unscalable, such as patient surveys or clinical interviews, can now be collected at a greater capacity and analyzed to produce new quantitative measures. Furthermore, recent capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometer, open avenues of novel questioning that were previously entirely unrealistic. Their temporally dense nature enables a cohesive study of real-time neural and behavioral signals. To develop comprehensive neurobiological models of psychiatric disease, it will be critical to first develop strong methods for behavioral quantification. There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge -- one that will necessitate new data processing tools, new machine learning techniques, and ultimately a shift in how interdisciplinary work is conducted. In my thesis, I detail research projects that take different perspectives on digital psychiatry, subsequently tying ideas together with a concluding discussion on the future of the field. I also provide software infrastructure where relevant, with extensive documentation. Major contributions include scientific arguments and proof of concept results for daily free-form audio journals as an underappreciated psychiatry research datatype, as well as novel stability theorems and pilot empirical success for a proposed multi-area recurrent neural network architecture.Comment: PhD thesis cop

    Beyond Quantity: Research with Subsymbolic AI

    Get PDF
    How do artificial neural networks and other forms of artificial intelligence interfere with methods and practices in the sciences? Which interdisciplinary epistemological challenges arise when we think about the use of AI beyond its dependency on big data? Not only the natural sciences, but also the social sciences and the humanities seem to be increasingly affected by current approaches of subsymbolic AI, which master problems of quality (fuzziness, uncertainty) in a hitherto unknown way. But what are the conditions, implications, and effects of these (potential) epistemic transformations and how must research on AI be configured to address them adequately

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction

    Natural Language Processing for Technology Foresight Summarization and Simplification: the case of patents

    Get PDF
    Technology foresight aims to anticipate possible developments, understand trends, and identify technologies of high impact. To this end, monitoring emerging technologies is crucial. Patents -- the legal documents that protect novel inventions -- can be a valuable source for technology monitoring. Millions of patent applications are filed yearly, with 3.4 million applications in 2021 only. Patent documents are primarily textual documents and disclose innovative and potentially valuable inventions. However, their processing is currently underresearched. This is due to several reasons, including the high document complexity: patents are very lengthy and are written in an extremely hard-to-read language, which is a mix of technical and legal jargon. This thesis explores how Natural Language Processing -- the discipline that enables machines to process human language automatically -- can aid patent processing. Specifically, we focus on two tasks: patent summarization (i.e., we try to reduce the document length while preserving its core content) and patent simplification (i.e., we try to reduce the document's linguistic complexity while preserving its original core meaning). We found that older patent summarization approaches were not compared on shared benchmarks (making thus it hard to draw conclusions), and even the most recent abstractive dataset presents important issues that might make comparisons meaningless. We try to fill both gaps: we first document the issues related to the BigPatent dataset and then benchmark extractive, abstraction, and hybrid approaches in the patent domain. We also explore transferring summarization methods from the scientific paper domain with limited success. For the automatic text simplification task, we noticed a lack of simplified text and parallel corpora. We fill this gap by defining a method to generate a silver standard for patent simplification automatically. Lay human judges evaluated the simplified sentences in the corpus as grammatical, adequate, and simpler, and we show that it can be used to train a state-of-the-art simplification model. This thesis describes the first steps toward Natural Language Processing-aided patent summarization and simplification. We hope it will encourage more research on the topic, opening doors for a productive dialog between NLP researchers and domain experts.Technology foresight aims to anticipate possible developments, understand trends, and identify technologies of high impact. To this end, monitoring emerging technologies is crucial. Patents -- the legal documents that protect novel inventions -- can be a valuable source for technology monitoring. Millions of patent applications are filed yearly, with 3.4 million applications in 2021 only. Patent documents are primarily textual documents and disclose innovative and potentially valuable inventions. However, their processing is currently underresearched. This is due to several reasons, including the high document complexity: patents are very lengthy and are written in an extremely hard-to-read language, which is a mix of technical and legal jargon. This thesis explores how Natural Language Processing -- the discipline that enables machines to process human language automatically -- can aid patent processing. Specifically, we focus on two tasks: patent summarization (i.e., we try to reduce the document length while preserving its core content) and patent simplification (i.e., we try to reduce the document's linguistic complexity while preserving its original core meaning). We found that older patent summarization approaches were not compared on shared benchmarks (making thus it hard to draw conclusions), and even the most recent abstractive dataset presents important issues that might make comparisons meaningless. We try to fill both gaps: we first document the issues related to the BigPatent dataset and then benchmark extractive, abstraction, and hybrid approaches in the patent domain. We also explore transferring summarization methods from the scientific paper domain with limited success. For the automatic text simplification task, we noticed a lack of simplified text and parallel corpora. We fill this gap by defining a method to generate a silver standard for patent simplification automatically. Lay human judges evaluated the simplified sentences in the corpus as grammatical, adequate, and simpler, and we show that it can be used to train a state-of-the-art simplification model. This thesis describes the first steps toward Natural Language Processing-aided patent summarization and simplification. We hope it will encourage more research on the topic, opening doors for a productive dialog between NLP researchers and domain experts

