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Abstract

This thesis presents studies in neural text summarization for single and multiple documents.

The focus is on using sentence paraphrasing and compression for generating fluent sum-

maries, especially in multi-document summarization where there is data paucity. A novel

solution is to use transfer-learning from downstream tasks with an abundance of data. For

this purpose, we pre-train three models for each of extractive summarization, paraphrase

generation and sentence compression. We find that summarization datasets – CNN/DM and

NEWSROOM – contain a number of noisy samples. Hence, we present a method for auto-

matically filtering out this noise. We combine the representational power of the GRU-RNN

and TRANSFORMER encoders in our paraphrase generation model. In training our sentence

compression model, we investigate the impact of using different early-stopping criteria,

such as embedding-based cosine similarity and F1. We utilize the pre-trained models (ours,

GPT2 and T5) in different settings for single and multi-document summarization.
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Chapter 1

Introduction

1.1 Motivation

This thesis is motivated by the need for concise and factual information. Researchers,

media analysts, meteorologists and humans in general, often need to access and digest large

amounts of data. It will be ideal if machines could automatically process and condense these

data into short informative texts, as either abstracts, news digests, weather forecasts or other

rich summarized forms. Hence, we seek to develop machine learning models capable of

taking news articles as inputs and generating fluent highlights.

We model our approach after the way humans naturally generate summaries. While the

art of summary generation by humans could be subjective, it nonetheless, usually encom-

passes the same key processes such as information extraction and fine-tuning (Cao et al.,

2018). Fragments of the text with the most informative content, are taken verbatim to be

part of the summary. The selected or extracted texts are then fine-tuned, that is, presented

in the words of the summary writer by using grammar techniques like sentence paraphras-

ing and/or compression to produce abstractive summaries. In line with this, we implement

different models for extracting salient parts of a text, generating sentence paraphrases and

performing sentence compression.

Due to its real-life utilization appeal coupled with the availability of summarization re-

sources, there is an enormous number of studies on automatic summarization. While this

makes it relatively fast to understand the concepts and ideas, on the other hand, innovat-

ing novel technologies tends to be increasingly challenging. The focus of this research is

1



1.2. KEY TERMS

on using existing technologies wrapped with intuitive concepts to produce optimized solu-

tions for automatic summarization. Neural models have shown more promise than manual-

feature engineering in Natural Language Processing (NLP) tasks like summarization (Chen

and Bansal, 2018; Gehrmann et al., 2018; Zhou et al., 2018). Hence, our methods are all

implemented using Neural Networks. We begin with extractive summarization, followed by

abstractive summarization using the aforementioned techniques – paraphrasing and com-

pression.

Section 1.2 provides high level definitions of some key terms. We present clearly, the

research questions we seek to answer in Section 1.3 and provide highlights of the structure

of the entire thesis in Section 1.5.

1.2 Key Terms

– Neural Network (NN) is a set of algorithms that endeavour to recognize underlying

relationships in a set of data through a process that mimics the way the human brain oper-

ates. It consists of interconnections of neurons, referred to as nodes which are grouped to

form layers. Nodes from one layer pass information to the next layer. A basic NN consists

of three (3) layers – input, hidden, and output layers (Kröse et al., 1993).

– Machine Learning (ML) is a study of computer algorithms that improve automati-

cally by learning patterns. ML enables self-learning from data (Alpaydin, 2020).

– Manual Feature Engineering is the art of manually studying patterns in a set of

source data. These patterns are then used to craft features for extracting information from

a new set of data with the same patterns as the source. The crafted features could also be

used to help facilitate the ML process (Severyn and Moschitti, 2013).

– Transfer-learning is the improvement of learning in a new task through the trans-

fer of knowledge from a related task that has already been learned (Torrey and Shavlik,

2010).

– Text Summarization is the process of producing a concise or shorter text from a
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longer source text, that retains only the most salient parts of the source text (Nenkova and

McKeown, 2012).

Source Text: Proghorns defender Daniel Schumann has kept his driving li-
cense, telling a court he was speeding 36km over the limit because he was
distracted by his sick cat. He drove 96km/h in a 60km/h road works zone
on the Southern Eastern expressway in February. He said he didn’t see the
reduced speed sign because he was so distracted by his cat vomiting violently
in the back seat of his car.
Extractive Summary: Proghorns defender Daniel Schumann has kept his
driving license, telling a court he was speeding 36km over the limit because
he was distracted by his sick cat.
Abstractive Summary: Proghorns defender Daniel Schumann admits to
speeding but says he didn’t see road signs because his cat was vomiting in
his car.

Figure 1.1: Example of an extractive and abstractive summary.

– Extractive Text Summarization reproduces verbatim, parts of the source text

which it considers most important (Xiao and Carenini, 2019) as illustrated in Fig 1.1.

– Abstractive Text Summarization rewrites the most informative parts of the source

text in a concise form and introduces novel words in the summary (Kouris et al., 2019) as

illustrated in Fig 1.1.

– Query-focused Text Summarization aims at generating a summary with respect

to a given query (Egonmwan et al., 2019).

– Generic Text Summarization generates a concise version of a source document(s)

without any specific query in view (Lee et al., 2009).

– Single Document Summarization summarizes a single piece of document (Liu

et al., 2019).

– Multi-document Summarization summarizes a set of related documents (Goldstein

et al., 2000).

– Indicative versus Informative Summarization: Indicative summarization iden-

tifies the topics of a document while informative summarization represent the concise de-
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scription of the original document (Kumar and Salim, 2012). Summarization presented in

this thesis are informative.

1.3 Research Questions

At a high level of abstraction, the overarching question we ask in this thesis is:

RQ0 How can we build a machine learning model that is capable of generating both ex-

tractive and abstractive summaries which are grammatically correct and are faithful to the

facts contained in the source text? This has been an open research question for researchers

over the years and very interesting solutions have been proposed. However, there is still

a need to close the gap between human and machine-generated summaries, especially in

terms of readability and factuality (i.e, maintaining the semantics in the source document).

As presented in a study by Lebanoff et al. (2019a), 38.3% of the system outputs introduce

incorrect facts (see example in Figure 6.1), while 21.6% are ungrammatical (see example

in Figure 6.2).

RQ0 gives rise to several sub-questions below:

RQ1 How can we identify parts of a text that are the most relevant for an extractive

summary with improved accuracy? One challenge with extractive summarization is that

the reference summaries in available summarization data-sets are abstractive summaries

written by humans. Due to the abundance of external knowledge available to humans,

some of these abstractive reference summaries contain information that cannot be directly

inferred from the source text. It is infeasible for the ML model to learn patterns from such

disparate data pairs. Hence, we must carefully identify all such reference summaries in the

dataset, in order to present the ML model with training pairs it can feasibly learn from.

RQ2 How can we build a paraphrasing model to help with abstractive summarization?

Since abstracting and paraphrasing have the same goal of expressing a text in alternative

ways using novel words, the conjecture is that a good paraphrasing model applied on ex-

tractive summaries should generate well-formed abstractive summaries.
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RQ3 How can we build a compression model to help improve the conciseness of ma-

chine generated summaries? Extractive summaries are often too lengthy, especially in

multi-documents settings. Since whole sentences from the source text are extracted to form

the summary, parts of the extracted sentence may contain irrelevant information that are

not summary-worthy. It is therefore, necessary to identify these irrelevant words in a sen-

tence. A good sentence compression model appropriately deletes uninformative words in a

sentence while retaining the fluency of the resulting compressed sentence.

Source Text: [...] John Abraham has been prohibited from using the
title Hamara Bajaj for his home production [...]
Machine Summary: [...] John Abraham has been prohibited from his
home [...]
Reference Summary: [...] John Abraham has been prohibited from
using the title Hamara Bajaj [...]

Figure 1.2: Example of misleading information in summary.

RQ4 How can we investigate that our machine generated summaries are factual, that

is, that they contain accurate information? Summarization models are usually evaluated

using the ROUGE metric (Lin, 2004), which basically measures the word overlap between

the machine and reference outputs. However, as seen in Figure 1.2, a machine generated

summary could have high overlap with the reference, but may still contain a high degree of

misleading information. We want to be careful to avoid this.

RQ5 How well does transfer-learning impact multi-document summarization? Docu-

ments for summarization can be presented as single documents or multiple documents dis-

cussing the same underlying topic. Since NN models require large training data-set (which

is lacking in MDS) for optimized performance, we apply different transfer-learning meth-

ods. We compare the gains of using our proposed pretrained models from single document

extractive and abstractive summarization versus a language model – GPT2 pretrained on a

very large corpus. It is therefore how well these pretrained models perform on MDS.
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1.4 Contributions

This thesis makes the following contributions to research in automatic text summariza-

tion:

• We presented a simple algorithm for building a sentence-labelled corpus for extrac-

tive summarization training that produces more accurate results.

• We proposed a novel framework for the task of extractive single document summa-

rization that improves the current state-of-the-art on two specific datasets.

• We introduced the encode - encode - decode paradigm using two complementary

models, TRANSFORMER and SEQ2SEQ for generating paraphrases that improves cur-

rent top performance on two specific datasets.

• We presented a model that improves performance on extractive sentence compression

on GOOGLENEWS compression test dataset.

• We demonstrated the utility of our sentence compression model on a related task –

extractive document summarization and in parallel show that our model generalizes

relatively well to non-dedicated data.

• We investigated the impact of implementing different stopping criteria on a model

trained with the same learning objective, and showed that using the right heuristics is

crucial and has a direct bearing on the performance of the model.

• We presented a method for transfer learning by supervised pretraining on paraphrase

generation and sentence compression for abstractive MDS.

• We demonstrated the utility of downstream tasks, such as paraphrase generation and

sentence compression on the problem of Multi-document summarization.
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1.5 Outline

We start with the task of Single Document Extractive Summarization in Chapter 2.

After giving background information on this task, we then provide a description of our

methodology. First we formulate a method to identify and process disparate data-pairs in the

training set that could impede the performance of the extractive summarization ML model.

Next, we tune the processed abstractive summarization data-set to be suitable for training

an extractive summarizer. To investigate the quality of the processed and tuned data-set,

before training of the NN, we perform some evaluations. We evaluate our tuned data-set

for accuracy when compared to existing work in literature. In an attempt to address RQ1,

we describe the architecture and implementation of our NN when trained on the processed

data. The outcomes of this chapter are an extractive summarization model that performs

well on two (2) data-sets –CNN/DAILYMAIL (Hermann et al., 2015; Nallapati et al., 2016)

and Newsroom (Grusky et al., 2018), as well as a good data-filtering technique and an

effective method for creating an extractive summarization data-set from an abstractive one.

All of the outcomes are used in Chapters 5 and 6.

In Chapters 3 and 4 we build ML models for paraphrasing and compressing, respec-

tively. The paraphrasing model was trained and tested on the QUORA and MSCOCO data-sets

(Gupta et al., 2018), while the compression model was implemented using the GOOGLE-

NEWS data-set (Filippova et al., 2015; Filippova and Altun, 2013). These two models

provide answers to RQ2, and RQ3. Our compression model also addresses RQ4. The

paraphrasing and compression models serve as strong foundations for building our abstrac-

tive summarization model in Chapters 5 and 6. Specifically, our single and multi-document

abstractive summarization model described in Chapters 5 and 6 incorporates the models

built in Chapters 2 to 4.

In Chapter 5 we present a neural model for abstractive single document summarization

SDS. Our SDS model learns to extract and paraphrase using methods presented in Chapters

2 and 4 in order to generate abstractive summaries.
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In Chapter 6 we investigate RQ5. Without building a new NN model for multi-document

summarization (MDS), we formulate a method for applying our single document summa-

rization (SDS) models iteratively on a MDS data-set – DUC2004 (Paul and James, 2004).

While this strengthens the claim that our SDS models perform well both extractively and

abstractively, even in MDS settings, it also demonstrates how well our model generalizes to

out-of-domain data, which is a desirable model quality.

Chapter 7 explores summarization guided by a query, termed Query Focused Summa-

rization (QFS). Specifically, we explore how we can use knowledge gained from a closely-

related NLP task – Question Answering (QA) in QFS. This becomes necessary because QFS

suffers from a sparsity of training data. On the other hand, there exists an abundance of

data for training QA models.

We conclude this thesis by providing answers to RQ0 and giving some perspectives for

future work in Chapter 8.
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Chapter 2

Single Document Extractive
Summarization

In this Chapter, we describe concerns and propose solutions to the task of building a ma-

chine learning model for single document extractive summarization. Specifically, we aim

at providing an answer to RQ1: How can we identify parts of a text that are the most

relevant for an extractive summary with improved accuracy?

2.1 Background

One fast and easy approach to extractive summarization, is simply extracting the leading

sentences (first three sentences for example) in a document as the summary, especially

in news articles. In fact, this method forms strong baselines for comparison in literature

(Grusky et al., 2018; Narayan et al., 2018; See et al., 2017). This is because it is believed

that the most important information in a text is usually conveyed at the beginning. However,

human styles of writing differ from person to person. While some writers begin a text

document by giving the most important details, others might choose to build the main point

gradually – that is, start with minor points to aid understanding of the major point which are

discussed, towards the end of the text. Hence given this variance in writing, it is difficult to

pinpoint the most informative parts of a text only by virtue of the position of a sentence in

a text document.

Additionally, informativeness is subjective. What might be important to one reader,

might be less relevant to another, based on differences in background knowledge. Hence,
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summarization guided by a reader’s query – Query Focused Summarization (QFS) (Egon-

mwan et al., 2019) is ideal in such situations. Occasionally however, the user might have

no specific query in mind, but rather needs to obtain an overview of the document in order

to decide if investing more time into the whole document is relevant. Summarization of

this nature is termed Generic Summarization (Lee et al., 2009). This is the scope of this

thesis, except where otherwise specified (as in Chapter 7). Generic summarization is partic-

ularly useful in the context of news articles. This is because the highlights of a news article

are, in a sense, constant. That is, the highlights of a news article do not vary, based on the

reader. In this thesis, all our summarization models were trained, validated and tested on

data from news articles. In the context of this thesis, we refer to generic summarization

as summarization for simplicity.

Approaches to solving the task of automatic extractive summarization can be technically

classified into two (2) – the use of Manual Feature Engineering (MFE) and Neural Network

(NN). We leave discussion on NN-based methods to Section 2.4 under Related Work, as our

approach is also NN-based. In the next section, we seek to understand the idea behind some

interesting MFE approaches, how they work, and why we chose a different methodological

path.

2.2 MFE-based approaches

MFE-based approaches do not automatically learn features in data like NN approaches

do. Rather based on observed patterns in data, features are manually crafted. These features

are then applied to an algorithm. Subsections 2.2.1 – 2.2.3 describe some of the algorithms

applied on manually chosen features.

2.2.1 Naive-Bayes Classification

The Naive-Bayes (NB) classifier (Rish et al., 2001) uses a supervised algorithm that

applies the Bayes Theorem in a ‘naive’ way. The Bayes theorem estimates the likelihood
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that an event (A) will happen given that another event (B) has already happened as given in

equation 2.1:

P(A|B) = P(B|A)P(A)
P(B)

. (2.1)

NB relies on the naive assumption that the input variables are statistically independent.

Kupiec et al. (1995) describes extractive summarization as a statistical classification prob-

lem. A NB classification function is then developed by the authors to estimate the prob-

ability that a given sentence is included in the extract. Mathematically, it is formulated

as:

Let s be a particular sentence, S the set of sentences that make up the summary, and

F1, ...,Fk the manually chosen features (Das and Martins, 2007), then

P(s ∈ S|F1,F2...Fk) =
P(F1,F2...Fk|s ∈ S)P(s ∈ S)

P(F1,F2...Fk)
. (2.2)

Assuming statistical independence of the features, equation 2.2 yields equation 2.3:

P(s ∈ S|F1,F2...Fk) =

k
∏
j=1

P(Fj|s ∈ S)P(s ∈ S)

k
∏
j=1

P(Fj)

, (2.3)

where P(s ∈ S) is a constant and P(Fj|s ∈ S) and P(Fj) can be estimated directly from

the training set by counting occurrences. New extracts can then be generated by ranking

sentences according to the probability in equation 2.3 and selecting a user-specified number

of the top scoring ones.

2.2.2 Hidden Markov Models

The Hidden Markov Model (HMM) allows for the description of causal factors – both

observed events (like words in an input sentence) and hidden events (like part-of-speech

tags) in its probabilistic model. It makes use of a Markov Chain, which is a model that tells
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us something about the probabilities of sequences of random variables. A Markov chain

assumes that future predictions in a sequence relies only on the current state (Jurafsky and

Martin, 2016).

The problem of extracting sentences from a document is modelled using an HMM by

Conroy and O’leary (2001). Given a set of features, the HMM computes an a-posteriori

probability that each sentence in a document is a summary sentence. In contrast to NB

described in Subsection 2.2.1, which assumes statistical independence, HMM has fewer

assumptions of independence. It accounts for local dependencies between the sentences.

By using HMM, it is expected that the probability that the next sentence is included in the

summary depends only on the inclusion of the current sentence in the summary, as seen in

equation 2.4:

P(si|s1...si−1)≈ P(si|si−1). (2.4)

Only three (3) manually selected features were used: – position of the sentence in the

document, number of terms in the sentence and likeliness of the sentence terms given the

document terms. The features are built into the state-structures of the HMM.

2.2.3 Graph-based Models

Here, the document is modelled as a graph – a collection of nodes, connected by edges.

Sentences are represented as nodes, and their similarity is modelled by a connecting edge.

The weight on an edge indicates how similar the two (2) connected sentences are. This

similarity is usually measured by the cosine similarity of the sentences based on their vec-

tor representations such as term frequency - inverse document frequency (tf-idf), GloVe,

word2vec or BERT embedding. Cosine similarity measures the cosine of the angle between

two vectors, using equation 2.5 (the smaller the angle, the higher the similarity measure)

cos(X ,Y ) =
X ·Y
‖X‖‖Y‖

=

n
∑

i=1
XiYi√

n
∑

i=1
X2

i

√
n
∑

i=1
Y 2

i

. (2.5)
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A graph-based algorithm – the eigenvector centrality, is then applied to determine the

importance of each node (Erkan and Radev, 2004). The eigenvector centrality is a measure

of the influence of a node in a graph network. It assigns relative scores to all nodes in the

graph based on the concept that connections to high scoring nodes contribute more to the

node in question than equal connections to low scoring nodes.

2.2.4 Why not MFE

Work presented in the pieces of literature discussed in sub-sections 2.2.1 - 2.2.3 give

credence to the science and logic behind MFE-based approaches. To some extent, they are

able to identify and extract important sentences in a document. However, they are limited

in various ways:

– They perform comparably worse on unseen samples. After learning patterns in train-

ing data, and crafting a limited set of features based on these seen data, they are

unable to infer unseen relationships/features on new data.

– Not all feature relationships are linear. Some are non-linear and complex. MFE-

based approaches are unable to capture such non-linear and complex patterns in data,

thereby limiting its performance.

– They are task specific. Engineered features for a specific task cannot exactly be

transferred for another closely related task with a different dataset.

– Crafting the features is time consuming, despite how limited in number these features

are.

Based on the aforementioned reasons, in addition to improved efficiency and state-of-

the art performance reported in models implemented with NN (Gehrmann et al., 2018; Zhou

et al., 2018), we present our NN-based single document extractive model in the following

section.

13



2.3. METHODOLOGY

2.3 Methodology

First, we state mathematically what the task of single document extractive summariza-

tion entails. Next we present in detail our approach to the solution, outlined thus – a preview

of the dataset, data filtering/cleaning, pre-processing steps, data tuning, NN architecture, im-

plementation details, results evaluation and analysis of our output. Finally, we discuss how

our work differs from existing work in this task.

2.3.1 Task Definition

Given a document D = (S1, ...,Sn) with n sentences comprising of a set of words DW =

{d1, ...,dw}, the task is to produce an extractive summary, SE , that contains salient infor-

mation in D, where SE ⊆ DW .

2.3.2 Datasets

NN models require relatively large datasets to train on, for better performance. Readily

available datasets with ample training pairs are the CNN/DAILYMAIL and NEWSROOM

summarization corpus.

– CNN/DAILYMAIL: It was originally built by Hermann et al. (2015) for the task of

Question Answering (QA) but modified by Nallapati et al. (2016) for summarization.

The original dataset by Hermann et al. (2015) contains human generated abstractive

summary bullets from news-stories in the CNN and DailyMail websites as questions

(with one of the entities hidden), and stories as the corresponding passages from

which the QA system is expected to answer the fill-in-the-blank question. Nallapati

et al. (2016), restored all summary bullets of each story in the original order to obtain

a multi-sentence summary, where each bullet is treated as a sentence. The resulting

summarization corpus contains 286,817 training pairs, 13,368 validation pairs and

11,487 test pairs. The source documents in the training set have 766 words spanning

30 sentences on average while the summaries consist of 53 words and 4 sentences
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(Nallapati et al., 2016). Two versions of the data were released – anonymized which

has been preprocessed to replace each name entity e.g., The United States of Amer-

ica, with a unique id, e.g. @entity0 and a non-anonymized version containing the

original text. Work presented in this thesis, make use of the non-anonymized version

of the released data. Figure 2.1 provides an example from this dataset.

Article: [..] the palestinian authority officially became the 123rd member
of the international criminal court on wednesday, a step that gives the court
jurisdiction over alleged crimes in palestinian territories. the formal accession
was marked with a ceremony at the hague, in the netherlands, where the court
is based. the palestinians signed the icc ’s founding rome statute in january,
when they also accepted its jurisdiction over alleged crimes committed “ in the
occupied palestinian territory, including east jerusalem, since june 13, 2014.
[...] israel and the united states, neither of which is an icc member, opposed
the palestinians ’ efforts to join the body . [...]
Summary: membership gives the icc jurisdiction over alleged crimes com-
mitted in palestinian territories since last june . israel and the united states
opposed the move , which could open the door to war crimes investigations
against israelis .’
Article: A star marks the epicentre of a magnitude-7.1 earthquake that struck
off the east coast of New Zealand at 4.38am . ( US Geological Survey )
Tsunami waves of 30cm have hit the east coast of the North Island following
a massive undersea earthquake and Civil Defence says the worst has passed.
People are still being urged to stay away from the coast and waterways from
Northland down to south of Gisborne on Friday morning [...]
Summary: An earthquake of magnitude 7.2 has struck off the east coast of
New Zealand early on Friday morning .

Figure 2.1: Example of a test pair from the CNN/DM and NEWSROOM datasets.

– NEWSROOM: 92% of this dataset was recently released by Connected Experiences

Lab1 (Grusky et al., 2018). The NEWSROOM corpus contains over 1.3M news arti-

cles together with various metadata information such as the title, summary, coverage

and compression ratio. It was collected over the web and contains summaries from

different news sources. The dataset is split into 995,041 training pairs, 152,479 val-

idation pairs and 152,479 test pairs. The source documents in the training set have
1https://summari.es
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658 words while the summaries consist of 27 words.

2.3.3 Data Filtering

As seen in Figure 2.1, the summaries in the available datasets are abstractive. Hence it is

customary and necessary to create an extractive summarization dataset from the abstractive

dataset (Chen and Bansal, 2018; Nallapati et al., 2017). We observe however, that some

summaries contain information not found in the corresponding document as can be seen in

Figure 2.2.

It is imperative that such pairs are filtered out from the corpus, for two (2) main reasons:

1. Since the extractive labels are usually obtained by performing some n-gram overlap

matching (details in section 2.3.5), the presence of noisy data samples would result

in inaccurate extractive labels.

2. As stated in Section 1.3, leaving such disparate data pairs (for example, see Figure

2.2), where the summary cannot be directly deduced from the document poses chal-

lenges for the NN to learn from.

Article: world-renowned chef, author and emmy winning television personality anthony
bourdain visits quebec in the next episode of “ anthony bourdain : parts unknown, ” airing
sunday, may 5, at 9 p.m. et. follow the show on twitter and facebook.
Summary: 11 things to know about quebec. o canada! our home and delicious land.’
Article: each day, cnn producers select a user-submitted photo to be our uniquely you:
design of the day entry. click through the gallery above to see creative shots from home
decor enthusiasts around the world, and be sure to come back every day for a new image.
have inspiring decor ideas from your own home to share? submit them for the gallery at
cnn ireport !’
Summary: see more ireport galleries : travel photos , other worldly landscapes . follow
us on twitter @cnnliving . follow us on facebook .’

Figure 2.2: Examples of noisy summaries with no corresponding context from the docu-
ment in a CNN/DM training sample.

We term all disparate pairs as noisy, and as such filter out all noisy samples as illustrated
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in Figure 2.22. In our work, we consider a reference summary R j as noisy if it has zero

bigram overlap with the corresponding document D j, excluding stop words (see equation

2.6).

#bigram(D j,R j) == 0. (2.6)

The result of this data filtering process is a sub-dataset for summarization with {document,

summary} pairs, where each summary can be directly deduced from the corresponding doc-

ument.

2.3.4 Preprocessing

To avoid errors during sentence level tokenization (splitting of text into individual sen-

tences), we ensured words were separated by a space. Special cases where other symbols

(e.g ’?’, ’!’) marked the end of a sentence, or where a period did not indicate a sentence

boundary (as in decimals and abbreviations) were similarly handled. After preprocessing,

sentence tokenization was performed automatically by the NLTK library3.

2.3.5 Data Tuning

The goal here is to create an extractive summarization dataset from the available ab-

stractive summarization dataset. That is, we intend to tune the abstractive dataset into an

extractive one. Hence, given {document, summaries} pairs as in Figure 2.1, can we convert

these to {document, binary labels} pairs, where binary labels refers to a list of 0s and 1s

representing a deletion or extraction decision for each sentence in the document?

Summaries in the dataset are referred to as reference or ground-truth summaries. We

hypothesize that each reference summary sentence originates from at least one document

sentence. The task therefore, is to identify the most-likely document sentence from which

2Filtering is used only for the training set, to ensure that evaluation comparisons on the test set with
existing models are fair. We found that about 20% of the training data contained noisy samples.

3https://www.nltk.org
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the reference summary was abstracted. Different approaches have been used to solve this

in literature. Nallapati et al. (2017), greedily selects sentences that maximize the ROUGE

(Lin, 2004) score (an evaluation metric with details in section 2.3.8). Chen and Bansal

(2018) calculates the individual reference sentence-level score as per its similarity with

each sentence in the corresponding document using the ROUGE-Lrecall score. Our solution

is similar to Nallapati et al. (2017) and Chen and Bansal (2018). For each ground-truth

summary sentence st , we find the most similar document sentence dt , using:

dt = argmaxi(#bigram(di,st)). (2.7)

For each sentence in the reference summary, we perform bigram matching with all the

sentences in the document. The tth sentence in the document with the highest bigram over-

lap with the reference summary sentence st , is then labelled 1. For example, if the reference

summary contains three (3) sentences, we find the three (3) corresponding document sen-

tences respectively and label each as 1. All other sentences in that document are labelled

0. Additionally, for every time both words in the set of bigrams-overlap are stopwords, we

decrement the bigram count by 1, for example, (on, the) is an invalid bigram-overlap while

(the, President) is valid. We do this to capture the more important similarities instead of

trivial ones.

We refer to the resulting tuned dataset with {document, binary labels} suitable for ex-

tractive summarization as the extractive trainer. The extractive trainer will serve as input to

our NN discussed in subsection 2.3.6. An extractive trainer with better performance has a

higher chance of resulting in a better performing model. Hence, we evaluate our extractive

trainer against Nallapati et al. (2017)’s which is our foundation. Results presented in Table

2.1 in section 2.3.8 (Results and Evaluation) show that our method is able to produce an

extractive summarization dataset with improved accuracy.
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2.3.6 NN Architecture

Our NN provides an answer to RQ1: How can we identify parts of a text that are the

most relevant for an extractive summary with improved accuracy?

The built extractive trainer simplifies RQ1 to RQ1a: Given an extractive summarization

training set with {document, binary labels} pairs, how can we build a NN model capable of

learning from this training set and then classifying an unlabelled document with accurate

binary labels, where each label represents an extraction or deletion decision per document

sentence? We attempt to provide a technical solution with the NN architecture illustrated in

Figure 2.3 and explained in detail through the following subsections.

Figure 2.3: NN model architecture for single document extractive summarization.
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Embedding

NN models require real value numbers, not text, as input. Hence, we need to transform

our input text into a vector of numbers. This is the function of the embedding layer. It

maps the input to a real-valued space, such that these real-valued numbers are meaning-

ful. When the vector representation of words are visualized in space, semantically related

words are spatially close together. The vector representation of a word is referred to as its

word embedding. There exists a variety of word embeddings in literature, such as, GloVe

4(Global Vectors for word representation) (Pennington et al., 2014), word2Vec (Mikolov

et al., 2013), ELMO (Peters et al., 2018) and BERT (Bi-directional Encoder Transformer)

(Devlin et al., 2019) learnt through different interesting algorithms. We direct readers to

the literature for each of these word embedding types and focus on the one used in this

thesis – GloVe. The architectural decision to use GloVe was based on a few experiments on

this specific task.

Training of GloVe embedding is performed on global word-word co-occurrence statis-

tics from a corpus. The main intuition underlying the model is the observation that ratios

of word-word co-occurrence probabilities have the potential for encoding some form of

meaning. The training objective of GloVe is to learn word vectors such that their dot prod-

uct equals the logarithm of the words’ probability of co-occurrence. Owing to the fact that

the logarithm of a ratio equals the difference of logarithms, this objective associates (the

logarithm of) ratios of co-occurrence probabilities with vector differences in the word vec-

tor space. Because these ratios can encode some form of meaning, this information gets

encoded as vector differences as well (Pennington et al., 2014).

GloVe word embeddings come in different dimensions. The vector representation of

a word can be of length 50, 200, 300 or 500. The length of the vector representation is

referred to as the embedding dimensionality. Theoretically, larger vectors can store more

information since they have more possible states. However, experiments show that not

4https://nlp.stanford.edu/projects/glove/
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much is gained beyond a size of 300-500. Our model was implemented using pretrained

300-dimensional gloVe word embeddings. These embeddings were trained on 6 billion

words with a vocabulary size of 400k from Wikipedia5 and Gigaword6.

Let D j be a document with n sentences and Si be a sentence with m maximum number of

words. First we obtain the sentence embedding by averaging the word embeddings and then

concatenate the sentence embeddings to obtain the vector representation of the document

as in equation 2.8:

Si = 1/m
m

∑
i=1

wi,

D j = S1‖S2‖ . . .‖Sn.

(2.8)

Encoding

The function of the encoding layer performed by an encoder is to learn latent or hidden

representations of the input. In this case, the input is the set of document embeddings in

Subsection 2.3.6. These representations are not directly understandable, but are proven to

hold important features of the input (Li et al., 2016). There exists a variety of encoders –

AUTOENCODERS (Pu et al., 2016), CNN (Convolutional Neural Network), RNN (Recurrent

Neural Network) (Cho et al., 2014), LSTM (Long Short Term Memory), GRU (Gated Recur-

rent Units) (Chung et al., 2014) and most recently TRANSFORMERS (Vaswani et al., 2017b,

2018). These different encoders all work relatively well, based on specific tasks. They also

have certain drawbacks, which later encoder models attempt to resolve. We direct readers to

the cited literature for detailed explanations of these different encoder types. We, however,

provide more explanations on the TRANSFORMER encoder, as this is our encoder choice for

this task.

The TRANSFORMER Encoder differs from other encoder types mainly because of its

5https://dumps.wikimedia.org/enwiki/20140102/
6https://catalog.ldc.upenn.edu/LDC2011T07
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Self Attention mechanism. First we explain Attention, how it is generally applied, then we

highlight the process of Self Attention and how it is implemented in the TRANSFORMER.

Finally, we give the architecture of the TRANSFORMER network.

Attention in NN is analogous to attention in human reading. Humans often pay attention

to certain parts of a text while reading because these parts might hold information necessary

to understand the whole text. Now, in NN applications, it is often required to generate

one sequence from another (for example, translating a text from English to German as

in Neural Machine Translation (NMT) (Neubig, 2017) or generating a summary from a

document as in summarization). Tasks of this nature are referred to as Sequence to Sequence

(SEQ2SEQ) problems (Sutskever et al., 2014) and are usually solved using an encoder –

decoder framework implemented using a RNN. The concept is to encode the input into a

hidden state that holds information about the entire sequence and then decode this hidden

state into the desired output. An attention mechanism is introduced between the encoder

and decoder resulting in; encode – attend – decode (Bahdanau et al., 2015; Luong et al.,

2015). The idea is to guide the decoder to important parts of the hidden state produced by

the encoder. In other words, the decoder should pay attention to certain parts. This gives rise

to the question – How does the decoder network know what parts should be attended

to? The input sequence is processed per timestep, t, where the number of timesteps, N, is

the length of the sequence (for example, number of words in a sentence).

Given the encoder hidden states, h1,h2, ...,hN ∈ Rh, and the decoder hidden state, st ∈

Rh, we compute the attention score et , for timestep t, with:

et = [sT
t h1, ...,sT

t hN ] ∈ RN . (2.9)

Equation 2.9 scores how well each encoded input, hi, matches the current output of the

decoder, st . These attention scores et , are normalized in Equation 2.10 using a softmax

function, to obtain the attention distribution αt :

22



2.3. METHODOLOGY

α
t = so f tmax(et) ∈ RN . (2.10)

The final representation, ct , known as the context vector, passed by the encoder is the

weighted sum of the encoder hidden states, where the weights are the attention distribution

αt , computed with:

ct =
N

∑
i=1

α
t
ihi ∈ Rh (2.11)

Lastly, the context vector ct , is concatenated with the decoder hidden state st :

[ct ;st ] ∈ R2h. (2.12)

Having explained the fundamentals of attention mechanism, it becomes necessary to

ask the question – How does Attention differ from Self-Attention? Self-attention, some-

times called intra-attention is an attention mechanism relating different positions of a single

sequence in order to compute a representation of the sequence (Vaswani et al., 2017b). On

a high level of abstraction, we see that attention in SEQ2SEQ models are basically imple-

mented between two layers – the encoder and the decoder, as a unit. However, for Self-

Attention the implementation is within a layer – the encoder and/or decoder respectively.

When self- attention is applied - the self-attention mechanism looks at the inputs of the

same layer where it is being applied.

How is Self-Attention implemented in a TRANSFORMER? Self-attention could be

applied in different levels of granularity based on the input. That is, it could be applied to

each word in an input sentence, or each sentence in an input document. In this specific use

case, we want to encode a document of n sentences. Here, the goal of self-attention is to

learn dependencies between sentences in the document and use that information to capture

the internal structure of the document (Cloud, 2018).

Figure 2.4 illustrates the architecture of the TRANSFORMER encoder. For each sentence
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Figure 2.4: TRANSFORMER encoder model architecture (Vaswani et al., 2017b).

embedding Si (equation 2.8), a positional encoding, ep(Si) is added:

S̃i = Si + ep(Si), (2.13)

where ep(Si) is learned during training7. The idea is that the contribution of a sentence to a

document is a summation of the sentence salience (Si) and position (ep(Si)) in the document

(Lebanoff et al., 2019b). Next, from S̃i, three vectors – Query Vector (Q), Key Vector (K)

and Value Vector (V) from each of the document vectors (in this case, the embedding of

each sentence) are created. The Query and Key Vectors both have a dimension dk while the

Value Vector has a dimension, dv
8. These vectors are created by multiplying the document

7The authors (Vaswani et al., 2017b) experimented with fixed and learned positional embeddings, with
identical results, but preferred the former. We chose to use the learned positional embeddings instead.

8dk = dv = dmodel/h = 64, where dmodel = 512 and h the number of attention layers is 8 (Vaswani et al.,
2017b)
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embedding by three matrices. The matrices are simply parameters learned during training

of the network (Giacaglia, 2019). The score for each sentence is computed by applying

equation 2.14 (Vaswani et al., 2017b):

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V, (2.14)

where QKT is the dot product between the Key and Query vectors. QKT scores each sen-

tence of the input document against a particular sentence being processed. The score de-

termines how much focus to place on other parts of the input document as we encode a

sentence at a certain position. Dividing this score by
√

dk leads to having more stable gra-

dients (Giacaglia, 2019). Finally passing the result through a so f tmax operation normalizes

the scores allowing them to be treated as probabilities. Because eight (8) attention layers

are applied (Vaswani et al., 2017b), this results in a set of eight (8) QKV vectors. In order

to arrive at one vector which is passed to the feed-forward network layer (FFN), these eight

(8) attention vectors are concatenated and multiplied with another learned weight matrix,

W O as in equation 2.15 (Vaswani et al., 2017b):

MultiHead(Q,K,V ) =Concat(head1, ...,headh)W O,

headi = Attention(QW Q
i ,KW K

i ,VWV
i ).

(2.15)

This is referred to as the Multi-head attention mechanism of the TRANSFORMER. In a

nutshell, the multi-head attention expands the model’s ability to focus on different positions

of the input embedding vector (Jay, 2018). Lastly, the output of the multi-head attention

is passed to the FFN to produce the final encoding vector by the TRANSFORMER, given in

equation 2.16:

FFN(x) = max(0,xW1 +b1)W2 +b2, (2.16)
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where W1,W2 are learned weights and b1,b2 are biases. The biases in FFN help to add

flexibility to the network. As seen in the TRANSFORMER model architecture in Figure

2.4, the output of each sub-layer (Multi-head and FFN) are layer-normalized (Ba et al.,

2016) before being passed to sub-layers above. That is, the output of each sub-layer is

LayerNorm(x+Sublayer(x)), where Sublayer(x) is the function implemented by the sub-

layer itself (Vaswani et al., 2017b).

The TRANSFORMER encoder is made up of six (6) stacked layers. Each layer contains

a Mutihead Self-Attention and FFN sub-layers as illustrated in Figure 2.4.

Classifying

Given the learned representations from document embedding to encoding, we aim to

use these representations in reaching a binary decision of extracting or not extracting a

document sentence. We estimate the predicted probability, yp
i , of extracting the ith sentence

in a document using a Softmax Classifier with equation 2.17:

yp
i = so f tmax(WS′i +b), (2.17)

where W and b are trainable parameters representing the weights and bias of the model

and S′i is the TRANSFORMER encoded representation of the ith document sentence. The

input to the softmax classifier is the output of our TRANSFORMER encoder (S′i) described

in section 2.3.6. The softmax function outputs probabilities between 0 and 1 for each of the

document’s sentences. Although highly subjective and dataset specific, since the reference

summaries are typically 3 or 4 sentences long, we extract the top three (3) sentences by

default, but proceed to additionally extract a 4th sentence if the probability score from the

softmax function is greater than 0.559.

9We arrived at this score after experiments on the datasets.
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Training

The model is trained by minimizing the cross-entropy loss (Zhang and Sabuncu, 2018),

L:

L =−(yt log(yp)+(1− yt)log(1− yp)), (2.18)

between the predicted probabilities, yp from equation 2.17 and the true sentence binary

labels, yt .

2.3.7 Implementation Details

We present the technologies used for implementing the aforementioned method and

architecture.

Programming Language and Libraries

The entire thesis, including this chapter, was implemented using the Python program-

ming language (v 3.6)10. We employed a handful of open source libraries, but primarily,

Tensorflow (v1.10) 11.

Mini-batch size

We split our samples into mini-batches, each with a size of 100, after experimenting

with various mini-batch sizes. A mini-batch size represents the number of samples that

are processed by the NN model at a time. The size of a mini-batch impacts the number

of iterations needed to go through the samples, which impacts the training time. It also

has an effect on the performance of the model. The effects of trade-offs between smaller

mini-batch sizes versus longer training time are nicely discussed in Hoffer et al. (2017) and

Keskar et al. (2016).
10https://www.python.org/
11https://www.tensorflow.org/
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Optimization Algorithm

Recall that our methodology involved the use of different weight matrices and vectors.

These weights are randomly initialized. The goal of the NN training process is to update the

weights such that when they are passed appropriately together with features (embeddings,

encoded vectors) through the respective functions (TRANSFORMER encoder, softmax clas-

sifier), the outputs are closest to the reference. The process of updating the weights is

referred to as optimization, for which several algorithms exist – AdamOptimizer, Momen-

tum (Sutskever et al., 2013), Mini-batch gradient descent (Tieleman and Hinton, 2012),

Stochastic gradient descent (Ruder, 2016). We used AdamOptimizer (Kingma and Ba,

2014) as the optimization algorithm with a fixed learning rate of 0.0001 12. The learning

rate defines the magnitude at which the updates to the weights are made.

Hyperparameters

Hyperparameters are parameters whose values are set before the training process be-

gins (for example, the mini-batch size, learning rate, number of hidden units, etc.). Some of

our hyperparameter values have been stated in other subsections (see Subsection 2.3.7). The

TRANSFORMER encoder was setup with the trans f ormer base hyperparameter setting from

the tensor2tensor library13 (Vaswani et al., 2018), but the hidden size and dropout

were reset to 300 and 0.0 respectively. Dropout is a regularization technique patented by

Hinton et al. (2016) for reducing overfitting in neural networks by preventing complex co-

adaptations on training data (Baldi and Sadowski, 2013). Dropout is performed by dropping

out units from the network along with their connections during training. Choosing which

units to drop is usually random. We apply gradient clipping at 5.0 (Pascanu et al., 2013). It

is important the gradients are clipped so they do not become extremely high (explode) dur-

ing training. Clipping helps to ensure that a threshold is maintained, positively impacting

the performance and training time (Pascanu et al., 2013).
12We experimented with decaying the learning rate, with no significant performance improvement, only a

longer training time.
13https://github.com/tensorflow/tensor2tensor
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Figure 2.5: TENSORBOARD visualization of our loss scores during training (ORANGE line)
and validation (BLUE line).

Training and Inference

We perform training and validation concurrently. This is done so we can tune the hyper-

parameters on the validation set and more importantly implement early stopping when the

validation loss does not decrease after a certain number of epochs (5 for this task). Early

stopping is a technique to curtail overfitting. Overfitting occurs when the model performs

well on training samples, but poorly on unseen samples such as test and validation samples.

We also say that the model fails to generalize when this happens. We trained our models on

a Nvidia TITAN X GPU card with 12G RAM. It took an average of 60 minutes to train our

model on each dataset. Figure 2.5 visualizes the learning curve of our model during training

and validation as per the loss score. In the validation loss curve, after a steady decline in

the loss score for some time, it then starts increasing. It is at this point, training is stopped.

2.3.8 Results and Evaluation

We present some samples of our model output in Appendices A and B. Following pre-

vious works (Chen and Bansal, 2018; Nallapati et al., 2017; See et al., 2017), we evaluate

our single models on both datasets – CNN/DM and NEWSROOM discussed in section 2.3.2

using standard ROUGE-1, ROUGE-2 and ROUGE-L evaluation metrics (Lin, 2004).

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It calculates the

appropriate n-gram word-overlap between the reference and system summaries. ROUGE-1
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Table 2.1: ROUGE -F1 (%) scores (with 95% confidence interval) of extractive trainers
using CNN/DM dataset.

Extractive Trainer R-1 R-2 R-L
Ours 49.5 [49.2 - 49.7] 27.8 [27.6 - 28.1] 45.8 [45.6 - 46.1]

Ours + filter 51.4 [50.9 - 51.8] 31.7 [31.4 - 31.8] 50.3 [49.4 - 50.6]
(Nallapati et al., 2017) 48.4 [47.4 - 49.4] 27.5 [26.3 - 28.7] 44.4 [43.4 - 45.6]

Table 2.2: Average ROUGE-F1 (%) scores of various extractive models on the CNN/DM test
set. The first and second sections show LEAD-3 and baseline model scores respectively.

Extractive Model R-1 R-2 R-L
LEAD (See et al., 2017) 40.3 17.7 36.5

LEAD (Narayan et al., 2018) 39.6 17.7 36.2
LEAD (ours) 40.1 17.6 36.0

SUMMARUNNER(Nallapati et al., 2017) 39.6 16.2 35.3
REFRESH (Narayan et al., 2018) 40.0 18.2 36.6

NEUSUM (Zhou et al., 2018) 41.6 19.0 37.0
CONTENT SELECTOR (Gehrmann et al., 2018) 42.0 15.9 37.3

HIBERTM (Zhang et al., 2019b) 42.3 19.9 38.8
TRANS-ext 41.0 18.4 36.9

TRANS-ext + filter 42.8 21.1 38.4

Table 2.3: Average ROUGE-F1 (%) scores of various extractive models on the NEWSROOM
released test set*.

Extractive Model R-1 R-2 R-L
LEAD* (Grusky et al., 2018) 30.49 21.27 28.42

TextRank* (Barrios et al., 2016) 22.77 9.79 18.98
TRANS-ext 37.21 25.17 32.41

TRANS-ext + filter 41.52 30.62 36.96

* marks results taken from Grusky et al. (2018).

refers to the overlap of unigrams between the system summary and reference summary.

ROUGE-2 refers to the overlap of bigrams between the system and reference summaries.

ROUGE-L measures the longest matching sequence of words. It does not require consecu-
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Table 2.4: 95% confidence intervals of our SDS extractive systems.