    Great expectations: unsupervised inference of suspense, surprise and salience in storytelling

    Get PDF
    Stories interest us not because they are a sequence of mundane and predictable events but because they have drama and tension. Crucial to creating dramatic and exciting stories are surprise and suspense. Likewise, certain events are key to the plot and more important than others. Importance is referred to as salience. Inferring suspense, surprise and salience are highly challenging for computational systems. It is difficult because all these elements require a strong comprehension of the characters and their motivations, places, changes over time, and the cause/effect of complex interactions. Recently advances in machine learning (often called deep learning) have substantially improved in many language-related tasks, including story comprehension and story writing. Most of these systems rely on supervision; that is, huge numbers of people need to tag large quantities of data to tell the system what to teach these systems. An example would be tagging which events are suspenseful. It is highly inflexible and costly. Instead, the thesis trains a series of deep learning models via only reading stories, a self-supervised (or unsupervised) system. Narrative theory methods (rules and procedures) are applied to the knowledge built into the deep learning models to directly infer salience, surprise, and salience in stories. Extensions add memory and external knowledge from story plots and from Wikipedia to infer salience on novels such as Great Expectations and plays such as Macbeth. Other work adapts the models as a planning system for generating new stories. The thesis finds that applying the narrative theory to deep learning models can align with the typical reader. In follow up work, the insights could help improve computer models for tasks such as automatic story writing, assistance for writing, summarising or editing stories. Moreover, the approach of applying narrative theory to the inherent qualities built in a system that learns itself (self-supervised) from reading from books, watching videos, listening to audio is much cheaper and more adaptable to other domains and tasks. Progress is swift in improving self-supervised systems. As such, the thesis's relevance is that applying domain expertise with these systems may be a more productive approach in many areas of interest for applying machine learning

    Generative Transformers for Design Concept Generation

    Full text link
    Generating novel and useful concepts is essential during the early design stage to explore a large variety of design opportunities, which usually requires advanced design thinking ability and a wide range of knowledge from designers. Growing works on computer-aided tools have explored the retrieval of knowledge and heuristics from design data. However, they only provide stimuli to inspire designers from limited aspects. This study explores the recent advance of the natural language generation (NLG) technique in the artificial intelligence (AI) field to automate the early-stage design concept generation. Specifically, a novel approach utilizing the generative pre-trained transformer (GPT) is proposed to leverage the knowledge and reasoning from textual data and transform them into new concepts in understandable language. Three concept generation tasks are defined to leverage different knowledge and reasoning: domain knowledge synthesis, problem-driven synthesis, and analogy-driven synthesis. The experiments with both human and data-driven evaluation show good performance in generating novel and useful concepts.Comment: Accepted by J. Comput. Inf. Sci. En