CNN/DM R-1 R-2 R-L
TRANS-ext 41.0 ± 0.187 18.4 ± 0.149 36.9 ± 0.206

TRANS-ext + filter 42.8 ± 0.268 21.1 ± 0.262 38.4 ± 0.262

NEWSROOM

TRANS-ext 37.21 ± 0.062 25.17 ± 0.033 32.41 ± 0.108
TRANS-ext + filter 41.52 ± 0.073 30.62 ± 0.045 36.96 ± 0.113

tive matches but only in-sequence matches that reflect sentence level word order. Since it

automatically includes longest in-sequence common n-grams, a predefined n-gram length

is not needed (Lin, 2004). We considered the widely used ROUGE evaluation F-measure for

our evaluation task. F-measure is the harmonic mean of precision and recall:

f −measure = 2 .
precision . recall

precision + recall
(2.19)

Recall is defined as the ratio of the number of units (sentences/words) of the system-

generated summaries in common with the reference summaries to the total number of units

in the reference summary. For a given sentence, it is evaluated as:

recall =
|{system-generated words}| ∩ |{re f erence words}|

|{re f erence words}|
. (2.20)

Precision is the ratio of the number of units of system-generated summaries in common with

the reference summaries to the total number of units in the system-generated summaries.

For a given sentence, it is evaluated as:

precision =
|{system-generated words}| ∩ |{re f erence words}|

|{system-generated words}|
(2.21)
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ROUGE values were computed using the official pyrouge script14 with options -n 2 -w

1.2 -m -a -c 95. We present the ROUGE evaluation scores on both datasets in Tables 2.2 and

2.3.

2.3.9 Analysis

In order to identify what differences in the competing scores for the extractive trainers

are significant, we compare the Confidence Intervals (CI) for each mean. In Table 2.1,

we show the 95% confidence intervals15 to report statistical significance for doing mean-

ingful comparison. Two systems can be judged as statistically significantly different if one

of the two criteria holds: 1) their confidence intervals for the estimates of the means do

not overlap at all, or 2) the two intervals overlap but neither contains the best estimate for

the mean of the other (Schenker and Gentleman, 2001). Analyzing the confidence inter-

vals of the different methods in Table 2.1, we see that our filtered extractive trainer has

the best performance by considering both criteria. We also observe that our non-filtered

extractive trainer does not differ significantly from Nallapati et al. (2017)’s by the first cri-

terion as their confidence intervals overlap. However, according to the second criterion, our

non-filtered extractive trainer outperforms Nallapati et al. (2017)’s with exception on the

ROUGE-2 score.

Tables 2.2 and 2.3 present extractive summarization results on the CNN/DM and NEWS-

ROOM datasets respectively. For clarity, we tabulate separately for each dataset. Our base-

line non-filtered extractive (TRANS-ext) model is highly competitive with top models. Our

TRANS-ext + filter produces an average of about +1 and +9 points across reported ROUGE

variants on the CNN/DM and NEWSROOM datasets respectively, showing that our model

does a better job at identifying the most salient parts of the document than existing state-

of-the-art extractive models, thus adequately providing an answer to RQ1: How can we

identify parts of a text that are the most relevant for an extractive summary with improved

14https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5
15This is computed by specifying the option -c 95 when running the ROUGE script.
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accuracy? raised at the onset. We observe the large margin in the NEWSROOM dataset

results, as existing baselines are just the LEAD-3 and TEXTRANK of Barrios et al. (2016).

The NEWSROOM dataset was recently released and is yet to be thoroughly explored, how-

ever it is a larger dataset and contains more diverse summaries as analyzed by Grusky et al.

(2018).

Switching the TRANSFORMER encoder with a SEQ2SEQ encoder resulted in a drop of

about 2 ROUGE points, showing that the TRANSFORMER encoder does learn features that

add meaning to the vector representation of the input sequence. In Table 2.4, we report

the 95% confidence intervals for ROUGE-1, ROUGE-2 and ROUGE-L to show the statistical

significance of our results.

2.4 Related Work

There exists ample literature in extractive summarization (Bui et al., 2016; Cheng and

Lapata, 2016; Dorr et al., 2003; Durrett et al., 2016; Jing and McKeown, 2000; Knight

and Marcu, 2000). Section 2.2 discusses some works that are manual-feature engineering

based. In this section we focus on single document extractive summarization models im-

plemented with NN on the same dataset as ours – CNN/DM and NEWSROOM. Specifically,

we review the baseline models our system compares to in Tables 2.2 and 2.3. Basically, for

the different baseline models, we highlight differences/similarities in terms of the general

approach, embeddings used, encoder architecture and dataset tuning.

Similar to our approach, SUMMARUNNER (Nallapati et al., 2017) treats extractive sum-

marization as a sequence classification problem where each sentence is visited sequentially

in the original document order and a binary decision is made in terms of whether or not it

should be included in the summary. They use a 100-d word2vec word embedding. Encod-

ing is done in a two-layer of GRU-based RECURRENT NEURAL NETWORK (RNN), one that

runs on word level and the other on sentence level. We explain how the GRU-RNN works

in Chapter 3. The final document encoding is as a non-linear transformation of the average
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pooling of the concatenated hidden states of the sentence-level encoding. Different from

our approach, data is not filtered in SUMMARUNNER. Although motivated by their data

tuning approach (see Section 2.3.5), their criteria for selecting sentences for the extractive

trainer differs from the criteria we employed. Their approach is based on the idea that the

selected sentences from the document should be the ones that maximize the ROUGE score

with respect to reference summaries while ours is based on the idea that each reference

summary sentence originates from at least one document sentence, and that document sen-

tence is the one with the maximum bigram overlap with the reference summary excluding

non-informative words (i.e stop words).

REFRESH (Narayan et al., 2018) handles the task as a sequence ranking problem. They

trained the word-embeddings with the SKIP-GRAM model from Mikolov et al. (2013), how-

ever known words were initialized with 200-d pretrained word2vec embeddings and un-

known words with zero. Encoding was done in 2 layers similar to Nallapati et al. (2017).

The first layer catered to sentence level encoding using CONVOLUTIONAL NEURAL NET-

WORKS (CNN) while document encoding was implemented with LSTMS. Ranking was done

by a softmax classifier on top of an LSTM-RNN layer and trained using REINFORCEMENT

LEARNING (external to the scope of this thesis). The top three (3) and four (4) sentences

were selected for CNN and DM datasets respectively. As per generating an extractive dataset

from the available data, during training they used the reference summaries to generate high

scoring extracts and to estimate rewards for them, but during testing, they are used as refer-

ence summaries to evaluate the model.

NEUSUM (Zhou et al., 2018) learns to score and select sentences jointly for extractive

summarization. They used pretrained 50-d gloVe word embeddings. They employ a hierar-

chical document encoder to represent the sentences in the input document. The document

encoding was also done in two levels similar to Narayan et al. (2018), i.e., sentence level

encoding and document level encoding each with a BIDIRECTIONAL GRU. To score the doc-

ument sentences considering both their importance and partial output summary, the model
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was imbued with two abilities: 1) remembering the information of previous selected sen-

tences; 2) scoring the remaining document sentences based on both the previously selected

sentences and the importance of remaining sentences. Therefore, they employed another

GRU as the recurrent unit to remember the partial output summary, and use a Multi-Layer

Perceptron (MLP) to score the document sentences, with a training objective to minimize

the Kullback-Lieber (KL) divergence (Inan et al., 2016). In creating an extractive dataset

for training they followed the same approach as Nallapati et al. (2017).

CONTENT SELECTOR (Gehrmann et al., 2018) formulated the extractive module of

their summarization model as a sequence tagging problem, but this time on word-level not

sentence-level as in our approach and Nallapati et al. (2017). Two (2) word-embeddings

were concatenated – gloVe (100-d) and ELMO (1024-d) to form the input to a BIDIREC-

TIONAL LSTM encoder. The probability of extracting a word is then computed using a

sigmoid function. They generate extractive training data by aligning the reference sum-

maries to the document and define a word as copied if it is part of the longest possible

sub-sequence of tokens.

In line with a popular approach, HIBERTM (Zhang et al., 2019b) also modelled extractive

summarization task as a sequence labelling problem. The word-embeddings are randomly

initialized, then trained using BERT (Devlin et al., 2019). On top of this are two layers of

TRANSFORMER encoders for sentence and document encoding respectively. Classification

is then performed by a softmax function. To create sentence level labels for extractive

summarization, they used a strategy similar to Nallapati et al. (2017) – label the subset of

sentences in a document that maximizes ROUGE.

We see from existing literature, that the approaches to the extractive summarization

task are fundamentally similar with slight variations in architectural choices and of course

hyperparameter settings. However, a significant difference in our model is the data-filtering

stage. Though simple and might be considered trivial, it is crucial to the performance of the

model, as any model is unable to learn efficiently from disparate data pairs.
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2.5 Summary

In this chapter we presented our NN model in an attempt to answer RQ1: How can we

identify parts of a text that are the most relevant for an extractive summary with improved

accuracy? We stated the reasons for choosing the NN path in contrast to the traditional

MFE based approaches after a review of existing MFE based literature on single document

extractive summarization. We explained the rationale and yielded benefit of filtering our

dataset before application on our model – if data is flawed, then model prediction will be

flawed. We gave evidence of some flawed sample pairs in the dataset. We implemented an

improved method for tuning the available abstractive summarization dataset for extractive

summarization. Finally, we applied our filtered and tuned dataset on the NN model – a

TRANSFORMER-based classifier. The TRANSFORMER comes with the merits of being able

to learn syntactic and semantic relationship within its input, thereby giving a richer encoded

representation to enable better classification by the softmax layer. Evaluation of our pre-

sented NN model on ROUGE metric showed improved performance over existing models.

Part of this work was published at the Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and 9th International Joint Conference on Natu-

ral Language Processing, Workshop on Neural Generation and Translation, pages 70 - 79.

Hong Kong, China (Egonmwan and Chali, 2019a).
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Chapter 3

Paraphrase Generation

This chapter describes the first of two (2) sub-models for our abstractive summarization

model – Paraphrasing. The goal is to provide an answer to RQ2: How can we build a

paraphrasing model to help with abstractive summarization? But why do we need a para-

phrasing model for abstractive summarization? Abstractive summaries are simply para-

phrases of salient parts of the source text. Hence, if we can successfully identify these

salient parts with the aid of the extractive summarization NN model described in the pre-

vious chapter (Chapter 2), then we can proceed to paraphrasing those extracts to produce

abstractive summaries.

3.1 Introduction

Paraphrase generation aims to improve the clarity of a sentence by using different word-

ing, while retaining the meaning of the original sentence. For example, the sentence –

”Stuffiness and elevated temperature are signs of the flu” can be paraphrased as ”Symptoms

of the flu include fever and nasal congestion”. Paraphrasing is a key abstraction technique

used in Natural Language Processing (NLP). While capable of generating novel words,

it also learns to compress or remove unnecessary words along the way. Thus, it gain-

fully lends itself to abstractive summarization (Chen and Bansal, 2018; Gehrmann et al.,

2018). Paraphrasing requires a deep understanding of the underlying semantics in a sen-

tence. Hence knowledge gained from a paraphrasing model can be used in other tasks like,

Question Generation (QG) (Song et al., 2018) and Machine Reading Comprehension (MRC)
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(Dong et al., 2017). Paraphrases can also be used as simpler alternatives to input sentences

for Machine Translation (MT) (Callison-Burch et al., 2006) as well as the evaluation of

Natural Language Generation (NLG) texts (Apidianaki et al., 2018).

Despite the importance of paraphrase generation, there has been relatively little prior

work in the literature. A larger amount of work exists on the paraphrase detection problem

(Gupta et al., 2018). Existing methods for generating paraphrases fall into one of these

broad categories – rule-based (McKeown, 1983), SEQ2SEQ (Prakash et al., 2016), rein-

forcement learning (Li et al., 2018b), deep generative models (Iyyer et al., 2018) and a

varied combination (Gupta et al., 2018; Mallinson et al., 2017) of the later three (3). In our

work, we propose a novel framework for paraphrase generation that utilizes the TRANS-

FORMER model (Vaswani et al., 2017b) and the SEQ2SEQ model (Sutskever et al., 2014),

specifically Gated Recurrent Units (GRU) (Cho et al., 2014).

3.2 Methodology

In this section, we begin with a formal definition of paraphrase generation. Next, we

describe the datasets used for training and testing our model and the necessary preprocess-

ing steps performed on the data. We then present our architecture of the NN model for the

task of paraphrase generation, explaining the technologies employed and implementation

details. Sections 3.2.7 and 3.2.8 evaluates and analyzes the output of our model. Finally we

discuss published work related to ours, on the task of paraphrase generation.

3.2.1 Task Definition

Given an input sentence S = (s1, ...,sn) with n words, the task is to generate an alterna-

tive output sentence Y = (y1, ...,ym) | ∃yi 6∈ S with m words that convey similar semantics

as S.
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3.2.2 Datasets

We used two (2) datasets for training, validating and testing our framework:

– MSCOCO (Lin et al., 2014)16: We use the 2014 version which contains human an-

notated captions of over 120,000 images. Each image contains five captions from

five different annotators. This dataset is a standard benchmark dataset for the im-

age caption generation task. In the majority of the cases, annotators describe the

most prominent object/action in an image, which makes this dataset suitable for the

paraphrase generation task. Following Gupta et al. (2018), from the five captions

accompanying each image, we randomly omit one caption, and use the other four as

training instances (by creating two source-reference pairs). This results in over 400,

000 sample pairs. For consistency with Gupta et al. (2018) and Prakash et al. (2016),

long captions are reduced to the first 15 words. We randomly choose 200,000 pairs

for training, 10,000 for validating and 10,000 for testing.

– QUORA: This is a more recent dataset released in January 201717. The dataset con-

sists of over 400,000 lines of potential duplicate question pairs. Each line contains

IDs for each question in the pair, the full text for each question, and a binary value

that indicates whether the questions in the pair are truly duplicates of each other.

Wherever the binary value is 1, the question in the pair are not duplicates; they are

rather paraphrases of each other (Gupta et al., 2018). We choose all such question

pairs with binary value 1. There are a total of 155,000 such questions. In line with

(Gupta et al., 2018), we also evaluate our model on 50,000, 100,000 and 150,000

training dataset sizes and 4,000 test pairs of paraphrases.
16http://cocodataset.org/
17https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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3.2.3 Preprocessing

We removed stop words (e.g and, or, it) as these words add very little to the meaning of

a sentence. After removal of stop words, we perform word tokenization (splitting a sentence

into words). Word level tokenization was automatically done by the NLTK tool kit3.

3.2.4 NN Architecture

We describe our NN architecture to solve the task of paraphrase generation. First, we

embed, then encode, and lastly decode into the output sentence. Each process is explained

below.

Embedding

For each word in a sentence, we use its 300-d GloVe embedding (see section 2.3.6).

The sentence embedding is then the concatenation of the individual word embeddings. Let

Si be a sentence with n words with each word having an embedding representation w′i, then

the emebedding, S′i is given by:

S′i = w′1‖w′2‖ . . .‖w′n. (3.1)

Encoding

Our model intrinsically differs from existing paraphrase generation models in the en-

coding layer. In contrast to existing models, we stack two (2) encoding layers with differing

architectures – TRANSFORMER and GRU-RNN. Stacking the TRANSFORMER and GRU-RNN

aims at combining the representational power of RNNs and self-attention. The idea is to

enrich a set of stateful representations by cascading a feature extractor with a focus on ver-

tical mapping (Chen et al., 2018). Additionally, we hypothesize that the probability of the

decoder generating better quality paraphrases rests extensively on how well the information

was captured by the encoder, hence the need for rich representations. Similar to Chen et al.
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(2018), we observed that the TRANSFORMER and SEQ2SEQ model complement themselves

adequately, making for a richer encoded vector representation.

The first encoding layer is the TRANSFORMER encoder. The input to the TRANS-

FORMER encoder are the respective sentence embeddings from Equation 3.1. We refer

readers to Section 2.3.6 for details on the TRANSFORMER encoder.

The second layer of the encoder is a GRU-RNN encoder whose input is the output of the

TRANSFORMER. A GRU is a special kind of RNN developed to solve a peculiar problem in

basic RNNs. So first, we explain how an RNN works. Then we highlight the major challenge

with vanilla RNNs and how the GRU-RNN attempts to tackle the challenge.

Traditional NNs are often referred to as Feed Forward Networks (FFNs). FFNs have a

minimum of three (3) layers – input, hidden and output, with connections going from one

layer to the next, immediately above or below it. Connections do not exist within the same

layer. RNNs generalise FFNs to be able to model sequential data. FFNs take an input (e.g. an

image) and immediately produce an output (e.g. probabilities of different classes). RNNs,

on the other hand, consider the data sequentially, and can remember what they have seen

earlier in the sequence to help interpret elements from later in the sequence. The presence

of loops in RNNs, as illustrated in Figure 3.1 enable this functionality.

Figure 3.1: FNN vs RNN (Phi, 2018).

An unrolled RNN is illustrated in Figure 3.2. In Figure 3.2, ht , which is the output of A,

is simply a non-linear function of xt and ht−1 as in Equation 3.2.
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Figure 3.2: An unrolled RNN (Olah, 2015).

ht = f (xt ,ht−1). (3.2)

At each time step t, the RNN uses the hidden state from the previous timestep t−1, and

the current input xt , to compute the hidden state, ht , for that timestep. It uses information

from the past (ht−1) to capture the present. Hence, its great utility in sequential problems.

However, this major advantage of RNNs being able to capture past information leads also to

its major challenge – short term memory, that is, when the sequence is too long, it tends to

forget information from way back in the past. Let us illustrate this with an example taken

from Brundyn (2018). Imagine we are trying to predict the next word in the following piece

of text:

Figure 3.3: Long text sequence to illustrate the short term memory problem of RNNs (Brun-
dyn, 2018).

In the illustration in Figure 3.3, the RNN may be able to detect that it should predict the

name of a language but it may also leave out important information from the beginning of

the text like the fact that the speaker grew up in France (Brundyn, 2018). The short term

memory problem in RNNs is a consequence of the vanishing gradient problem. This occurs

when the gradient for updating the network’s weights become so small (i.e vanishing), it
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has no impact on the weights and hence the learning process of the NN. In an attempt to

lessen this effect, variants of RNN were introduced – LSTM and GRU. I refer to GRU as a

more computationally effective variant of LSTM. The GRU (Cho et al., 2014; Chung et al.,

2014) adds two (2) gates to the basic RNN – an update gate computed as:

z = σ(xtU z +ht−1W z), (3.3)

which decides what information to discard and what new information to add, and a reset

gate computed as:

r = σ(xtU r +ht−1W r), (3.4)

which is used to decide how much past information to forget. The current hidden state, ht ,

is then computed with equations:

h = tanh(xtUh +(ht−1� r)W h), (3.5)

ht = (1− z)�h+ z�ht−1, (3.6)

where W and U from equations 3.3 - 3.6 are all of the network parameters learned during

training, ht−1 is the hidden state at the previous timestep, xt is the input vector (in this case,

the output of the TRANSFORMER encoder) and � represents the Hadamard (or element-

wise) (Million, 2007) product. The GRU-RNN is nicely illustrated in figure 3.4.

Decoding

The initial state of the decoder is the output of the GRU-RNN encoder, which is a fixed

length latent vector. The goal of the decoder is to map this encoded vector into a readable

sequence of varied length. We also use a GRU-RNN architecture for our decoder. It works

fundamentally the same as described in section 3.2.4 with a few essential differences. At

each timestep, the decoder produces two outputs: i) a hidden state st , computed in the same
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Figure 3.4: GRU architecture (Rathor, 2018).

fashion as ht in equation 3.6 and ii) a readable output wp
t , for example, a word, if the output

sequence is a sentence. wp
t is the word with the highest probability yp

t , where yp
t is derived

by taking a softmax of st over all the words in the target sequence vocabulary given by

equation 3.7:

yp
t = so f tmax(W sst), (3.7)

where, W s is a learned weight. Equation 3.7 calculates the probability that each word in the

target vocabulary set is the output word for that timestep. In contrast to the encoder, where

xt (equations 3.3 - 3.5) at each time step is always the input sequence, for the decoder, xt

could be the target output word yw
t , during training or the previous output word yp

t−1, during

inference.

Training

The model is trained by minimizing the error between the probability of the predicted

output word yp
t , and the id yd

t , of the target output word, using the SEQ2SEQ loss from the

tensorflow library18.
18https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/sequence_loss
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3.2.5 Implementation Details

For the TRANSFORMER encoder, we used the trans f ormer base hyperparameter setting

from the tensor2tensor library19 (Vaswani et al., 2018), but set the hidden size to 300.

Both the GRU-RNN encoder and decoder contain 300 hidden units. We set dropout to 0.0

and 0.7 for the MSCOCO and QUORA datasets respectively. We used a large dropout for

QUORA because the model tends to over-fit to the training set (see figure 3.6).

Figure 3.5: TENSORBOARD visualization of our paraphrase generation loss scores during
training (ORANGE line) and validation (BLUE line) on the MSCOCO dataset.

Figure 3.6: TENSORBOARD visualization of our paraphrase generation loss scores during
training (ORANGE line) and validation (BLUE line) on the QUORA dataset superimposed*.
*The large gap between training and validation shows how the model tends to overfit on the training data,
hence the need for using a dropout of 0.7.

We pre-process our datasets, and do not use the pre-processed/tokenized versions of

the datasets from the tensor2tensor library. Our target vocabulary is a set of approx-

imately 15,000 words. It contains words in our target training and test sets that occur at

least twice. Using this subset of vocabulary words, as opposed to over 320,000 vocabulary

words contained in GloVe, improves both training time and performance of the model.

19https://github.com/tensorflow/tensor2tensor
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We train and evaluate our model after each epoch with a fixed learning rate of 0.0005,

and stop training when the validation loss does not decrease after 5 epochs. We use greedy-

search decoding during training and validation and set the maximum number of iterations

to 5 times the target sentence length. For testing/inference we use beam-search decoding.

Greedy-search decoding selects the most likely word at each step in the output sequence.

Beam-search decoding returns a list of most likely output sequences. Instead of greedily

choosing the most likely next step as the sequence is constructed, the beam search expands

all possible next steps and keeps the k most likely, where k is a user-specified parameter (we

used 6 for QUORA dataset and 10 for MSCOCO) and controls the number of parallel searches

through the sequence of probabilities. By increasing the beam size, the performance might

improve at the expense of significantly reducing the decoder speed (Brownlee, 2018). We

found that increasing the beam size greater than 6 for the QUORA dataset did not lead to

significant performance improvements. However, a beam size of 10 yielded the best result

on MSCOCO dataset20. We subjectively attribute this to the nature of the datasets. The

MSCOCO dataset contains paraphrase pairs with more novel words, as well as syntactic

manipulations, than the QUORA pairs making it a more challenging corpora which is likely

the reason we needed a more extensive search in the MSCOCO dataset.

Figures 3.5 and 3.6 visualizes the validation and training on the MSCOCO and QUORA

datasets respectively. These figures show that we stop training after the validation loss starts

decreasing consistently.

3.2.6 Baselines

We compare our model with recent models (Gupta et al., 2018; Li et al., 2018b; Prakash

et al., 2016) including the current state-of-the-art (SOTA) in the field. To further highlight

the gain of stacking 2 encoders, we use each component – TRANSFORMER (TRANS) and

SEQ2SEQ (SEQ) as baselines.
20We could not experiment with more than 10 beams due to limitations on our machine’s computing power.
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• VAE-SVG-EQ (Gupta et al., 2018): This is the current state-of-the-art in the field, with

a variational autoencoder as its main component.

• RbM-SL (Li et al., 2018b): Different from the encoder-decoder framework, this is a

generator-evaluator framework, with the evaluator trained by reinforcement learning.

• Residual LSTM (Prakash et al., 2016): This implements a stacked residual long short

term memory networks (LSTM).

• TRANS: Encoder-decoder framework as described in Section 3.2.4 but with a single

TRANSFORMER encoder layer.

• SEQ: Encoder-decoder framework as described in Section 3.2.4 but with a single

GRU-RNN encoder layer.

3.2.7 Results and Evaluation

For quantitative analysis of our model, we use popular automatic metrics such as BiLin-

gual Evaluation Understudy (BLEU) (Papineni et al., 2002), ROUGE (described in section

2.3.8) and Metric for Evaluation of Translation with Explicit ORdering (METEOR) (Baner-

jee and Lavie, 2005; Denkowski and Lavie, 2014).

Table 3.1: Performance of our model against various models on the MSCOCO dataset. R-L
refers to the ROUGE-L F1 score.

MODEL BLEU METEOR R-L EACS GMS

Residual LSTM (Prakash et al., 2016) 37.0 27.0 - - -
VAE-SVG-EQ (Gupta et al., 2018) 41.7 31.0 - - -

TRANS (ours) 41.8 38.5 33.4 79.6 70.3
SEQ (ours) 40.7 36.9 35.8 78.9 70.0

TRANSEQ (ours) 43.4 38.3 37.4 80.5 71.1
TRANSEQ + beam (size=10) (ours) 44.5 40.0 38.4 81.9 71.3

BLEU is similar to ROUGE in that, they both measure similarity between the reference

and system generated sequence based on an n− gram match. However, the counting of
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matching n−grams in BLEU is modified to ensure that it takes the occurrence of the words

in the reference text into account, not rewarding a candidate translation that generates an

abundance of reasonable words. This is referred to by Papineni et al. (2002) as modified

n-gram precision. While ROUGE is more recall-oriented, BLEU is precision-oriented. This

means, BLEU measures how frequently the words (and/or n-grams) in the machine gener-

ated sequence appeared in the human reference sequence. ROUGE measures how often the

words (and/or n-grams) in the human reference sequence appeared in the machine generated

sequence. BLEU also adds the brevity penalty when a sequence generation is too short. We

used the implementation provided in the NLTK3 library, considering up to 4−gram match-

ing. Since BLEU and ROUGE both measure n−gram word-overlap with slight differences,

we only report the BLEU and the ROUGE-L value.

METEOR is based on the harmonic mean of unigram precision and recall, with recall

weighted higher than precision. It also has several features that are not found in other

metrics, such as stemming and synonymy matching, along with the standard exact word

matching. The metric was designed to produce good correlation with human judgement

at the sentence level. We used the open source implementation by Denkowski and Lavie

(2014)21.

Besides using evaluation metrics that are word-overlap based, we evaluated our mod-

els on two (2) additional recent qualitative metrics – Greedy Matching Score (GMS) and

Embedding Average Cosine Similarity (EACS) by Sharma et al. (2017)22 that measure the

similarity between the reference and generated paraphrases based on the cosine similarity

of their embeddings on word and sentence levels respectively. Results are presented in Ta-

bles 3.1 and 3.2. In table 3.3, we report the 95% confidence intervals for ROUGE-L, to show

the statistical significance of our results.

21https://www.cs.cmu.edu/˜alavie/METEOR/
22https://github.com/Maluuba/nlg-eval
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Table 3.2: Performance of our model against various models on the QUORA dataset with
50k,100k,150k training examples. R-L refers to the ROUGE-L F1 score.

50K

MODEL BLEU METEOR R-L EACS GMS

VAE-SVG-EQ (Gupta et al., 2018) 17.4 22.2 - - -
RbM-SL (Li et al., 2018b) 35.81 28.12 - - -

TRANS (ours) 35.56 33.89 27.53 79.72 62.91
SEQ (ours) 34.88 32.10 29.91 78.66 61.45

TRANSEQ (ours) 37.06 33.73 30.89 80.81 63.63
TRANSEQ + beam (size=6) (ours) 37.12 33.68 30.72 81.03 63.50

100K

MODEL BLEU METEOR R-L EACS GMS

VAE-SVG-EQ (Gupta et al., 2018) 22.90 25.50 - - -
RbM-SL (Li et al., 2018b) 43.54 32.84 - - -

TRANS (ours) 37.46 36.04 29.73 80.61 64.81
SEQ (ours) 36.98 34.71 32.06 79.65 63.49

TRANSEQ (ours) 38.75 35.84 33.23 81.50 65.52
TRANSEQ + beam (size=6) (ours) 38.77 35.86 33.07 81.64 65.42

150K

MODEL BLEU METEOR R-L EACS GMS

VAE-SVG-EQ (Gupta et al., 2018) 38.30 33.60 - - -
TRANS (ours) 39.00 38.68 32.05 81.90 65.27

SEQ (ours) 38.50 36.89 34.35 80.95 64.13
TRANSEQ (ours) 40.36 38.49 35.84 82.84 65.99

TRANSEQ + beam (size=6) (ours) 39.82 38.48 35.40 82.48 65.54

Table 3.3: 95% confidence intervals of our paraphrase generation systems.

Models MSCOCO QUORA (150k)
TRANS 33.4 ± 0.294 32.05 ± 0.279

SEQ 35.8 ± 0.216 34.35 ± 0.217
TRANSEQ 37.4 ± 0.196 35.84 ± 0.155

TRANSEQ + beam 38.4 ± 0.176 35.40 ± 0.186

3.2.8 Analysis

Tables 3.1 and 3.2 report scores of our model on both datasets. Our model pushes the

benchmark on all evaluation metrics when compared against current published top models
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evaluated on the same datasets. Since several words could connote similar meaning, it is

more logical to evaluate with metrics that match with embedding vectors capable of mea-

suring this similarity. Hence we also report GMS and EACS scores as a basis of comparison

for future work in this direction.

S: What are the dumbest questions ever asked on Quora?
G: what is the stupidest question on quora?
R: What is the most stupid question asked on Quora?
S: How can I lose fat without doing any aerobic physical activity
G: how can i lose weight without exercise?
R: How can I lose weight in a month without doing exercise?
S: How did Donald Trump won the 2016 USA presidential election?
G: how did donald trump win the 2016 presidential
R: How did Donald Trump become president?

Figure 3.7: Examples of our generated paraphrases on the QUORA sampled test set, where
S, G, R represents Source, Generated and Reference sentences respectively.

S: Three dimensional rendering of a kitchen area with
various appliances.
G: a series of photographs of a kitchen
R: A series of photographs of a tiny model kitchen
S: a young boy in a soccer uniform kicking a ball
G: a young boy kicking a soccer ball
R: A young boy kicking a soccer ball on a green field.
S: The dog is wearing a Santa Claus hat.
G: a dog poses with santa hat
R: A dog poses while wearing a santa hat.
S: the people are sampling wine at a wine tasting.
G: a group of people wine tasting.
R: Group of people tasting wine next to some barrels.

Figure 3.8: Examples of our generated paraphrases on the MSCOCO sampled test set,
where S, G, R represents Source, Generated and Reference sentences respectively.

Besides quantitative values, Figures 3.7 and 3.8 show that our paraphrases are well

formed, abstractive (e.g dumbest – stupidest, dog is wearing – dog poses) and capable
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of performing syntactic manipulations (e.g in a soccer uniform kicking a ball – kicking a

soccer ball) and compression.

3.3 Related Work

Our baseline models – VAE-SVG-EQ (Gupta et al., 2018) and RbM-SL (Li et al., 2018b)

are both deep learning models. While the former uses a variational-autoencoder and is ca-

pable of generating multiple paraphrases of a given sentence, the later uses deep reinforce-

ment learning. In tune with part of our approach, ie, SEQ2SEQ, there exists ample models

with interesting variants – residual LSTM (Prakash et al., 2016), bi-directional GRU with

attention and special decoding tweaks (Cao et al., 2017) and attention from the perspective

of semantic parsing (Su and Yan, 2017). MT has been greatly used to generate paraphrases

(Quirk et al., 2004; Zhao et al., 2008) due to the availability of large corpora. Earlier works

have explored the use of manually drafted rules (Hassan et al., 2007; Kozlowski et al.,

2003).

Similar to our model architecture, Chen et al. (2018) combined TRANSFORMERS and

RNN-based encoders for MT. Recently, the TRANSFORMER model was used for paraphras-

ing on different datasets – TURK and NEWSELA (Zhao et al., 2018a). We experimented

using solely a TRANSFORMER but got better results with TRANSEQ. To the best of our

knowledge, our work is the first to cross-breed the TRANSFORMER and SEQ2SEQ for para-

phrase generation.

3.4 Summary

In this chapter we presented our NN model in an attempt to answer RQ2: How can we

build a paraphrasing model to help with abstractive summarization? We proposed a novel

framework, TRANSEQ that combines the efficiency of a TRANSFORMER and SEQ2SEQ

model and improves the current state-of-the-art on the QUORA and MSCOCO paraphrasing

datasets. Besides quantitative results, we presented samples that highlight the syntactic and
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semantic quality of our generated paraphrases (more examples are presented in Appendices

C and D). This framework was applied in chapter 5 of this thesis for the task of abstrac-

tive text summarization. Part of this work was published at the Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and 9th International

Joint Conference on Natural Language Processing, Workshop on Neural Generation and

Translation, pages 249 - 255 (2019). Hong Kong, China (Egonmwan and Chali, 2019b).
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Chapter 4

Sentence Compression

This chapter describes the second sub-model for our abstractive summarization model –

Sentence Compression. The goal is to provide an answer to RQ3: How can we build

a compression model to help improve the conciseness of machine generated summaries?

Summaries are shorter than the source text but might still be longer than desired, especially

when compared to the length of the gold or reference summaries. Hence sentence compres-

sion becomes a necessary tool to further improve the conciseness of the machine generated

summaries. However, in the process of sentence compression, it is likely that words which

affect the semantics and factual-correctness of the sentence are sometimes deleted. As a

result, we also address RQ4: How can we investigate that our machine generated outputs

are factual, that is, that they contain accurate information?

4.1 Introduction

Sentence compression is a Natural Language Processing (NLP) task that aims at produc-

ing a shorter version of a sentence. The shortened sentence could be an abstract (Fevry and

Phang, 2018; Yu et al., 2018) or extract (Filippova et al., 2015; Knight and Marcu, 2000) of

the source sentence. Abstractive sentence compression is similar to paraphrasing which has

been addressed in the previous chapter (see chapter 3). For example, while the sentence –

“Symptom of the flu include fever and nasal congestion” can be paraphrased as “Elevated

temperature is a sign of the flu”, while an extractive compressed version is “Symptom of

the flu include fever”. The focus of this chapter is on extractive sentence compression,
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which as seen in the example, solely involves deleting appropriate words from the sentence

without substituting with novel words. One major challenge with sentence compression is

maintaining the factuality of the source text after deletion of word(s). As seen in Figure

4.1 a single erroneous deletion of the word was results in a sentence which implies that the

man did the shooting, when in fact he was shot.

Input Sentence: A man who was shot in the head in front of his teammates as he
walked off a soccer pitch knew his life was in danger, an inquest heard.
Erroneous Compression: A man who shot in the head knew his life was in danger.
Correct Compression: A man who was shot in the head knew his life was in
danger.

Figure 4.1: Example of the consequence of erroneous compression on factuality

Existing models for deletion-based sentence compression give little or no considera-

tion to the factuality of the compression. Sentences are pruned manually based on the

constituency (Berg-Kirkpatrick et al., 2011), dependency (Filippova, Katja and Strube,

Michael, 2008) and by a parse tree or a noisy-channel model (Knight and Marcu, 2000).

Features can be automatically learned by training Long Short Term Memory (LSTM) mod-

els on a large sentence compression dataset (Filippova et al., 2015; Wang et al., 2017; Zhao

et al., 2018b).

We formulate the sentence compression task as a word-level binary classification prob-

lem. For each word in the source sentence, we decide if to delete (0) or retain (1) it dur-

ing compression by training a bi-directional transformer neural network (Vaswani et al.,

2017b) on a large sentence compression dataset – GOOGLENEWS (Filippova et al., 2015).

We attempt to mitigate factual inconsistency by triggering a stop in the training of our sen-

tence compression model once a divergence in meaning between the original and machine-

compressed sentence starts to occur. The semantic similarity between the sentences is mea-

sured by their embedding-based cosine-similarity (Kenter and De Rijke, 2015). We also

observe that binary-labels of the words in a sentence are biased (more retains (1) than

deletes (0)). Therefore, the F1- score better reflects the performance of the model (Lipton
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et al., 2014). Hence, we experiment with the impact on our model when we stop training

based on the F1-score instead of the typical loss score.

4.2 Methodology

First, we formally define the task of sentence compression. Next, we describe the

datasets used for training and testing our sentence compression model including prepro-

cessing steps. We then present our NN architecture for solving the task, providing details of

all settings used during implementation. Since compressed sentences are prone to factual

inconsistencies, we give details on this, and provide a method to reduce the factual incor-

rectness of system compressed sentences. Sections 4.2.7 and 4.2.8 evaluates and analyzes

the output of our model. Finally we discuss published work related to ours, on the task of

sentence compression.

4.2.1 Task Definition

Given an input sentence X = (x1, ...,xn) with n words, the task is to generate a com-

pressed output sentence X = (x1, ...,xm) with m words that conveys similar semantics as X

and m≤ n.

4.2.2 Dataset

Our model was trained and tested using the GOOGLENEWS dataset only. The GOOGLE-

NEWS sentence compression corpus contains about two million sentence compression pairs

(i.e., full naturally formed sentences with its compressed version) collected by Filippova

et al. (2015) from Google News articles between 2013 and 2014 on the web, by using a

method proposed in Filippova and Altun (2013). Due to performance limitations of our

machine23 we trained on only 200,000 randomly selected samples. For testing, we use the

publicly released set containing 10,000 sentence compression pairs24. Similar to Filippova

23Our experiments were implemented on a Nvidia TITAN X GPU card with 12G RAM.
24https://github.com/google-research-datasets/sentence-compression
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et al. (2015), we perform automatic evaluation on the first 1,000 sentences.

4.2.3 Preprocessing

Articles and stop words are relevant in this task, hence they were not removed. Word-

level tokenization was performed by the NLTK3 library. The GOOGLENEWS dataset comes

in pairs of sentences and their compression. We convert the compressed reference sentences

into a sequence of 0’s and 1’s as illustrated in Figure 4.2.

Input Sentence (X): Actor Philip Seymour Hoffman has been found dead in
his New York apartment from an apparent drug overdose
Labels (Y ): 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
Compressed Sentence (X): Actor Philip Seymour Hoffman has been found
dead in his New York apartment from an apparent drug overdose

Figure 4.2: Example of a training pair from the GoogleNews dataset.

In Figure 4.2, X is the input sentence and Y corresponds to the binary labels (0,1)

matching the compressed reference sentence, X . 0 represents a word that was deleted from

the input sentence and 1 represents a word that was retained. Labels Y , are generated by

simply performing a 1-gram word overlap between the source sentence X, and the com-

pressed reference sentence, X .

4.2.4 NN Architecture

The NN architecture is modelled to correctly classify each word in a sentence as worthy

of being present in the compressed sentence (meaning it should be retained) or otherwise

(meaning it should be deleted). Hence, the topmost layer is a softmax classifier. However,

the classifier needs features to enable its decision making. These features are automatically

learned by a BI-DIRECTIONAL TRANSFORMER encoder. Prior to encoding, each word is

embedded into a vector representation using BERT embedding. We explain each of these

components of our NN architecture below.
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Embedding

We explored instantiating the sentence encoder with non-contextualized GloVe (Pen-

nington et al., 2014) word-embeddings. However, for this task, GloVe proved sub-optimal

compared to using deep contextualized word-embeddings like BERT (Bidirectional Encoder

Representations from Transformers) (Devlin et al., 2018).

BERT uses a “masked language model” (MLM) which randomly masks some tokens

from the input and tries to predict the vocabulary-id of the masked token based only on its

context (Devlin et al., 2018).

To obtain the input sentence representation, we concatenate the word embeddings as in

equation 4.1:

X̃ j = x̃1‖x̃2‖ . . .‖x̃n, (4.1)

where x̃i refers to the word-embedding of the ith word in sentence X j.

Encoding

The BERT embeddings are fed to a TRANSFORMER encoder to learn hidden representa-

tions. Please refer to Section 2.3.6 for details on the TRANSFORMER encoder.

Classifying and Training

The encoded vector representation serves as input to the softmax classifier. Recall in

Chapter 2, we stated the softmax equation (2.17) and the loss function (2.18) on which the

softmax classifier is trained. We use the same softmax classifier equation and cross entropy

loss function for our sentence compression model.

Maintaining Factuality

Here, we attempt to address RQ4: How can we investigate that our machine gener-

ated outputs are factual, that is, they contain accurate information? Intuitively, it is easy
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to see how a shorter sentence can easily omit or misconstrue information contained in a

longer source sentence. Hence, there is a need to strike a balance between the correctness

of information retained in the compression and its length. We apply a preemptive approach

to tackle this. The idea is that the model learns relatively well what tokens to delete at

each training step, but needs a better trigger to communicate when to stop. Otherwise, it

over-compresses, resulting in ”shorter-than-is-ideal” sentences, which distort the facts con-

tained in the original sentence and/or introduces grammatical errors, negatively affecting

its readability. We observe evidence of this in Figures 4.1 and 4.3. Hence, we implement

early-stopping to mitigate factual inconsistencies. Generally, it is used to curtail the effects

of over-fitting (Hawkins, 2004; Tetko et al., 1995) such as failure of the model to generalize

to unseen samples.

One common early-stopping criteria is the loss score on the validation set. The model is

setup to stop training if the loss on a held-out validation set does not decrease after a fixed

number of epochs (Li et al., 2019; Prechelt, 1998a,b). However, due to the imbalanced

nature of our labelled data and the desire to maintain the factuality of our compressed

sentence, we sought to investigate the impact of implementing two (2) other early-stopping

criteria, explained in the following sub-sections.

Cosine Similarity

While making a few delete or retain decision errors could minimally affect the accuracy

and F1-score, there could be a greater impact on the meaning of the resulting compressed

sentence. Due to the natural ambiguous characteristic of English sentences, a few misplaced

word(s) could entirely distort the semantics of the sentence. As seen in the example in

Figure 4.1, a single erroneous deletion of the word was, results in a sentence which implies

that the man did the shooting, when in fact he was shot.

To reduce the semantic disparity between the system and reference compressed sen-

tence, we measure their embedding-based cosine similarity (Kenter and De Rijke, 2015),
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and implement a stop criteria when the similarity score begins to diverge.

F1-score

Here, we try to solve the problem that comes with the biased nature of the word-labels

– usually more retain than delete decisions. For instance, retaining all words in the source

sentence might result in high recall and moderate accuracy scores, even when no compres-

sion was actually done. For binary classification problems of this nature, the F1-score is a

better evaluation metric as it balances both the precision and recall of predictions (Lipton

et al., 2014). Hence, we choose to validate our model based on the F1-score. The words

with probabilities greater than 0.525 are labelled 1 (retain), else 0 (delete). Next, we calcu-

late the F1-score of system labels and stop training when the F1-score on the validation set

fails to improve after a defined number of training epochs.

4.2.5 Implementation Details

We use the API from pypi26 to obtain pre-trained BERT word-embeddings. For the

TRANSFORMER encoder, we used the transformer base hyperparameter setting from the

tensor2tensor library (Vaswani et al., 2018)27. We set the dropout to 0.0. We train and

evaluate our model after each epoch using a fixed learning rate of 0.0001, with a batch

size of 50 and stop training when either of the heuristics described in Sections 4.2.4 do not

improve after 10 epochs.

4.2.6 Baselines

We compare our compression model against some recent models and strong existing

baselines 28. To contrast the effect of the different stopping criteria as described in Section

4.2.4 on our models’ performance, we evaluate the output of the model when stopped, based

on each of the different criteria.
25We empirically arrived at this score after experiments on the datasets.
26https://pypi.org/project/bert-embedding/
27https://github.com/tensorflow/tensor2tensor
28None of these existing models address factuality issues in sentence compression.
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• Evaluator-SLM (Zhao et al., 2018b): To the best of our knowledge, this is the current

state-of-the-art for deletion-based sentence compression. The authors trained a syn-

tactic neural language model integrated with Part-of-Speech (POS) tags and depen-

dency relations. Subsequently, they formulated the deletion-based sentence compres-

sion as a series of trial-and-error deletion operations through reinforcement learning

using about 200,000 compression pairs from GoogleNews dataset. The policy net-

work receives a reward from the language model for updating the network.

• LSTM+PAR+PRES (Filippova et al., 2015): This is a strong foundational baseline for

deletion-based sentence compression. They trained a softmax classifier on top of

an LSTM model devoid of any syntactic features using about two million sentence

compression pairs from the GoogleNews dataset.

• BI-LSTM+SynFeat (Wang et al., 2017): Similar to Filippova et al. (2015), the au-

thors trained an LSTM based model, but with a bi-directional architecture and fewer

training samples (8,000 sentence pairs). Additionally, syntactic features (POS and

dependency embeddings) were introduced to the model both explicitly and by con-

straints through Integer Linear Programming (ILP).

Our models

• Bi-TRANS: Our implementation of bi-directional transformer + softmax classifier,

without any syntactic features. In this setting, training is stopped based on the loss

score as explained in section 4.2.4.

• Bi-TRANS+COSSIM: Same implementation of Bi-TRANS but with a stopping criteria

based on the embedding-based cosine similarity of predicted and reference sentences

as explained in section 4.2.4.