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains

    Collected Papers (on Neutrosophic Theory and Applications), Volume VI

    Get PDF
    This sixth volume of Collected Papers includes 74 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2015-2021 by the author alone or in collaboration with the following 121 co-authors from 19 countries: Mohamed Abdel-Basset, Abdel Nasser H. Zaied, Abduallah Gamal, Amir Abdullah, Firoz Ahmad, Nadeem Ahmad, Ahmad Yusuf Adhami, Ahmed Aboelfetouh, Ahmed Mostafa Khalil, Shariful Alam, W. Alharbi, Ali Hassan, Mumtaz Ali, Amira S. Ashour, Asmaa Atef, Assia Bakali, Ayoub Bahnasse, A. A. Azzam, Willem K.M. Brauers, Bui Cong Cuong, Fausto Cavallaro, Ahmet Çevik, Robby I. Chandra, Kalaivani Chandran, Victor Chang, Chang Su Kim, Jyotir Moy Chatterjee, Victor Christianto, Chunxin Bo, Mihaela Colhon, Shyamal Dalapati, Arindam Dey, Dunqian Cao, Fahad Alsharari, Faruk Karaaslan, Aleksandra Fedajev, Daniela Gîfu, Hina Gulzar, Haitham A. El-Ghareeb, Masooma Raza Hashmi, Hewayda El-Ghawalby, Hoang Viet Long, Le Hoang Son, F. Nirmala Irudayam, Branislav Ivanov, S. Jafari, Jeong Gon Lee, Milena Jevtić, Sudan Jha, Junhui Kim, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Songül Karabatak, Abdullah Kargın, M. Karthika, Ieva Meidute-Kavaliauskiene, Madad Khan, Majid Khan, Manju Khari, Kifayat Ullah, K. Kishore, Kul Hur, Santanu Kumar Patro, Prem Kumar Singh, Raghvendra Kumar, Tapan Kumar Roy, Malayalan Lathamaheswari, Luu Quoc Dat, T. Madhumathi, Tahir Mahmood, Mladjan Maksimovic, Gunasekaran Manogaran, Nivetha Martin, M. Kasi Mayan, Mai Mohamed, Mohamed Talea, Muhammad Akram, Muhammad Gulistan, Raja Muhammad Hashim, Muhammad Riaz, Muhammad Saeed, Rana Muhammad Zulqarnain, Nada A. Nabeeh, Deivanayagampillai Nagarajan, Xenia Negrea, Nguyen Xuan Thao, Jagan M. Obbineni, Angelo de Oliveira, M. Parimala, Gabrijela Popovic, Ishaani Priyadarshini, Yaser Saber, Mehmet Șahin, Said Broumi, A. A. Salama, M. Saleh, Ganeshsree Selvachandran, Dönüș Șengür, Shio Gai Quek, Songtao Shao, Dragiša Stanujkić, Surapati Pramanik, Swathi Sundari Sundaramoorthy, Mirela Teodorescu, Selçuk Topal, Muhammed Turhan, Alptekin Ulutaș, Luige Vlădăreanu, Victor Vlădăreanu, Ştefan Vlăduţescu, Dan Valeriu Voinea, Volkan Duran, Navneet Yadav, Yanhui Guo, Naveed Yaqoob, Yongquan Zhou, Young Bae Jun, Xiaohong Zhang, Xiao Long Xin, Edmundas Kazimieras Zavadskas

    Multi-modal post-editing of machine translation

    Get PDF
    As MT quality continues to improve, more and more translators switch from traditional translation from scratch to PE of MT output, which has been shown to save time and reduce errors. Instead of mainly generating text, translators are now asked to correct errors within otherwise helpful translation proposals, where repetitive MT errors make the process tiresome, while hard-to-spot errors make PE a cognitively demanding activity. Our contribution is three-fold: first, we explore whether interaction modalities other than mouse and keyboard could well support PE by creating and testing the MMPE translation environment. MMPE allows translators to cross out or hand-write text, drag and drop words for reordering, use spoken commands or hand gestures to manipulate text, or to combine any of these input modalities. Second, our interviews revealed that translators see value in automatically receiving additional translation support when a high CL is detected during PE. We therefore developed a sensor framework using a wide range of physiological and behavioral data to estimate perceived CL and tested it in three studies, showing that multi-modal, eye, heart, and skin measures can be used to make translation environments cognition-aware. Third, we present two multi-encoder Transformer architectures for APE and discuss how these can adapt MT output to a domain and thereby avoid correcting repetitive MT errors.Angesichts der stetig steigenden Qualität maschineller Übersetzungssysteme (MÜ) post-editieren (PE) immer mehr Übersetzer die MÜ-Ausgabe, was im Vergleich zur herkömmlichen Übersetzung Zeit spart und Fehler reduziert. Anstatt primär Text zu generieren, müssen Übersetzer nun Fehler in ansonsten hilfreichen Übersetzungsvorschlägen korrigieren. Dennoch bleibt die Arbeit durch wiederkehrende MÜ-Fehler mühsam und schwer zu erkennende Fehler fordern die Übersetzer kognitiv. Wir tragen auf drei Ebenen zur Verbesserung des PE bei: Erstens untersuchen wir, ob andere Interaktionsmodalitäten als Maus und Tastatur das PE unterstützen können, indem wir die Übersetzungsumgebung MMPE entwickeln und testen. MMPE ermöglicht es, Text handschriftlich, per Sprache oder über Handgesten zu verändern, Wörter per Drag & Drop neu anzuordnen oder all diese Eingabemodalitäten zu kombinieren. Zweitens stellen wir ein Sensor-Framework vor, das eine Vielzahl physiologischer und verhaltensbezogener Messwerte verwendet, um die kognitive Last (KL) abzuschätzen. In drei Studien konnten wir zeigen, dass multimodale Messung von Augen-, Herz- und Hautmerkmalen verwendet werden kann, um Übersetzungsumgebungen an die KL der Übersetzer anzupassen. Drittens stellen wir zwei Multi-Encoder-Transformer-Architekturen für das automatische Post-Editieren (APE) vor und erörtern, wie diese die MÜ-Ausgabe an eine Domäne anpassen und dadurch die Korrektur von sich wiederholenden MÜ-Fehlern vermeiden können.Deutsche Forschungsgemeinschaft (DFG), Projekt MMP
    corecore