• Bi-TRANS+F1: Same implementation of Bi-TRANS but with a stopping criteria based

on the F1-score of predicted and reference token labels per sentence as explained in
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section 4.2.4.

Input Sentence: John Abraham has been prohibited from using the title
Hamara Bajaj for his home production .
Bi-TRANS: John Abraham has been prohibited from his home
Bi-TRANS+F1: John Abraham has been prohibited from using his home pro-
duction
Bi-TRANS+COSSIM: John Abraham has been prohibited from using the
title Hamara
Reference Compression: John Abraham has been prohibited from using the
title Hamara Bajaj
Input Sentence: Google is developing smart contact lenses that measure the
glucose levels in diabetics’ tears.
Bi-TRANS: Google is developing glucose
Bi-TRANS+F1: Google is developing smart contact
Bi-TRANS+COSSIM: Google is developing smart lenses
Reference Compression: Google is developing smart contact lenses

Figure 4.3: Example outputs of our implemented baselines from GOOGLENEWS dataset.

4.2.7 Results and Evaluation

We carry out both automatic and human evaluation on our model.

Automatic Evaluation

Following previous work on sentence compression, we evaluate our model on three

quantitative metrics – F1-score, Accuracy and Compression Rate (CR) (Napoles et al.,

2011). F1-score is the harmonic mean of precision and recall. While precision measures the

percentage of accurately retained words in the machine-compressed sentence, recall mea-

sures the percentage of retained words in the reference that were accurately produced by

the machine. Accuracy on the other hand, measures the percentage of machine-predictions

(both retains and deletes) that are correct. CR is the Compression Ratio, which translates

to the number of tokens in the compressed sentence divided by the number of tokens in
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Table 4.1: Quantitative Evaluation of our Compression model against various models on
the GOOGLENEWS dataset†.

SENT. COMPRESSION F1 ACC CR

LSTM+PAR+PRES (Filippova et al., 2015) 0.82 0.34 0.38
Bi-LSTM-CRF (Lai et al., 2017) 0.79 - 0.38

Bi-LSTM+SynFeat (Wang et al., 2017) 0.80 0.82 0.43
LK-GNN (Zhao et al., 2017) 0.83 - -

CR-BILSTM-TA (Lu et al., 2017) 0.80 0.33 -
Evaluator-SLM (Zhao et al., 2018b) 0.85 - 0.39

Bi-TRANS (ours) 0.83 0.80 0.40
Bi-TRANS+F1 (ours) 0.85 0.84 0.42

Bi-TRANS+COSSIM (ours) 0.88 0.85 0.45

†F1 score for all models are word-level based. Accuracy (ACC) in Filippova et al. (2015) and Lu et al. (2017)
are sentence-level based, while ours and Wang et al. (2017)’s are word-level based.

the source sentence. So a model with 0.38 CR value, means 62% of the words in the sen-

tence were deleted. We aim for moderate CR values, as too low CR scores indicates over-

compression, and too high CR values indicates under-compression. The reference sentences

compression had an average of 0.47 CR value.

Table 4.2: Qualitative Evaluation of our Sentence Compression Model.

MODEL EACS GMS

Bi-TRANS 86.8 88.1
Bi-TRANS+F1 88.9 89.4

Bi-TRANS+COSSIM 89.1 89.9

Additionally, we evaluate on two qualitative metrics – Greedy Matching Score (GMS)

and Embedding Average Cosine Similarity (EACS) (Sharma et al., 2017). GMS and EACS

measure the similarity between the reference and machine produced sentence compressions,

based on the cosine similarity of their embeddings on word and sentence levels respectively,

thus having a stronger correlation with human evaluation.
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Figure 4.4: Stacked bar charts showing human evaluations of some samples from each
model’s output. The three stacks in each bar corresponds to each annotator’s score per
criterion – factuality, grammaticality and readability.

Human Evaluation

To further validate our experiments, we conduct human evaluation. We measure factual-

ity, grammaticality and readability. Factuality measures how well the compressed sentence

maintains facts stated in the original sentence. Grammaticality measures how well the com-

pressed sentence adheres to grammar rules, while readability estimates how easy to read the

compressed sentence is. To evaluate each of these criteria, we design the following Amazon

MTurk experiment: we randomly select 200 samples from the GOOGLENEWS test set and

ask the human testers (3 per sample) to rank between outputs (for the three (3) models – Bi-

TRANS, Bi-TRANS+F1 and Bi-TRANS+COSSIM). For the output X , of each corresponding
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model we posed three statements and required the testers29 to agree or disagree on a scale

of 1 – 5 (1 = Strongly disagree, 5 = Strongly agree). The three statements were:

i) X adequately compresses and maintains the factuality contained in Source Text.

ii) X is grammatically correct.

iii) X is readable.

The human produced reference sentence compressions were not presented to the testers.

From the results in Figure 4.4 and Table 4.3, we see that training our sentence compression

model with the discussed stop criteria – F1 and cosine similarity yields improvements.

Table 4.3: Human Evaluation of our Sentence Compression Model, where FT., GM. and
RD. stand for Factuality, Grammaticality and Readability respectively†.

MODEL FT. GM. RD.
Bi-TRANS 2.80 2.73 2.93

Bi-TRANS+F1 2.99 2.99 3.29
Bi-TRANS+COSSIM 3.43 3.49 3.83

†The scores from all three (3) annotators were averaged to yield the values presented in the Table.

4.2.8 Analysis

The theory behind our experiment is that over-compression possibly leads to inconsis-

tencies in facts between the system compression and original sentence. Qualitative evalua-

tion of our models presented in Table 4.2 gives evidence that stopping sentence compression

appropriately sooner, better maintains the semantics between the original and compressed

sentence. Also, we observe higher F-1 and accuracy scores for models with a higher CR

as seen in Table 4.1. Although the F-1 and accuracy metrics do not necessarily represent

the coherence level of the compressed sentence, they indicate that the machine-produced

compressed sentence is very much close to the human-compression, based on token over-

lap. Human evaluations substantiate the presence of factual errors in Bi-TRANS and a

29We selected testers who were located in US or Canada, have Amazon Mechanical Turk Masters qualifi-
cation and had HIT approval rate greater than or equal to 95%.
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reduction in these errors with Bi-TRANS+F1 and Bi-TRANS+COSSIM. We also see a cor-

responding increase in the readability and grammaticality in the outputs of Bi-TRANS+F1

and Bi-TRANS+COSSIM as seen in Table 4.3 and Figure 4.4.

4.3 Related Work

The crux of the extractive sentence compression task is deciding what words/tokens are

least important in a sentence, such that when deleted, the meaning of the original sentence

remains while still being grammatically correct. Knight and Marcu (2000) assumed that

the input sentence has been infiltrated with noise or blown up. Hence, they use a noisy

channel model to filter out the noise. The compressed output is learned from training a

parallel corpus that consists of {texts, abstracts} tuples. This model is highly statistical and

dependent on the language model used. Motivated by the belief that the grammaticality

of a sentence can be better ensured by compressing trees – Filippova, Katja and Strube,

Michael (2008) implemented tree pruning based on the dependency parse of the input sen-

tence. Their method was aimed at preserving dependencies which are required to retain

the grammatical correctness of the output or have important words as the dependent. In a

similar light Berg-Kirkpatrick et al. (2011) parses the sentence to be compressed into its

constituency tree. A small set of manually formulated features with learned weights from a

small dataset, are then used to decide if a word should be deleted or not. The features were

chosen by looking at human annotated data and observing the most common types of edit.

However, the performance of these methods rest largely on the efficiency of the dependency

or constituency parser, which unfortunately, are usually error-prone.

Recent methods are less dependent on parse-trees or manually crafted features, but

rather employ deep learning techniques using variants of recurrent neural networks (RNN)

(Filippova et al., 2015; Wang et al., 2017; Zhao et al., 2018b). Different from existing mod-

els, we attempt to address factuality in sentence compression and utilize contextualized

word-embeddings to better capture semantics.
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4.4 Summary

In this chapter we proposed solutions to two (2) of our key research questions – RQ3:

How can we build a compression model to help improve the conciseness of machine gener-

ated summaries? and RQ4: How can we investigate that our machine generated outputs

are factual, that is, they contain accurate information? Specifically, we showed that factual

errors present in compressed sentences could be reduced by stopping the training process

at an ‘ideal’ time to preempt over-compression. The ’ideal’ time was experimented as a

measure of the F1 and embedding-based cosine similarity scores that help to capture the

imbalance in token labels and the semantic relatedness between the compressed and origi-

nal sentence. We evaluated our model using both automatic and human evaluation methods.

All results show improved performance of our system over existing baselines and models

stopped earlier with our discussed heuristics proved superior. Examples of the outputs of

our models are presented in Appendix E. This framework was applied in Chapter 6 of this

thesis for the task of multi-document abstractive text summarization. Part of this work

has been submitted for publication at the 16th Conference of the European Chapter of the

Association for Computational Linguistics. 2021.

66



Chapter 5

Single Document Abstractive
Summarization

In this Chapter, we address a part of the overarching research question, RQ0: How can we

build machine learning model capable of generating abstractive summaries? In simple and

straightforward terms, the solution is that, we extract and paraphrase using the appropriate

models from Chapter 2 and 3 respectively. We provide a more detailed methodology in

subsequent sections.

5.1 Introduction

The task of abstractive summarization can be expressed as writing summaries in your

own words. Where, your refers to the summary writer, which may or may not be the author

of the document. It is important that own words introduced convey a similar meaning as

those in the original document. However, the summary writer chooses to use those words

for succinctness and/or clarity. So in contrast to extractive summarization, which is 100%

copying and pasting of salient points in the document, abstractive summarization involves

some degree of copying and pasting but a larger degree of rewriting and rephrasing. Exactly

how much rewriting and rephrasing defines a summary as abstractive is an unaddressed

research question. In general, the more novel words that are introduced, the higher the

abstractive quality of the summary.

We consider the art of abstracting essentially the same as paraphrasing. Hence, we

model the abstractive summarization task as one of generating paraphrases after the most
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salient sentences have been identified by an extractive summarizer. This approach has been

shown to be valid in literature (Chen and Bansal, 2018; Hsu et al., 2018; Liu et al., 2018).

Having demonstrated that our chosen model architecture is viable for generating meaning-

ful paraphrases and testing on a dedicated paraphrase dataset (see Chapter 3) we apply the

same model architecture for this task as for generating abstractive summaries. Details of

the application are given subsequently.

5.2 Methodology

The datasets used for the task of single document abstractive summarization are the

same as those used for the task of single document extractive summarization – CNN/DM

and NEWSROOM datasets. Preprocessing is performed during each sub-task – extraction

and paraphrasing as described in Chapters 2 and 3 respectively. The input to our abstraction

module is a subset of the document’s sentences which is comprised of the output of the

extraction phase from Chapter 2. For each document D j, initially comprising of n sentences,

we abstract its extracted sentences,

SE
j = {S1

j ,S
2
j , ...,S

m
j } (5.1)

where m < n and SE
j ⊆ D j, by learning to paraphrase using the paraphrase architecture

explained in Chapter 3. The paraphrasing module requires single sentences as input. How-

ever, not all summary sentences are paraphrases of a document sentence. While some are

paraphrases of a single sentence, others are a fusion of multiple sentences (Lebanoff et al.,

2019b). Hence, we first identify document-summary sentence pairs which are possible

paraphrases by using the similarity measure given in equation 2.7, which is a measure of

the bi-gram overlap between the two (2) sentences. We found about 60% of the summary

sentences were paraphrases of the source sentence. Sentences which were not paraphrased,

were written in the output summary as-is (extracted). It is important to note that, what
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we did was to apply the same architecture used for paraphrasing to the task of generating

abstractive summaries. The model was trained from scratch on the appropriate dataset for

the abstractive summarization task. This is significantly different from the more popular

transfer learning setting, where the model is trained on a specific dataset for a certain task,

and then used with the same learned weights on a different task. This is particularly useful

in use-cases where data in one task is limited or scarce. Hence knowledge is gained from

a largely available dataset on a related task or problem. We employ this transfer learn-

ing (Mahajan et al., 2018; Van Den Oord et al., 2014) method in multi-document settings,

because of the paucity of multi-document summarization corpus.

We experimented with adding a sentence compression layer (with the same architecture

explained in Chapter 4) before or after the layer responsible for generating paraphrases.

However, this produced no significant improvements in results as seen in Tables 5.2 and

5.3. As we will see later in Chapter 6, sentence compression proved very useful in multi-

document settings. In Table 5.1, we compare the statistics of CNN/DM and MULTINEWS

datasets for single and multi-document summarization respectively, to gain intuitive under-

standing behind the observed behavior – sentence compression yielding significant gains

when used in conjunction with sentence paraphrasing for multi-document summarization

but otherwise for single document abstractive summarization model.

Table 5.1: Statistics of the single document summarization dataset (CNN/DM) test samples
versus multi-document summarization dataset (MULTINEWS) test samples.

CNN/DM (SDS) MULTINEWS (MDS)
Avg. #words/doc. 766 2100
Avg. #words/summ. 30 264
Avg. #sents/doc. 53 83
Avg. #sents/summ. 3.75 10

As seen in Table 5.1, the sentences in SDS are significantly shorter than in MDS, both in

the source documents and summaries. Hence, in SDS settings, sentence compression might
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O: the two clubs, who occupy the top two spots in spain’s top fight, are
set to face each other at the nou camp on sunday.
G: real madrid face barcelona in the nou camp
R: real madrid will travel to the nou camp to face barcelona on sunday.
O: dangelo conner, from new york, filmed himself messing around with
the powerful weapon in a friend’s apartment, first waving it around, then
sending volts coursing through a coke can .
G: dangelo conner from new york was fooling around with his gun
R: dangelo conner, from new york ,was fooling around with stun gun.
O: jamie peacock broke his try drought with a double for leeds in their
win over salford on sunday.
G: jamie adam scored to win over salford for leeds
R: jamie peacock scored two tries for leeds in their win over salford.
O: britain’s lewis hamilton made the perfect start to his world title de-
fense by winning the opening race of the f1 season in australia sunday
to lead a mercedes one-two in melbourne .
G: lewis hamilton wins first race of season in australia
R: lewis hamilton wins opening race of 2015 f1 season in australia .

Figure 5.1: Examples of some of our abstractive sentences from the CNN/DM dataset,
where O, G, R represents Originating document sentence, our model’s Generated abstract
and Reference sentences from the ground-truth summary respectively.

not be of high utility especially if/when the model is capable of generating paraphrases30.

In the CNN/DM dataset, with an average of 30 words/summary spread over about 3 to 4 sen-

tences, each summary sentence contains an estimate of about 10 words. Using our extract

and paraphrase model, our generated summaries are an average of about 36 words. There-

fore, adding compression capabilities on top of this only results in shorter-than-desired sen-

tences with negative effects on the ROUGE-RECALL score and thus the overall performance

(ROUGE-F1 score).

5.2.1 Results and Analysis

Following the usual practice in literature and this thesis, we evaluate our generated

summaries against the reference using ROUGE. Results are presented in Tables 5.2 and

30Recall that our sentence paraphrasing model is able to jointly perform sentence compression to some
extent as observed in some generated samples (see Figures 3.7, 3.8, Appendices C and D).
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5.3. Recall from Chapter 2 that TRANS-ext and TRANS-ext + filter refer to our extractive

systems with non-filtered and filtered training sets respectively, where filtering was done

mainly to reduce noise in the data and remove disparate document-summary pairs. +abs

refers to abstraction by paraphrasing while +absComp refers to abstraction by paraphrasing

and compressing.

Table 5.2: Average ROUGE-F1 (%) scores of various abstractive models on the CNN/DM
test set. The first section shows results from literature while the second section presents
results from our models.

Abstractive Model R-1 R-2 R-L
RL+Intra-Att (Paulus et al., 2018) 41.16 15.75 39.08

KIGN+Pred (Li et al., 2018a) 38.95 17.12 35.68
FAST (Chen and Bansal, 2018) 40.88 17.80 38.54

Bottom-Up (Gehrmann et al., 2018) 41.22 18.68 38.34
TRANS-ext + absComp 40.75 17.55 36.45

TRANS-ext + filter + absComp 40.85 17.72 36.67
TRANS-ext + abs 41.05 17.87 36.73

TRANS-ext + filter + abs 41.89 18.90 38.92

Table 5.3: Average ROUGE-F1 (%) scores of various abstractive models on the NEWS-
ROOM released test set. * marks results taken from Grusky et al. (2018).

Abstractive Model R-1 R-2 R-L
Abs-N* (Rush et al., 2015) 5.88 0.39 5.32
Pointer* (See et al., 2017) 26.02 13.25 22.43

TRANS-ext + absComp 32.37 14.72 25.69
TRANS-ext + filter + absComp 32.89 15.03 26.65

TRANS-ext + abs 33.81 15.37 28.92
TRANS-ext + filter + abs 35.74 16.52 30.17

We highlight examples of some of the abstractive sentences in Figure 5.1. Figure 5.1

show that our outputs are well formed, abstractive (e.g powerful weapon – gun, messing

around – fooling around) and capable of performing syntactic manipulations (e.g for leeds

in their win over sadford – win over salford for leeds). In table 5.4, we report the 95% con-

fidence intervals for ROUGE-1, ROUGE-2 and ROUGE-L to show the statistical significance

of our results.
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Table 5.4: 95% confidence intervals of our SDS abstractive systems.

CNN/DM R-1 R-2 R-L
TRANS-ext + absComp 40.75 ± 0.037 17.55 ± 0.039 36.45 ± 0.031

TRANS-ext + filter + absComp 40.85 ± 0.056 17.72 ± 0.054 36.67 ± 0.051
TRANS-ext + abs 41.05 ± 0.018 17.87 ± 0.022 36.73 ± 0.021

TRANS-ext + filter + abs 41.89 ± 0.014 18.90 ± 0.016 38.92 ± 0.015

NEWSROOM

TRANS-ext + absComp 32.37 ± 0.045 14.72 ± 0.043 25.69 ± 0.039
TRANS-ext + filter + absComp 32.89 ± 0.035 15.03 ± 0.042 26.65 ± 0.037

TRANS-ext + abs 33.81 ± 0.025 15.37 ± 0.026 28.92 ± 0.027
TRANS-ext + filter + abs 35.74 ± 0.018 16.52 ± 0.019 30.17 ± 0.021

5.3 Related Work

Before the ubiquitous use of neural networks, manually crafted rules and graph tech-

niques were utilized with considerable success. Barzilay and McKeown (2005) and Che-

ung and Penn (2014) fused two sentences into one using their dependency parsed trees.

Recently, sequence-to-sequence models (Sutskever et al., 2014) with attention (Bahdanau

et al., 2014; Chopra et al., 2016), copy mechanism (Gu et al., 2016; Vinyals et al., 2015),

pointer-generator (See et al., 2017) and graph-based attention (Tan et al., 2017) have been

explored. Since the system generated summaries are usually evaluated on ROUGE, it has

been beneficial to directly optimize this metric during training via a suitable policy using re-

inforcement learning (Celikyilmaz et al., 2018; Paulus et al., 2018). In order to deal with the

problem of repetition that often comes with attentional RNN-based encoder-decoder mod-

els, especially when processing long sequences, Paulus et al. (2018) introduced a neural

network model with intra-attention that attends over the input and continuously generated

output separately. Li et al. (2018a) on the other hand, focused on the difficulty of these at-

tentional encoder-decoder models in keeping key information during generation due to lack

of guidance. Hence, they proposed a guiding generation model that combines extraction

and abstraction. They first obtain keywords from the text during extraction. Afterwards, a
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Key Information Guide Network (KIGN), which encodes the keywords to the key informa-

tion representation to guide the process of generation is introduced.

Our work is conceptually similar to Chen and Bansal (2018) and Rush et al. (2015),

where abstractive summaries are generated by simplifying extracted sentences. We simplify

by paraphrasing, but different from existing models purely based on RNN, we implement

a blend of two proven efficient models – TRANSFORMER and GRU-RNN encoder. Addi-

tionally, while the model of Rush et al. (2015), generates single sentence summaries, our

TRANSFORMER-based model generates multi-sentence summaries.

5.4 Summary

In this Chapter we applied our extractive and paraphrasing NN architectures for abstrac-

tive summarization as our solution to RQ0: How can we build a machine learning model

capable of generating abstractive summaries? Besides quantitative results, we presented

samples that highlight the syntactic and semantic quality of some of our abstractive sen-

tences (more examples are presented in Appendices F). Part of this work was published at

the Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-

cessing and 9th International Joint Conference on Natural Language Processing, Workshop

on Neural Generation and Translation, pages 249 - 255 (2019). Hong Kong, China. (Egon-

mwan and Chali, 2019a)
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Chapter 6

Multi-document Summarization

In this Chapter we address summarization of documents from multiple sources – multi-

document summarization (MDS). Owing to the paucity of MDS data, we apply transfer-

learning methods, using our pre-trained models (paraphrase generation and sentence com-

pression) versus an open-source pre-trained transformer-based models for language mod-

elling (LM) and text-to-text generation – GPT2 and T5 models respectively31. Specifically,

we investigate RQ5: How well does transfer-learning impact multi-document summariza-

tion?

6.1 Introduction

In MDS the multiple sources of text convey a central idea or topic. Examples include

news article from different sources on a defined topic (Hong et al., 2014), questionnaires

completed by various individuals (Luo and Litman, 2015; Luo et al., 2016) or varied reviews

from different users on a certain product (Gerani et al., 2014). As stated in Chapter 1, this

thesis addresses summarization of news articles. In MDS settings, these are news articles

on the same topic. These input articles are usually lengthy. For example, the two (2) major

MDS datasets – DUC 2004 and MULTINEWS contain over 4,600 and 2,100 words per input

document respectively, in contrast to about 800 words in the CNN/DM SDS dataset. This

lengthy size of MDS source texts, makes it very challenging (due to memory constraints of

machines (Liu and Lapata, 2019)) to directly encode and decode in an end-to-end fashion.

31Available from the open-source library – hugging face transformers at https://huggingface.co/
transformers/model_doc/gpt2.html
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To address this, existing work either truncates the input documents to a maximum length

(Fabbri et al., 2019; Li et al., 2020) or first extracts a subset of salient passages from the

source text before abstracting (Liu et al., 2018; Liu and Lapata, 2019). We employ the latter

approach – extract and abstract. Besides the fact that truncating the input documents might

lead to loss of valuable information, we believe that the ”extract and abstract” approach is

more similar to the way humans summarize both single and multiple documents.

Transfer learning has proven useful for low-resource tasks (Radford et al., 2019; Zoph

et al., 2016; Dai et al., 2007). Transfer learning uses knowledge from a learned task to im-

prove the performance on a related task, typically reducing the amount of required training

data (Torrey and Shavlik, 2010). The choice of task to transfer knowledge from is crucial.

Inspired by the need for coherency, faithfulness (to the source) and conciseness of our sum-

maries, we choose tasks with learning objectives centered around these qualities including –

Language Modeling (with OpenAI’s GPT2 model), Text-to-Text Generation (with Google’s

T5 model) and Paraphrase generation/Sentence Compression (with our pre-trained models

from chapters 3 and 4) respectively.

Radford et al. (2019) demonstrated that language models (LM) are capable of learning

most NLP tasks – without any explicit supervision when trained on a new dataset of mil-

lions of webpages called WebText. Raffel et al. (2020) introduced a unified framework – T5

model pre-trained on a multi-task mixture of tasks and for which each task is converted into

a text-to-text format, i.e. taking text as input and producing new text as output. The output

text is expected to be faithful to the information contained in the input text. Egonmwan

and Chali (2019a) and Xu and Durrett (2019) have shown the utility of paraphrase gen-

eration/sentence compression in producing concise outputs for text summarization. While

all of these pre-trained models have been tested in single document summarization set-

tings with ample training data for fine-tuning, similar experiments are yet to be carried out

in MDS settings where there is a real need due to data paucity. Hence we investigate the

performance of these pre-trained models for MDS.
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6.2 Transfer Learning for MDS

6.2.1 Datasets

DUC 200432 (Paul and James, 2004): This is a test corpus provided by the National

Institute for Standards and Technology (NIST) for Task 2 – Multi-document summarization.

It contains 50 document clusters, with 10 documents per cluster. The documents came from

the Associated Press and New York Times newswire. The documents contain about 4,600

words spanning 173 sentences on an average, while the summaries consist of about 110

words and 3 sentences.

MULTINEWS33 (Fabbri et al., 2019): This is a multi-document news summarization

dataset with about 2 – 10 documents per document cluster. The dataset consists of news ar-

ticles and human-written summaries of these articles from the site newser.com. It contains

44,972 training, 5,622 validation and 5,622 test document cluster pairs. The documents

contain about 2,100 words spanning 83 sentences on average, while the summaries consist

of about 264 words and 10 sentences.

6.2.2 Using OpenAI’s Pre-trained Language Model – GPT2

GPT2 is a TRANSFORMER-based language model proposed by Radford et al. (2019),

which was pre-trained on a very large corpus of about 40GB of text from 8 million web

pages 34. Same as the objective of LMs, the learning objective of GPT2 is to predict the

next word given all the previous words within some text. Formally, a language model (LM)

is a probabilistic model that predicts the next token(s) in a sequence given the preceding

tokens. LM is usually framed as unsupervised distribution estimation from a set of exam-

ples (x1,x2, ...,xn) each composed of variable length sequences of symbols (s1,s2, ...,sn)

(Radford et al., 2019). Since language has a natural sequential ordering, it is common to

factorize the joint probabilities over symbols as the product of conditional probabilities

32https://duc.nist.gov/duc2004/tasks.html
33https://github.com/Alex-Fabbri/Multi-News
34GPT2 is a direct scale up of GPT (generative pre-training) with 10x more parameters and 10x more data

(Radford et al., 2019).
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(Bengio et al., 2003):

p(x) =
n

∏
i=1

p(si|s1, ...,sn−1). (6.1)

Why is a pre-trained LM suitable for text summarization? Firstly, similar to

LM, the task of text summarization can be expressed in a probabilistic framework as –

p(summary|document), that is, learning the conditional distribution of a summary given

some document(s). Secondly, since GPT2 is great at predicting the next token in a se-

quence, leveraging this feature allows GPT2-based generated summaries to be syntactically

coherent text (Radford et al., 2019).

Fine-tuning GPT2 for MDS. We fine-tune GPT2 on our MDS datasets by training it

with the same architecture and hyperparamter settings as GPT2 and initializing the weights

with those learned during pre-training of the GPT2 LM on the large 40GB of WebText data.

GPT2 is a decoder-only transformer model that comes in four (4) different sizes35. We

use the model size with 345M parameters with 24 layers and 1024 dimensional states. The

checkpoint containing the weights of this pre-trained GPT2 model is publicly available from

the hugging face transformer31 library. We transform the {document, summary} pairs

into a contiguous sequence of texts suitable for the GPT2 LM model by appending each

summary to its source document article along with a delimiter (Khandelwal et al., 2019;

Radford et al., 2018). We generate 200 and 150 tokens for the MULTINEWS and DUC04

datasets respectively. Similar to Radford et al. (2019), we use Top-k random sampling36

(Fan et al., 2018) with k=2, which the authors state helps to reduce repetition and encour-

ages more abstractive summaries than greedy decoding.

Tokenization is performed by the GPT2 tokenizer. GPT2 tokenizer is based on byte-

level Byte-Pair-Encoding (BPE) (Sennrich et al., 2016). This tokenizer has been trained to

treat spaces like parts of the tokens so a word will be encoded differently whether it is at

35More details as to the architecture can be obtained from Radford et al. (2019) and Radford et al. (2018).
36Sampling from the top-k most likely words.
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the beginning of the sentence (without space) or not (Radford et al., 2019). GPT counts the

frequency of each word in the training corpus. It then begins from the list of all characters,

and will learn merge rules to form a new token from two symbols in the vocabulary until it

has learned a vocabulary of the desired size (this is a hyperparameter setting). We look at

the following example from the hugging face transformer37 library.

Let’s say that after the pre-tokenization we have the following words with their respec-

tive frequencies:

(‘fun’, 10), (‘run’, 5), (‘pun’, 12), (‘tun’, 4), (‘tuns’, 5)

The base vocabulary will consist of [‘f’, ‘n’, ‘p’, ‘r’, ‘s’, ‘t’, ‘u’]. We then split the

words into characters to obtain (‘f’ ‘u’ ‘n’, 10), (‘r’ ‘u’ ‘n’, 5), (‘p’ ‘u’ ‘n’, 12), (‘t’ ‘u’

‘n’, 4), (‘t’ ‘u’ ‘n’ ‘s’, 5). Next, we begin merging based on the frequency of the symbols.

Possible merges with their frequencies include: (‘fu’, 10), (‘un’, 36), (‘ru’, 5), (‘tu’, 9),

(‘pu’, 12). ‘u’ and ‘n’ – ‘un’, has the most frequency, hence the first merge will yield:

(‘f’ ‘un’, 10), (‘r’ ‘un’, 5), (‘p’ ‘un’, 12), (‘t’ ‘un’, 4), (‘t’ ‘un’ ‘s’, 5)

‘un’ is then added to the vocabulary to obtain [‘f’, ‘n’, ‘p’, ‘r’, ‘s’, ‘t’, ‘u’, ‘un’]. The

next most frequent pair of symbol is ‘pu’ and ‘n’ – ‘pun’ appearing 12 times. Consequently,

in the next merge our corpus becomes:

(‘f’ ‘un’, 10), (‘r’ ‘un’, 5), (‘pun’, 12), (‘t’ ‘un’, 4), (‘t’ ‘un’ ‘s’, 5)

and ‘pun’ is added to the vocabulary to yield [‘f’, ‘n’, ‘p’, ‘r’, ‘s’, ‘t’, ‘u’, ‘un’, ‘pun’].

This process continues until there are no more possible merges or we have obtained the

fixed total number of merges (for example, 40,378 in GPT). If there are new words left in

the corpus, but merging has been stopped because we have reached the maximum limit,

then the learned rules are applied to the new words. Words with characters not found in

the base vocabulary are tokenized as ‘unk’, which stands for unknown. For example, if

we stopped at the second merge and we encounter the word ‘gun’, it will be tokenized as

[‘<unk>’, ‘un’] because ‘g’ is not in our vocabulary.

37https://huggingface.co/transformers/master/tokenizer_summary.html
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GPT2 uses bytes as the base vocabulary instead of characters to deal with the fact that

the base vocabulary needs to get all base characters, which can be quite large if one allows

for all unicode characters. With some additional rules to deal with punctuation, the GPT2

manages to tokenize every text without needing an unknown token. The GPT2 model has

a vocabulary size of 50,257, which corresponds to the 256 bytes base tokens, a special

end-of-text token and the symbols learned with 50,000 merges 37 (Radford et al., 2019).

Training details. Due to memory constraints we use a batch size of 138. We train for 5

epochs with 32 gradient_accumulation_steps and a learning rate of 5e-5. We observe

that fine-tuning the GPT2 model tends to exhibit a tendency referred to as catastrophic

forgetting (Kirkpatrick et al., 2017), which is the tendency of the model to lose previous

learnt knowledge abruptly while it may incorporate information relevant to target tasks,

leading to overfitting (Chen et al., 2019). Hence, following Khandelwal et al. (2019) we

train only 3000 samples over 5 epochs. Owing to the limit of 1024 maximum tokens for

GPT2, we randomly choose 3000 samples from the MDS dataset that have a maxiumum

token length of 1024 after tokenization by the GPT2 tokenizer.

6.2.3 Using Google’s Pre-trained Text-to-Text Transfer Transformer Model – T5

T5 is a TRANSFORMER-based encoder-decoder model proposed by Raffel et al. (2020),

pre-trained on a multi-task mixture of unsupervised and supervised tasks. The T5 model

treats every text processing problem as a “text-to-text” problem, i.e. taking text as input

and producing new text as output. This allows direct application of the same model, ob-

jective, training procedure, and decoding process to every other downstream task (Raffel

et al., 2020). This framework makes T5 essentially useful in MDS, as the task of text sum-

marization can be cast as that of generating an output text (summary) from an input text

(document).

In order to gain generalizable knowledge that will be useful in downstream tasks, the

authors performed unsupervised training on the ”Colossal Clean Crawled Corpus” (C4),

38Experiments were run on Google Colab Pro at https://colab.research.google.com/drive/
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an unlabelled data set consisting of hundreds of gigabytes of clean English text scraped

from the web (Raffel et al., 2020). In the unsupervised pre-training setting, the objective is

similar to Devlin et al. (2018)’s ”denoising” objective, where the model is trained to predict

missing or otherwise corrupted tokens in the input. However, in Raffel et al. (2020)’s

objective formulation, consecutively masked tokens are replaced by a single sentinel token

to maximize computational cost of pre-training (Raffel et al., 2020). For example, the

sentence “Text summarization is a challenging problem in NLP” with the masks put on

“text summarization” and “challenging” will be processed as:

<extra id 0> is a <extra id 1> problem in NLP

The target sequence is formed as a concatenation of the same sentinel tokens and the

actual masked tokens. Thus the target sequence for the above example will be:

<extra id 0> text summarization <extra id 1> challenging <extra id 2>

The model is then trained with maximum likelihood to predict the target sequence.

After unsupervised pre-training of the model, it is then fine-tuned on a number of

downstream tasks including abstractive text summarization using the CNN/DM SDS dataset.

Hence, we directly39 applied the fine-tuned model to the MDS dataset by prepending the

prefix ”summarize:”40 to the input documents41.

6.2.4 Using our Pre-trained Models – Paraphrase Generation and Sentence Com-

pression

In this experiment, we use our pre-trained paraphrasing and compression models pre-

sented in chapters 3 and 4 respectively, in zero-shot settings42 on the MDS data. But first,

following Liu et al. (2018), we extract salient passages from the multiple documents by

applying our single-document extractive summarization model using algorithm 1. It is

39fine-tuning directly on the MDS data through training, did not yield any gain.
40Raffel et al. (2020) provides specific prefixes to be prepended to the input sequence for each downstream

task.
41similar to Fabbri et al. (2019); Liu et al. (2018), we concatenated the multiple-documents into one mega-

document as a flat sequence.
42no training, just inference using the pre-trained model
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important to note that while this methodology bears major similarity with our single docu-

ment abstractive summarization system where we extract and paraphrase, the application in

multi-document settings is significantly different. Here, we do not apply the architectures

of our existing models directly on MDS data. This proved to be sub-optimal due to the small

number of training samples for MDS summarization. Rather, each sub-model was trained

on its dedicated datasets (for example, extraction – CNN/DM, paraphrasing – QUORA data,

compression – GOOGLENEWS) and then the MDS data was applied on each phase as is done

during inference. However, because the extractive summarization system was modelled for

single document summarization specifically, we used Algorithm 1 to iteratively apply the

SDS extractive system to MDS data.

Algorithm 1 : Iteratively applying SDS extractive model on MDS data for Extractive Multi-
document Summarization

1: procedure SDS4MDS(SDSM,MDSd) . SDS extractive model, SDSM; MDS data, MDSd
2: interimSummaries←{}
3: for document in MDSd do
4: s← apply SDSM on document
5: put s in interimSummaries
6: end for
7: f inalSummaries← apply SDSM on interimSummaries
8: return f inalSummaries
9: end procedure

We preprocess the MDS dataset before application on the pre-trained models by ensur-

ing all sentences are delimited by a space, prior to sentence tokenization by the NLTK43

library. After salient sentences per document are extracted, we prepare them for paraphrase

generation and compression. Because the paraphrase generation and sentence compres-

sion models are single sentence-level models, we split the extracted MDS data into single

sentences with document markers per sentence 44. After paraphrase generation and com-

pression, we reassign sentences to documents with the aid of the document markers45.

43https://www.nltk.org/
44this way, we know what sentences initially belonged to what documents.
45This is common practice for abstractive MDS (Fabbri et al., 2019; Lebanoff et al., 2018; Liu et al., 2018).
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Table 6.1: ROUGE-1 results of the ablation test on test samples from DUC 04 and MULTI-
NEWS.

MODELS DUC 04 MULTINEWS

EX 31.58 45.99
EX-COM 31.71 47.20
EX-PAR 31.81 47.49

EX-COM-PAR 31.89 47.94
EX-PAR-COM 38.01 49.66

Ablation Studies

In order to find the optimal order of applying the pre-trained models, ie, paraphrase

generation preceding sentence compression or otherwise, we conduct an ablation test by

removing modules from EX-PAR-COM step by step and alternating the order of paraphras-

ing and compressing. Consequently, we obtain the following models – basic extraction

(EX), extraction and sentence compression only (EX-COM), extraction and paraphrase gen-

eration only (EX-PAR), extraction then compression+paraphrase (EX-COM-PAR) and ex-

traction then paraphrase+compression (EX-PAR-COM). The results are tabulated in Table

6.1.

6.2.5 Baselines

We compare our system with existing models in literature. For our abstractive MDS

models, we experiment with swapping the order of application on the supervised pre-trained

models for paraphrase generation and sentence compression.

• PEGASUS (Zhang et al., 2019a): This is a large Transformer-based encoder-decoder

model pre-trained on a massive text corpora with a new self-supervised objective.

Quite similar to MLM for BERT, where words are masked, in PEGASUS, important

sentences are masked from an input document and are generated together as one

output sequence from the remaining sentences.
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• MGSum-abs (Jin et al., 2020): This is a multi-granularity interaction network that

encodes semantic representations for documents, sentences, and words. It unifies the

extractive and abstractive summarization by utilizing the word representations to gen-

erate the abstractive summary and the sentence representations to extract sentences.

• HI-MAP by Fabbri et al. (2019) stands for Hierarchical (Marginal Maximal Rele-

vance) MMR-Attention Pointer-generator model. It expands the existing pointer-

generator network model into a hierarchical network, which allows for calculation

of sentence-level MMR scores. It consists of a pointer-generator network and an

integrated MMR module.

• PG-MMR: Pointer-generator MMR network model by Lebanoff et al. (2018) incor-

porates the MMR algorithm (Carbonell and Goldstein, 1998), into pointer-generator

networks (See et al., 2017) by adjusting the network’s attention values.

• EX-COM-PAR: Extract – Compress – Paraphrase, our neural abstractive MDS model,

that uses supervised pre-trained models to perform extraction, sentence compression

and paraphrase generation in that order.

• EX-PAR-COM: Extract – Paraphrase – Compress, our neural abstractive MDS model,

that uses supervised pre-trained models to perform extraction, paraphrase generation

and sentence compression in that order.

6.2.6 Results and Evaluation

Automatic Evaluation

We measure the performance of our models using the ROUGE automatic evaluation

metric (Lin, 2004) with the official pyrouge46 script using option47. It measures the overlap

of unigrams (R-1), bigrams (R-2) and skip bigrams with a max distance of four words (R-

SU) between the system summary and reference summaries. The results are presented in
46https://github.com/andersjo/pyrouge/tree/master/tools/ROUGE-1.5.5
47-c 95 -n 2 -u -U -m -a -x -2 4

83



6.2. TRANSFER LEARNING FOR MDS

Tables 6.2 and 6.4. In table 6.3, we report the 95% confidence intervals for ROUGE-1,

ROUGE-2 to show the statistical significance of our results.

Table 6.2: Average ROUGE-F1 (%) scores of various MDS abstractive models on the DUC04
test set†.

DUC04 R-1 R-2 R-SU4
HI-MAP (Fabbri et al., 2019) 35.78 8.90 11.43

PG-MMR (Lebanoff et al., 2018) 36.42 9.36 13.23
PG-BRNN* (Gehrmann et al., 2018) 29.47 6.77 7.56

(Zhang et al., 2018) 36.70 7.83 12.40
CopyTransformer* (Gehrmann et al., 2018) 28.54 6.38 7.22

EX 31.58 6.27 10.16
EX-COM 31.71 6.42 10.27
EX-PAR 31.81 6.75 10.60

EX-COM-PAR 31.89 6.79 10.94
EX-PAR-COM 38.01 7.59 13.58

GPT2 28.02 4.16 15.12
T5 34.24 6.10 14.77

†* marks results taken from Fabbri et al. (2019). The first, second, third and fourth set of values presents ab-
stractive baselines in literature, our extractive baselines, our abstractive systems using our pre-trained models
and the results from using open-source pre-trained models respectively.

Table 6.3: 95% confidence intervals of our MDS systems.

DUC04
R-1 R-2

EX 31.58 ± 0.043 6.27 ± 0.026
EX-COM 31.71 ± 0.035 6.42 ± 0.024
EX-PAR 31.81 ± 0.034 6.75 ± 0.007

EX-COM-PAR 31.89 ± 0.026 6.79 ± 0.006
EX-PAR-COM 38.01 ± 0.035 7.59 ± 0.005

GPT2 28.02 ± 0.041 4.16 ± 0.016
T5 34.24± 0.034 6.10 ± 0.025

MULITINEWS

R-1 R-2
45.99 ± 0.089 14.14 ± 0.046
47.20 ± 0.010 14.37 ± 0.035
47.49 ± 0.028 14.60 ± 0.005
47.94 ± 0.032 14.63 ± 0.005
49.66 ± 0.035 14.68 ± 0.004
27.66 ± 0.053 6.49 ± 0.046
33.73 ± 0.017 8.61 ± 0.018
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Table 6.4: Average ROUGE-F1 (%) scores of various MDS abstractive models on the
MULTINEWS test set†.

MULTINEWS R-1 R-2 R-SU4
PEGASUS (Zhang et al., 2019a) 47.52 18.72 24.91
MGSum-abs (Jin et al., 2020) 46.00 16.81 20.09
HI-MAP (Fabbri et al., 2019) 43.47 14.89 17.41

CopyTransformer* (Gehrmann et al., 2018) 43.57 14.03 17.37
PG-ORIGINAL* (Lebanoff et al., 2018) 41.85 12.91 16.46

EX 45.99 14.14 18.84
EX-COM 47.20 14.37 20.18
EX-PAR 47.49 14.60 20.81

EX-COM-PAR 47.94 14.63 21.41
EX-PAR-COM 49.66 14.68 21.86

GPT2 27.66 6.49 17.22
T5 33.73 8.61 17.38

†* marks results taken from Fabbri et al. (2019). The table is subdivided in same fashion as Table 6.2.

Human Evaluation

We carried out qualitative evaluation by means of human assessment. We design the

following Amazon MTurk experiment: we randomly select 50 samples (Luo et al., 2019)

from the DUC04 and MULTINEWS test sets and ask the human testers (3 per sample) to rank

between outputs for the three (3) models – EX-PAR and EX-COM-PAR and EX-PAR-COM.

We presented the testers48 with the reference summary and our system’s summary, X , of

each model. The testers were required to scale (1 – 5, with 5 being of superior quality to

1) the system’s output on informativeness (how well does it cover the information in the

reference), fluency (how well do the information in the systems summary flow) and non-

redundancy (how well are information not being repeated). The results are presented in

Table 6.5.
48We selected testers who were located in US or Canada, have Mechanical Turk Masters qualification and

had HIT approval rate greater than or equal to 95%.
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Table 6.5: Human Evaluation scores of our top abstractive MDS models based on Informa-
tiveness, Fluency and Non-Redundancy.

Models Informativeness Fluency Non-Redundancy
EX-PAR 3.01 3.00 2.98

EX-COM-PAR 3.19 3.20 3.11
EX-PAR-COM 3.30 3.33 3.25

Source document (truncated): the second ex-wife of peter cook has issued a writ-
ten apology to his first wife — supermodel christie brinkley — for ignoring her
warning about the architect’ s philandering . “christie and i have talked recently and
i have privately apologized to her, but, given the public nature of their divorce and
custody battle, i feel a public apology is also appropriate and deserved , ” suzanne
shaw wrote in a letter obtained by the post thursday [...] christie ’ s six-year mar-
riage to cook imploded in 2007 after she learned of his affair with 18-year-old office
clerk diana bianchi [...]
GPT2 summary: the second ex-wife of peter and jennifer davis, who was also a
lawyer. The couple divorced in 2005 after the divorce court ruled that she had been
cheating on him with another man for years before they separated last year.
Reference summary (truncated): – christie brinkley’ s marriage to peter cook
ended in 2008 after he had an affair with an 18-year-old ; he went on to wed suzanne
shaw [..] shaw and cook filed for divorce this year ... after cook allegedly cheated
on shaw . now shaw has apologized to brinkley for bad-mouthing her years ago [...]

Figure 6.1: An example of a summary generated by fine-tuning GPT2. Red colored texts
shows hallucinated content in the summary, with no corresponding context in the source
document.

6.2.7 Analysis

Although summaries generated by fine-tuning GPT2 were fluent, due to the language

modelling capabilities of GPT2, we observe that they mostly contained hallucinations as

can be observed in Figure 6.1. Similar to Khandelwal et al. (2019), we infer that the GPT2

model is not fully capable of using information from the source but rather behaves more

like a general domain language model.

The T5 model on the other hand does a better job at generating factual summaries, but

however starts to suffer from repetition and lack of fluency at some point (see figure 6.2). In
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Source document (truncated): a man has doused himself with gasoline and set
himself on fire in st. peter ’s square in vatican city . the vatican said thursday the
51-year-old man was treated at a nearby hospital and transferred to a larger one ,
with serious burns to the upper part of his body . a vatican statement says a jesuit
priest initially tried to smother the flames with a jacket . he was later joined by two
police officers who used a fire extinguisher to put out the blaze [..] the man had a
piece of paper with the phone number of his daughter . [...]
T5 summary: the 51-year-old man was treated at a nearby hospital and transferred
to a larger one, with serious burns to the upper part of his body . a vatican statement
says a jesuit priest initially tried to smother the flames with a jacket . the man was
later joined by two police officers who used a fire extinguisher to put out the blaze .
police found a piece of paper with his daughter’s phone number written on it at the
scene ’. .. ... the a. the . at around . local . and . with . severe burns . to the lower
part of . his . they a large , the , to . of his a the s e a priest’s ’the man . in . it a
police . after
Reference summary (truncated): – a man is in ” grave ” condition after he
doused himself in gasoline and set himself on fire in st. peter ’ s square today
around 8 : 30am local time , ansa reports . the 51-year-old man was treated at a
nearby hospital , then transferred to a larger one , with serious burns to his upper
body , the ap notes . a jesuit priest was first on the scene and threw his jacket on the
man before two police officers arrived to extinguish the flames ; both were treated
for smoke inhalation and injuries to their hands . the motive for the man ’ s act isn ’
t clear , though a piece of paper with his daughter ’ s phone number on it was found
nearby .

Figure 6.2: An example of a summary generated by the T5 model. Red colored texts shows
content with repetition and grammatical errors.

other cases, we observe that although the T5 generated summaries are accurate by human

observation, they fall-short by the ROUGE metric because of differences in the vocabulary

used, as the ROUGE metric is unable to capture synonymy.

While the EXPARCOM model performed best amongst our models by ROUGE standards,

we observed that most of its summaries were more extractive in comparison to other models

– GPT2 and T5. It however managed to introduce a few novel words as can be seen in Figure

6.3 and was effective at deleting irrelevant words from a sentence to improve conciseness.

On the effect of paraphrasing and compression on MDS, results from Tables 6.1, 6.2

and 6.4 all show that paraphrase generation and sentence compression improve the quality
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Source document (truncated): speaking at a conference in sweden’s third-largest
city of malmö , home to a large immigrant population , the dalai lama – who won
the nobel peace prize in 1989 – said europe was ” morally responsible ” for helping
” a refugee really facing danger against their life ” . ” receive them , help them ,
educate them . . . but ultimately they should develop their own country , ” said the
83-year-old tibetan who fled the capital lhasa in fear of his life after china poured
troops into the region to crush an uprising . ” i think europe belongs to the europeans
, ” he said , adding they should make clear to refugees that ” they ultimately should
rebuild their own country ” . the dalai lama at the conference in malmö [...]
EX-PAR-COM summary: speaking at a conference in the city of malmö, home to a
lot of immigrants, the dalai lama – who won the nobel peace prize – said europe was
”morally responsible” for assisting ”a refugee really facing danger against their life”
. ” receive them , help them , educate them . . . but finally they should develop their
countries, ” said the 83-year-old tibetan . ” i think europe belongs to the europeans
, ” he said , adding refugees should know that ” they ultimately should rebuild their
own country ”.
Reference summary: addressing a conference in malmö , sweden , home of many
immigrants , the dalai lama said europe was ” morally responsible ” for helping
refugees who are in danger — but that ultimately those refugees should return to
their homelands . ” receive them , help them , educate them ... but ultimately they
should develop their own country , ” he said , per the local . ” i think europe belongs
to the europeans , ” and that refugees ” ultimately should rebuild their own country
, ” he added . the 83-year-old buddhist spiritual leader and nobel peace prize winner
fled tibet as chinese communist troops took over the area in 1959 , and settled in
india , where he was granted asylum , the daily caller notes .

Figure 6.3: An example of a summary generated by EXPARCOM model. Red colored texts
shows few novel words generated.

of summaries, giving credence to the utility of transfer learning from these specific tasks

for MDS. From Table 6.1, we observe an average increase of about 0.2 ROUGE-1 points

on top each previous output when a module is added. While using only one of paraphrase

generation or sentence compression still improves over basic extraction, a combined use

of both, proved to be better. Intuitively, the manner humans summarize explain the results.

Mostly, we first highlight the main points, rephrase in our own words, and sketch through to

see if we could further compress the summary by deleting unimportant words or sentences.
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6.3 Related Work

Existing MDS methods are mostly extractive. These extractive methods are primarily

modelled as graph operations with peculiarities on edge weight assignment. Christensen

et al. (2013) assigned weights based on discourse relations while Erkan and Radev (2004);

Lin and Bilmes (2010) measured their cosine similarity. Different algorithms, such as

eigen-vector centrality (Erkan and Radev, 2004), ILP (Lin and Bilmes, 2010, 2011), are

then applied on the resulting graph, to rank and retrieve highest scoring nodes. A Graph

Convolutional Neural (GCN) network with sentence embeddings obtained from RNNs as

input node features was recently proposed by Yasunaga et al. (2017).

Abstractive MDS on the other hand, has met with limited research due to data limi-

tations. Liu and Lapata (2019), proposed a neural model which is capable of encoding

multiple input documents hierarchically. Liu et al. (2018) handled MDS in two stages –

extract and abstract. Abstraction was performed by a decoder-only sequence transduction

model. Our approach is much similar to Lebanoff et al. (2018) and Zhang et al. (2018) that

adapt the neural model trained on SDS for MDS by fine-tuning on the MDS dataset. We use

the SDS model as-is in the extractive stage, making no changes to the encoder or decoder.

Additionally, different from their methods, we incorporate other downstream tasks such as

paraphrasing and sentence compression.

6.4 Summary

In this Chapter we applied transfer-learning using carefully chosen pre-trained mod-

els. We found that, while transfer-learning is generally useful for low-resource tasks like

MDS, the choice of task to transfer knowledge from is crucial and has great impacts on the

performance of the model. We conducted several experiments using both open-source pre-

trained models versus ours from previous chapters and presented our findings with respect

to: RQ5: How well does transfer-learning impact multi-document summarization? We

carried out ablation studies to understand the impact of each of the components of our pre-
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trained model (paraphrase generation and sentence compression) on the MDS model output.

Additionally, by means of the ablation studies we sought to identify the proper sequential

application order of these pre-trained models, in order to yield the best results. Examples of

some of our MDS model output are presented in Appendices G and H. Part of this work is

being prepared to be submitted for publication to the 2021 Annual Conference of the North

American Chapter of the Association for Computational Linguistics. NAACL 2021.
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Chapter 7

Cross-Task Knowledge Transfer for
Query Focused Summarization

In this chapter, we present work done as part of a Ph.D. internship research program at

the IBM Thomas J. Watson Research Center, New York during the summer of 2018. It

covers a specific part of summarization – Query Focused Summarization (QFS), which ba-

sically refers to summarization guided by user questions or query. The summaries seek to

provide answers to the given question, hence are not generic. The methodology applied

demonstrates the viability of knowledge transfer between two related tasks: machine read-

ing comprehension (MRC) and query-focused text summarization. Similar to the methods

used in our generic abstractive document summarization, we also extract, compress and

paraphrase for query focused summarization. However, since the goal is to investigate how

well we can use knowledge from off-the-shelf models, none of the sub-components (extrac-

tion, compression, paraphrase generation) was implemented from scratch. Rather, we used

already existing models49.

7.1 Introduction

Query-based single-document text summarization is the process of selecting the most

relevant points in a document for a given query and arranging them into a concise and

coherent snippet of text. The query can range from an individual word to a fully formed

49It is important to note that the paraphrase generation and sentence compression models presented in
Chapters 3 and 4 were completed after this internship program, hence could not be used as off-the-shelf
components for this task.
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natural language question. Extractive summarizers select verbatim the most relevant span

of text in the source, while abstractive summarizers further paraphrase the selected content

for better clarity and brevity.

By and large, existing approaches train models using summarization data corpora (Has-

selqvist et al., 2017; Nema et al., 2017), which are of moderate size. At the same time, large

corpora are available for related tasks, specifically machine reading comprehension (MRC)

and machine translation (MT). To find out if such corpora have utility for summarizers,

we propose methods to directly produce extractive and abstractive query-based summaries

from pretrained MRC and MT modules, requiring no further adaptation or transfer learning

steps.

In our experiments, this approach outperforms existing methods, suggesting a novel

route to query-based summarization: pre-training systems on such related tasks, where an

abundance of training data is enabling extremely rapid progress (Sun et al., 2018; Vaswani

et al., 2017a; Wang et al., 2018), and using summarization-specific corpora for transfer

learning.

7.2 Methodology

Our proposed system comprises of three modules for extractive summarization: re-

trieval of candidate answer phrases using a reading comprehension system, sentence ex-

traction, and sentence compression. Additionally we utilize two (2) Machine Translation

(MT) modules (English to Spanish and back) to paraphrase for abstractive summarization.

7.2.1 Task Definition

Given a document D = (S1, ...,Sn) with n sentences comprising of a set of words DW =

{d1, ...,dw}, and a query Q= (q1, ...,qm) with m words, one desires to produce an extractive

(SE) or abstractive (SA) summary that provides information about the answer to Q, where

SE ⊆ DW and SA = {w1, ...,ws} | ∃wi 6∈ DW . Tables 7.1 and 7.2 show examples of our
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abstractive and extractive query-based summaries respectively.

Table 7.1: Example/comparison of our abstractive summary on a Debatepedia sample
with the output of the diversity driven attention model of Nema et al. (2017). Our generated
summary is relevant to the query.

Passage: people whether overweight or not are still people. you can not compare a
person with a suitcase. suitcases don’t live and breathe. this rule is the same with
weight. excess weight in a suitcase is not comparable with a fat person .
Query: is it necessary to charge fat passengers extra when flying?
Reference Summary: there is no comparison between a person and a suitcase.
Our method (abstractive) : The overweight in the bag can’t be compared with
the fat guy.
Diversity driven attention model: beings are definitely by the <unk> to illegal
illegal.

7.2.2 Datasets

Debatepedia50(Nema et al., 2017): This dataset was created from Debatepedia, which

is an encyclopedia of pro and con arguments and quotes on about 663 critical debate topics.

Each topic has about 5 queries and each query is associated with an average of 4 documents.

The authors crawled 12,695 {document, query, summary} triples. An example is given in

Table 7.1.

CNN/DM51(Hasselqvist et al., 2017): This dataset is the same as the one described in

Section 2.3.2 for generic text summarization, but with a few adaptations for QFS. For each

of the human-written abstractive highlight, Hasselqvist et al. (2017) consider one named

entity to be the query. For every occurrence of an entity in a highlight, they construct

a document-query-summary triple for QFS. An example of a document-query-summary

triple from the CNN/DM dataset is given in Table 7.2. This adaptation yielded 1,294,730;

19,827; 20,046 training, validation and test document-query-summary triples respectively

from the original CNN/DM corpus.

50https://github.com/PrekshaNema25/DiverstiyBasedAttentionMechanisml
51https://github.com/helmertz/querysum-data
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Table 7.2: Example of our extractive summary on an example from the query-based version
of CNN/DAILYMAIL (Hermann et al., 2015).

Passage (truncated): [...] offensive italian football expert and author john foot
explained how paulo berlusconi ’s words were offensive on several levels . “ it is an
insult , ” foot told cnn [...]
Query: john foot
Reference Summary: italian football expert and author john foot says paulo
berlusconi ’s words are offensive on several levels .
Our method (extractive) : offensive italian football expert and author john foot
explained how paulo berlusconi ’s words were offensive on several levels .

7.2.3 Machine Reading Comprehension (MRC)

MRC requires the identification of a contiguous span of words in a passage that answers

a given query (Hu et al., 2017; Rajpurkar et al., 2016; Wang et al., 2018). We use the MRC

model by Wang et al. (2016b) trained on the SQuAD1.1 dataset (Rajpurkar et al., 2016)

to identify the top n (empirically: n=5) possibly overlapping candidate answer phrases, or

chunks, for the given query. The chunks are typically short, 3.2 words on average in the

training set. Obviously, chunks from MRC are not meant to be summaries, but in our system

they help the summarizer focus on the regions of the input document that appear related to

the query.

7.2.4 Sentence Extraction

Sentence extraction consists of selecting the sentences containing the top n chunks pro-

duced by MRC. This is in contrast to methods based on sentence ranking algorithms such

as those used in Boudin et al. (2015); Cheng and Lapata (2016); Nallapati et al. (2017);

Parveen and Strube (2015). For our experiments, we impose the constraint that the can-

didate answer chunks for each query be contained in a single sentence. Hence, starting

from n = 5, we iteratively reduce n until the top n candidate chunks are all contained in one

sentence.
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Table 7.3: Statistics of the dataset test samples after processing by the Wang et al. (2016b)
MRC system’s pre-processing module†.

CNN. Deb.
Test 14,725 979
Avg. #words/psg. 776 70
Avg. #words/query 2 11
Avg. #words/summ. 14 10

†Note that the preprocessor fails to parse 2-3% of the test samples in each dataset.

7.2.5 Sentence Compression

Sentence extraction often produces results that are much longer than those in the refer-

ence summaries—the training data (Table 7.3) suggests that 20 words is a good upper limit

for the length of the summaries. We address this problem by introducing a novel sentence

compression framework based on pruning the dependency parses of the sentences. Our ap-

proach is partially inspired by the work of Wang et al. (2016a), which performs sentence

compression based on constituency parses.

Given a summary with length ≥ 20, we obtain the dependency parses of its sentences

using the IBM Watson NLU toolkit 52. Next, we remove words in the sentences (starting

from the rear) that are not in a dependency relationship with any of the candidate phrases,

until the summary length limit is reached.

7.2.6 Back Translation

Recent research has shown gains in leveraging on the enormous corpora in machine

translation (MT) for paraphrasing (Mallinson et al., 2017; Wieting and Gimpel, 2017). In-

spired by such research and our fundamental goal of investigating the viability of cross-task

knowledge transfer for query-based summarization, we paraphrase our extracts using an

off-the-shelf MT system53. The final English paraphrase of the input sentence is obtained

by translating it into Spanish and back-translating the translation into English. We exper-

52this is a proprietary tool belonging to IBM with no granted access to the public.
53The MT engine is used in the IBM Watson Language Translator service.
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Table 7.4: Examples of some of our paraphrased sentences using an MT system. Bolded
words are novel.

Input Sentence: it is ridiculous to suggest governments should restrict their own
ability to help their economies.
Paraphrase (with MT): It is absurd to suggest that governments impose limits on
their ability to help their economies.
Input Sentence: this favoritism would only increase that of which the laws are
trying to suppress .
Paraphrase (with MT): These nepotism will only increase the laws that you try to
suppress.

imented with English-French-English and English-Italian-English as well as with multi-

hops approaches before settling on the English-Spanish pair, based on subjective analysis

of the results. Table 7.4 shows examples of paraphrased sentences using back-translation.

7.3 Experiments

We test our approach on two publicly available datasets—Debatepedia (Nema et al.,

2017) for abstractive summarization, and the version of CNN/DM that was adapted in Has-

selqvist et al. (2017); Hermann et al. (2015) for both extractive and abstractive summa-

rization. No training was involved; the test sets were simply passed through the modules

discussed in Section 7.2.

7.3.1 Evaluation

As customary in summarization tasks, we evaluate our system using ROUGE (Lin,

2004)—a family of metrics that compute the textual overlap between the output and the

reference summary.

7.3.2 Results

Tables 7.5 and 7.6 summarize the performances of our model and other published mod-

els on Debatepedia and CNN/DM, respectively. Our models, both extractive and abstractive,
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Table 7.5: Average ROUGE-F1 (%) performances of our model and competing models on
the Debatepedia dataset.

Abstractive R-1 R-2 R-L
Diversity (Nema et al., 2017) 41.26 18.75 40.43

RSA (Baumel et al., 2018) 53.09 16.10 46.18
Ours 64.43 18.93 46.80

Table 7.6: Average ROUGE-F1 (%) scores of our models and the competing model on the
CNN/DAILYMAIL dataset.

Extractive R-1 R-2 R-L R-SU4
QSum (Hasselqvist et al., 2017) 33.81 18.19 29.22 17.49

Ours 65.45 30.07 60.40 36.62
Abstractive

QSum (Hasselqvist et al., 2017) 18.25 5.04 16.17 6.13
Ours 58.46 25.12 54.32 32.06

outperform the published results on both test sets.

The extractive performance on CNN/DM indicates that the combination of a reading

comprehension system and a syntax-driven compression module can be highly effective in

identifying regions in a document that contain key information with respect to a given query.

Moreover, the abstractive performances on both test sets show the effectiveness of machine

translation as a paraphrasing component for abstractive summarization. In particular, in

the CNN/DM test set the improvement over the baseline is greater in the abstractive than

in the extractive case, again suggesting that both text selection and MT-based paraphrasing

contribute to the gain.

7.4 Related Work

Text summarization has long been an active area of research and query-based sum-

marization has gained momentum more recently. Classical summarization models usually

identify salient parts of a text by encapsulating manually crafted rules into linear functions

(Lin and Bilmes, 2011) which are solved using integer linear programming (ILP) (Boudin
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et al., 2015; Nayeem and Chali, 2017), conditional random fields (CRF) (Shen et al., 2007),

or graph algorithms (Erkan and Radev, 2004; Parveen and Strube, 2015). More recently,

neural networks, mostly with an encoder-decoder framework (Bahdanau et al., 2014), have

been used to learn the underlying features (Jadhav and Rajan, 2018; Nallapati et al., 2016)

trained by minimizing the cross-entropy loss (Nallapati et al., 2017) or reinforcement learn-

ing (Narayan et al., 2018; Paulus et al., 2018).

Our baseline models for query-based summarization (Hasselqvist et al., 2017; Nema

et al., 2017) are both implemented on the encoder-decoder framework with the former in-

corporating a diversity function in their model aimed at minimizing the problem of repeti-

tive word generation inherent in encoder-decoder models. However our approach is similar

to neither, as our goal is not to train a query-based summarizer from scratch but rather to

investigate the competitiveness of using pre-trained models for closely related tasks—i.e.,

MRC and MT—on query-based summarization.

7.5 Summary

We described an approach to extractive and abstractive summarization that relies on

components designed for different tasks: MRC, sentence compression, and MT. We have

shown that retrieving the top n answer chunks from a passage with an MRC system and

trimming the corresponding sentences using their dependency trees yields an extractive

summarizer that outperforms published results on a publicly available dataset. We also

showed that using MT to produce a paraphrase of the answers yields a high-performance

abstractive summarization method. This work lays the foundations for transfer learning

based approaches that use summarization data to adapt MRC models for summarization.

This work was published at the Proceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and 9th International Joint Conference on Natural Lan-

guage Processing, Workshop on Machine Reading and Question Answering, pages 72 - 77

(2019). Hong Kong, China (Egonmwan et al., 2019).
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Conclusion

In this thesis, we provided a solution to the overarching research question RQ0: How can

we build a machine learning model that is capable of generating both extractive and ab-

stractive summaries which are grammatically correct and are faithful to the facts contained

in the source text?

While there are ample interesting proposed models for the task of text summarization,

there is still room for performance improvement on the task. We found that implementing

seemingly simple approaches yielded some improvements over existing models. For exam-

ple, paying more attention to the dataset by filtering out flawed samples before application

on the machine learning model.

In the introduction of this thesis, we hypothesized that some key abstraction techniques

such as paraphrase generation and sentence compression could possibly improve machine

generated summaries as humans often generate summaries by paraphrasing and sometimes

compressing sentences to the desired summary length. Hence, we implemented each of

these techniques independently and incorporated them for the task of single and multi-

document summarization. Evaluation and ablation studies supported our hypothesis and

showed the useful impact of these techniques on performance and a good combination

order to yield better results.

The concept of extract, paraphrase and compress proved to be even more useful in

multi-document settings where large training data is non-existent. It was therefore very

beneficial to implement transfer learning for multi-document summarization, by applying
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these pre-trained models on the few available MDS data.

One challenge we experienced in this work, was the choice of a NN architectural model.

There exists a variety of NN models – Deep Belief Nets (DBN), Convoluted Neural Network

CNN, RNN (LSTM, GRU) and more recently, the TRANSFORMER. Literature proves that all

of these models work quite well, however making an informed decision as to which would

give the best desired result for a particular task usually requires series of non-exhaustive

experiments. We found that in some cases, an hybrid of these models work best. For exam-

ple, we used a stack of the TRANSFORMER and GRU encoders for paraphrase generation,

as experiments showed that this hybrid performed better than using only either one of those

model choices.

While it is common practice to implement early-stopping during training in order to pre-

vent the model from over-fitting on the training set, we found that deciding on what basis to

stop training on the model is often less thoroughly considered. We carried out experiments

on other early-stopping criteria besides the typical loss score, such as the F1-measure and

the embedding-based cosine similarity. We found that using these other mentioned heuris-

tics, not only improved overall performance but helped to maintain the grammaticality and

accuracy of facts of the machine generated outputs.

In totality, we provided improved solutions to the task of summarization in both single

and multi-document settings. The next section provides a concise summary of our work in

line with the theme of this thesis. Finally, I am interested in applying the knowledge gained

from working on text summarization in other NLP problems like Question Answering (QA),

Dialogue and Discourse Processing.

8.1 Summary

To guide us through the major contributions of this thesis, we raised five (5) research

questions at the onset in Chapter 1. These questions were answered in details through

Chapters 2 to 6. We re-iterate the research questions and highlight the solutions provided.
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RQ1: How can we identify parts of a text that are the most relevant for an extractive

summary with improved accuracy? We identified the challenge of the presence of noisy

samples in available corpus, where the summaries cannot be directly inferred from the doc-

uments, either due to error during data collection or the presence of external information by

the humans who wrote the abstractive reference summaries. Hence, we filtered the dataset

to remove flawed samples (Section 2.3.3). Next, we converted the input document con-

taining a sequence of sentences into a sequence of labels for classification of the sentences

as extraction-worthy or otherwise (Section 2.3.5). Finally, we trained a TRANSFORMER-

based binary classifier to automatically label sentences for extraction into summaries (Sec-

tion 2.3.6). See results of the evaluated model on the CNN/DM and NEWSROOM datasets in

Tables 2.2 and 2.3 respectively.

We hypothesized that two (2) key abstraction techniques – sentence paraphrasing

and compression could improve the quality of machine-generated abstractive summaries.

Hence, we carried out investigations with the following research questions:

RQ2: How can we build a paraphrasing model to help with abstractive summariza-

tion? We proposed a model capable of generating paraphrases of sentences trained on

dedicated paraphrasing datasets (Section 3.2.2). The model combined the efficiency of two

(2) interesting neural networks – TRANSFORMER and GRU-RNN (Section 3.2.4). See re-

sults of the evaluated model on the MSCOCO and QUORA paraphrasing datasets in Tables

3.1 and 3.2 respectively. Having ascertained the efficiency of the architectural choice for

paraphrasing task, we applied it on summarization, by paraphrasing the extracted sentences

from Section 2.3.6 (See Section 3.2.4). Evaluation results of our abstractive single doc-

ument summarization model on the CNN/DM and NEWSROOM datasets were presented in

Tables 5.2 and 5.3 respectively.

RQ3: How can we build a compression model to help improve the conciseness of

machine generated summaries? We modelled the problem as a word-level binary classi-

fication task, trained on a TRANSFORMER-based encoder and softmax classifier (Section
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4.2.4). One major challenge with the task, is ensuring that the compressed sentence is

faithful to the facts in the original sentence. Hence, it was necessary to address the next

question.

RQ4: How can we investigate that our machine generated summaries are factual, that

is, that they contain accurate information? To tackle this, early-stopping based on three (3)

different heuristics – loss, F1-score and embedding-based cosine similarity were employed

(Section 4.2.4). We found that stopping the training process based on the embedding-

based cosine similarity of the machine-generated sentence compression and the reference

sentence compression, preserved the facts and grammaticality of the original sentence the

most. Besides automatic evaluations, human evaluations designed on Amazon Mechanical

Turk were performed (Section 4.2.8).

In this Chapter 6 we applied transfer learning by using pretrained models from other

related tasks such as – extractive summarization, sentence paraphrasing and compression

on MDS as our solution to:

RQ5: How well does transfer-learning impact multi-document summarization? We

carried out experiments investigating the impact of different pre-trained models on MDS,

such as – GPT2, T5 and Paraphrase generation/sentence compression. Using our para-

phrase generation and sentence compression models were comparatively better. We then

performed ablation studies (Section 6.2.4) to understand the impact of each of these com-

ponents (paraphrase generation and sentence compression) on the output, and find out the

optimal application order, that is, extract-paraphrase and compress or extract-compress and

paraphrase. The former produced better results in our experiments when tested on the DUC

2004 and MULTINEWS MDS datasets (Section 6.2.6).

8.2 Future Work

In this work, we found that, while interesting concepts and ideas could make for im-

proved performance in NLP tasks, the efficiency of the specific neural network being em-
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ployed is very crucial. For the most part, we simply used existing neural networks without

making any changes to the internal functionality. In future research, it would be intriguing

to dive deeper into these “black boxes” of neural networks and study what can be tweaked

to yield better performance or better still, come up with a new NN structure from scratch.

One that is better able to deal with the ambiguity in English language and capture semantics

in sentences more efficiently.

Secondly, creation of corpora for certain downstream problems like Sentence fusion

would be beneficial to summarization task. In sentence fusion, the goal is to coherently

combine two (2) sentences into one. A model capable of accurately fusing two sentences

into one without redundancy will have great utility for summarization. Currently, no such

large sentence fusion dataset exists.

Finally, it will be interesting to apply the knowledge gained from working on text sum-

marization in other NLP problems like Question Answering (QA), Dialogue and Discourse

Processing.
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Appendix A

Sample system extractive summaries
from CNN/DM dataset

Here, we show some examples of our system extractive summaries using our single
document extractive summarization model described in Chapter 2 and human-written
reference summaries from CNN/DM dataset.

System output: three former managers of the aids healthcare foundation filed a suit last
week alleging the company paid employees and patients kickbacks for patient referrals in
an effort to boost funding from federal health programs . employees were paid 100dollar
bonuses for referring patients with positive test results to its clinics and pharmacies . the
lawsuit alleges kickbacks started in 2010 at the company’s california headquarters and
spread to programs in florida and several other locations .
Human-written Reference summary: three former managers of the aids healthcare
foundation filed a suit . they alleged the company paid employees and patients kick-
backs for patient referrals in an effort to boost funding from federal health programs .
employees were paid 100dollar bonuses for referring patients with positive test results
to its clinics and pharmacies . the lawsuit alleges kickbacks started in 2010 at the com-
pany’s california headquarters and spread to programs in florida and several other locations.

System output: zachariah fike head of vermont-based purple hearts reunited , says the
military id belonged to world war ii veteran cpl. william benn , who lost them in 1939 at
a coastal artillery placement on salisbury beach . metal detector enthusiast bill ladd found
them after a storm last year.
Human-written Reference summary: zachariah fike head of vermont-based purple hearts
reunited , says the military id belonged to world war ii veteran cpl. william benn . benn
lost them in 1939 at a coastal artillery placement on salisbury beach . discovered last year
by metal detector enthusiast following a storm.’

System output: a consumer update revised by the fda on tuesday said that the tests should
be used for medical reasons only and only be performed by licensed staff . ultrasounds are
used to help doctors determine the health , size , and age of the child and can detect birth
defects . while there is no proof that ultrasounds are harmful to the baby , it heats the baby
’s tissues slightly and can also cause small bubbles in tissue.
Human-written Reference summary: a consumer update revised by the fda on tuesday
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said that ultrasounds should be performed for medical reasons only and by licensed staff .
while there is no proof that ultrasounds are harmful to the baby , it heats the baby ’s tissues
slightly and can also cause small bubbles in tissue . ultrasounds help doctors determine the
health , size , and age of the child and can detect birth defects and should n’t be used for
emotional reasons.

System output: a contestant on friday night ’s episode of jeopardy left a lasting impression
with viewers for all the wrong reasons after giving a highly inappropriate answer to a
question about puberty . host alex trebek asked : ‘ in common law , the age of this ,
signaling adulthood , is presumed to be 14 in boys and 12 in girls ? ’ the first contestant to
press his buzzer was tom , a freemason , who inexplicably answered : ‘ what is the age of
consent?’
Human-written Reference summary: a contestant called tom left a lasting impression with
viewers for all the wrong reasons on friday night . host alex trebek asked : ‘ in common
law , the age of this , signaling adulthood , is presumed to be 14 in boys and 12 in girls ? ’
. the first contestant to press his buzzer was tom who inexplicably answered : ‘ what is the
age of consent ? ’ . the correct answer was puberty and tom ’s inappropiate reply left him
trending on twitter.

System output: hollywood auction extravaganza xvii took place on saturday , and
collectors had a chance to bid on some memorable parts of movie history . with props from
2001 : a space odyssey and star trek to a wide selection of beatles merchandise , there was
something for everyone . 2001 a space odyssey hero screen used aries 1b trans-lunar space
shuttle .
Human-written Reference summary: a few of hollywood ’s most famous props have gone
up on the auction block . hollywood auction extravaganza xvii took place on saturday , and
collectors had a chance to bid on some memorable parts of movie history . with props from
2001 : a space odyssey and star trek to a wide selection of beatles merchandise , there was
something for everyone .

System output: paypal is developing a new generation of edible passwords which stay
lodged in your stomach to let you log in . jonathan leblanc , the company ’s top developer
, said that the devices would be powered by stomach acid and include mini computers .
he said that technology had become so advanced that it allowed ‘ true integration with the
human body ’ .
Human-written Reference summary: company developing a password that stays lodged
in your stomach . jonathan leblanc , the company ’s top developer , said that the
devices would be powered by stomach acid and include mini computers . added that
technology had become so advanced that it allowed ‘ true integration with the human body ’
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Appendix B

Sample system extractive summaries
from NEWSROOM dataset

Here, we show some examples of our system extractive summaries using our single
document extractive summarization model described in Chapter 2 and human-written
reference summary from NEWSROOM dataset.

System output: Former Ohio State star Ezekiel Elliott , the top-rated running back in next
month’s NFL Draft , is embracing speculation linking him to the Giants , who hold the No
. 10 overall pick , with the loftiest possible prediction.
Human-written Reference summary: Zeke in New York ? Former Ohio State star Ezekiel
Elliott , the top-rated running back in next month’s NFL Draft, is embracing speculation
linking him to the Giants , who hold the No.10 overall.

System output: Baldwin has been named the new president and chief operating officer of
BJ ’ s Wholesale Club . Baldwin will begin working for BJ ’ s on Sept .
Human-written Reference summary: Christopher J . Baldwin has been named the new
president and chief operating officer of BJ ’ s Wholesale Club . Baldwin will begin
working for BJ ’ s on September 8.

System output: DETROIT — BMW is recalling nearly 49,000 motorcycles in the U . S
and Canada because flanges that hold the rear wheel can crack if bolts are too tight.
Human-written Reference summary: BMW is recalling motorcycles in the US and
Canada because flanges that hold the rear wheel can crack if bolts are too tight.

System output: School principals are pushing for a standardised age for children to start
school . It would mean children would have to be at least five years old before entering the
classroom .
Human-written Reference summary: School principals want a standardised age for
children to start school , meaning they would have to be at least five years old before
entering the classroom .
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Appendix C

Sample system paraphrases from
MSCOCO corpus

Here, we show some examples of our system generated paraphrases using our paraphrasing
model described in Chapter 3 and reference paraphrases from MSCOCO dataset.

Original sentence: A person is riding a motorcycle down a country road.
System paraphrase: a person riding a motorcycle on a road street
Reference paraphrase: a person riding a motorcycle on a road with trees

Original sentence: A young man riding a skateboard down a ramp.
System paraphrase: a man riding a skateboard a skate
Reference paraphrase: A man riding a skateboard on a ramp.

Original sentence: A motorcycle is parked outside of a cafe.
System paraphrase: a motorcycle is parked in front
Reference paraphrase: A motorcycle is parked in front of a cafe.

Original sentence: A motorcycle is parked outside of a cafe.
System paraphrase: a motorcycle is parked in front
Reference paraphrase: A motorcycle is parked in front of a cafe.

Original sentence: A group of elephants walking across a river.
System paraphrase: a group of elephants walking in water
Reference paraphrase: many elephants walking in waters in a group

Original sentence: A bathroom sink beneath a very large mirror reflecting a roll of toilet
paper.
System paraphrase: a bathroom with a sink and a mirror
Reference paraphrase: A bathroom sink with a large mirror over it.

Original sentence: A yellow and red bus traveling past a tall building.
System paraphrase: a red and yellow bus on a street city
Reference paraphrase: A red and yellow city bus driving down the street
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Appendix D

Sample system paraphrases from
QUORA corpus

Here, we show some examples of our system generated paraphrases using our paraphrasing
model described in Chapter 3 and reference paraphrases from QUORA dataset.

Original sentence: Which is the best laptop to buy above 25000 and below/upto 30000?
System paraphrase: which is the best laptop under 30k
Reference paraphrase: Which is the best laptop under INR 30,000?

Original sentence: Which is the best laptop for gaming under 60k INR?
System paraphrase: which is the best gaming laptop under 60000
Reference paraphrase: What are the best gaming laptops under INR 60000?

Original sentence: What are some places to spend the weekend near Pune?
System paraphrase: what are the best places to visit in Pune
Reference paraphrase: What are the best places to hangout in Pune?

Original sentence: What are some of the best smartphones technology gadgets?
System paraphrase: what are some of the best gadgets
Reference paraphrase: What are some of the best phones tools and gadgets?

Original sentence: Which is the most inspiring movie for you?
System paraphrase: is are the most inspirational movies ever
Reference paraphrase: Which is the most inspirational movie ever?

Original sentence: How can I impress a teenage girl?
System paraphrase: How can I get a girl?
Reference paraphrase: How do I impress a girl on chat?

Original sentence: What is the difference between percentile and percentage?
System paraphrase: What is the difference between percentage and pecentile?
Reference paraphrase: What is the difference between percentage and pecentile?
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Appendix E

Sample sentence compressions from
GOOGLENEWS corpus

Here, we show some examples of the outputs of our compression models (BI-TRANS,
BI-TRANS+F1, BI-TRANS+COSSIM) described in Chapter 4 and reference compressions
from GOOGLENEWS dataset.

Original sentence: John Abraham has been prohibited from using the title Hamara Bajaj
for his home production
BI-TRANS+COSSIM: John Abraham has been prohibited from using the title Hamara
BI-TRANS+F1: John Abraham has been prohibited from using his home production
BI-TRANS: John Abraham has been prohibited from his home
Reference compression: John Abraham has been prohibited from using the title Hamara
Bajaj .

Original sentence: The mobile phone services that remained suspended throughout the
day as part of the government’s security plan on the occasion of 9th of Muharram has
restored in Karachi and other cities, Geo News reported .
BI-TRANS+COSSIM: The mobile phone services has restored in Karachi and other cities .
BI-TRANS+F1: government’s security plan restored in Karachi
BI-TRANS: mobile security plan restored in
Reference compression: The mobile phone services has restored in Karachi and other
cities.

Original sentence: Thus, four of the nation’s biggest institutional landlords – among them
Scottsdale-based Colony American Homes – have teamed up to form a nonpartisan trade
group that will advocate and educate the public, lawmakers and business leaders on their
growing industry, according to a statement today .
BI-TRANS+COSSIM: Four of the nation’s biggest institutional landlords have teamed up
to
BI-TRANS+F1: Thus, four of American Homes – have teamed up
BI-TRANS: Thus, four of the nation’s biggest Homes – have teamed up to
Reference compression: Four of the nation’s biggest institutional landlords have teamed
up to form a trade group .

125



E. APPENDIX EXAMPLE

Original sentence: The changing global scenario calls for postal administrations around
the world to think differently .
BI-TRANS+COSSIM: changing global scenario calls for postal administrations around the
world to think
BI-TRANS+F1: global scenario calls for postal administrations
BI-TRANS: for postal administrations
Reference compression: The global scenario calls for postal administrations to think
differently.

Original sentence: Boaters can become frustrated when a repair or upgrade takes a long
time, but delays are often a simple result of supply and demand .
BI-TRANS+COSSIM: but delays are often a simple result of supply
BI-TRANS+F1: Boaters can often a simple result
BI-TRANS: long time, but delays are often a simple result
Reference compression: A repair takes, but delays are often a simple result of supply and
demand.

Original sentence: Controversial TV pitchman Kevin Trudeau, who in July was found in
contempt for failing to pay a 37.6 million sanction against him for deceptive marketing,
was ordered to jail today and remains in federal custody in Chicago
BI-TRANS+COSSIM: Kevin Trudeau was ordered to jail
BI-TRANS+F1: Kevin failing to pay a 37 . 6 million
BI-TRANS: Controversial TV pitchman Kevin to pay a 37 . 6
Reference compression: TV pitchman Kevin Trudeau was ordered to jail .

Original sentence: US stocks dropped as investors turned attention toward lackluster
blue-chip earnings reports after the government passed a temporary deal to avert default
BI-TRANS+COSSIM: US stocks dropped as investors turned attention toward earnings
reports
BI-TRANS+F1: US stocks dropped as investors turned attention toward deal
BI-TRANS: US stocks dropped as investors turned attention toward lackluster
Reference compression: US stocks dropped as investors turned attention toward earnings
reports .

Original sentence: Internet cafes, which were once the communication hub in developing
countries, are fast dying out
BI-TRANS+COSSIM: Internet cafes are dying out
BI-TRANS+F1: Internet are fast dying out
BI-TRANS: Internet cafes, are fast dying out
Reference compression: Internet cafes are dying out.

126



Appendix F

Sample system single-document
abstractive summaries from CNN/DM
dataset

Here, we show some examples of our system abstractive summaries using our single
document abstractive summarization model described in Chapter 5 and human-written
reference summaries from CNN/DM dataset.

Source document: barcelona coach luis enrique is optimistic that holding midfielder
sergio busquets can recover from injury in time for sunday ’s el clasico match against real
madrid at the nou camp . enrique said on saturday that busquets ‘ is n’t 100 percent but
he will be there ’ for the clash against barca ’s rivals in what could be a potential decider
for the league title . busquets has been sidelined for the last three games since injuring his
right ankle against villarreal in the copa del rey . midfielder sergio busquets could make
his return to barcelona ’s first-team against real madrid on sunday . barcelona coach luis
enrique will be hopeful that busquets can return in time for the crucial el clasico match
. javier mascherano has filled in for barcelona in the holding midfield position during
busquets ’ injury . javier mascherano has played in his place and would do so again against
madrid if busquets is n’t fit enough . barca go into el clasico off the back of six consecutive
victories in all competitions , the last of those confirming premier league side manchester
city ’s exit from the champions league . madrid , meanwhile , arrested their mini slump
of three games without a win after a 2-0 triumph over levante , courtesy of a brace from
gareth bale . busquets has been sidelined for barcelona ’s last three games but could return
in time to face real madrid .
System output: enrique said on saturday that busquets ‘ isn’t 100 percent but he will be
there ’ for the clash against barca ’s rivals in what could be a potential decider for the
league title . barca has been sidelined games. sergio madrid return real madrid to liga.
Human-written Reference summary: sergio busquets could return for barcelona against
real madrid on sunday . he has been sidelined for barca ’s last three games with an ankle
injury . the el clasico fixture could potentially decide spain ’s league title this year.

Source document: the u.s. navy has sent a nuclear aircraft carrier and a guided-missile
cruiser to the waters near yemen to help beef up security and join other american ships that
are prepared to block iranian shipments . the uss theodore roosevelt and the uss normandy
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left the persian gulf on sunday and are steaming through the arabian sea and heading
towards yemen . the vessels are believed to be joining other u.s. ships that are poised to
intercept any iranian ships carrying weapons to the houthi rebels fighting in yemen . the
navy has been beefing up its presence in the gulf of aden and the southern arabian sea amid
reports that about eight iranian ships are heading toward yemen and possibly carrying
arms . the uss theodore roosevelt , a nuclear-powered aircraft carrier -lrb- background
-rrb- , was dispatched to the gulf of aden to blockade an iranian flotilla carrying arms .
the carrier is pictured here with the uss vicksburg cruiser - similar to the uss normandy
which was also sent to the gulf of aden . the guided missile cruiser uss normandy is
pictured here . the cruiser is escorting the roosevelt to the gulf of aden . navy officials
said there are about nine u.s. warships in the region , including cruisers and destroyers
carrying teams that can board and search other vessels . the officials spoke on condition of
anonymity because they were not authorized to discuss the ship movement on the record
. but speaking to reuters on monday , a pentagon spokesman denied the ships were on
a mission to intercept iranian arms shipments . one u.s. official said the presence of the
u.s. warships off yemen give american decision-makers options for action in the event the
situation deteriorates . the other u.s. warships in the region include two destroyers , two
mine-sweepers and three amphibious ships carrying 2,200 u.s. marines . the shi’ite muslim
houthi are battling government-backed fighters in an effort to take control of the country
. the houthi fighters sidelined the central government after seizing the capital sana’a in
september and expanding across yemen , which borders oil giant saudi arabia . closing in :
the uss theodore roosevelt and the uss normandy left the persian gulf on sunday -lrb- seen
on the map -rrb- and are heading through the arabian sea towards yemen , according to
reports . the u.s. has been providing logistical and intelligence support to a saudi arabia-led
coalition , which has been launching airstrikes against the houthis . that air campaign is
now in its fourth week . the u.s. navy generally conducts consensual boardings of ships
when needed , including to combat piracy around africa and the region . so far , however
, u.s. naval personnel have not boarded any iranian vessels since the yemen conflict
began . white house spokesman josh earnest would not comment specifically on any navy
movements in yemeni waters , but said the u.s. has concerns about iran ’s ‘ continued
support for the houthis ’ . ‘ we have seen evidence that the iranians are supplying weapons
and other armed support to the houthis in yemen , ’ he said . ‘ that support will only
contribute to greater violence in that country . ‘ these are exactly the kind of destabilizing
activities that we have in mind when we raise concerns about iran ’s destabilizing activities
in the middle east . ’ he said ‘ the iranians are acutely aware of our concerns for their
continued support of the houthis by sending them large shipments of weapons ’ .
System output: uss roosevelt left persian gulf for yemen. they will join other vessels. the
navy has been beefing up its presence in the gulf of aden and the southern arabian sea amid
reports that about eight iranian ships are heading toward yemen and possibly carrying
arms.
Human-written Reference summary: uss theodore roosevelt and uss normandy left
persian gulf on sunday and are steaming through the arabian sea and heading towards
yemen . they will join seven other us vessels that are prepared to block iranian ships
potentially carrying weapons for houthi rebels fighting in yemen.’
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Appendix G

Sample system multi-document
abstractive summaries from DUC 04
dataset

Here, we show some examples of our system abstractive summaries using our multi
document abstractive summarization model (EXPARCOM) described in Chapter 6 and
human-written reference summaries from DUC 04 dataset.

System output: The only other problem was with a Zarya battery; the astronauts took up a
replacement part. The 36-foot, 25,000-pound Unity, the first American-made component,
will serve as a connecting passageway, or vestibule, for future modules. It was crucial
that Zarya and Unity be joined; if they could not be connected with the robot arm, NASA
would have sent out two spacewalking astronauts to manually fit them together. In all,
three spacewalks are planned for Endeavour’s 12-day flight, not only to hook up electrical
connections between the two modules but to install handrails and other tools for future
crews. It will provide all of the necessary electricity and steering for the fledgling space
station until a permanent control module can be launched next summer.
Human-written Reference summary: After discarding a suggested change of orbit,
the Russian Space Agency went ahead with plans to launch its Zarya module of the
international space station on Nov. 20, 1998. Although delayed for a day, U.S. plans to
launch the space shuttle Endeavour carrying the U.S. module Unity and six astronauts were
carried out on Dec. 4. The astronauts’ job was to connect Unity with the already-orbiting
Zarya as the first step in assembling 100 major components of the planned space station.
Using the shuttle’s 50-foot robot arm, the two modules were joined setting the stage for a
spacewalk by two astronauts the next day to attach electrical connectors and cables.

System output: For its part, Syria has accused Turkey of forming military alliances with
Israel that threaten Arab security and undermine Syria’s bargaining position in peace talks
with the Jewish state. Syria also has accused Turkey of threatening its supply of water
by building dams on the Euphrates River. Iran has offered to mediate between Syria and
Turkey in the deepening dispute over Kurdish rebel bases and will dispatch envoys to
the two countries, the Tehran Times reported Monday. Greece on Monday warned that
mounting tension between Turkey and Syria could lead to “tragic results” if not dealt
with in its early stages. “Sources of tension are being created in our region,” government
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spokesman Dimitris Reppas said.
Human-written Reference summary: In early October 1998 Turkey moved 10,000 troops
to the Syrian border accusing its neighbor of harboring Kurdish rebels and their leader
Abdullah Ocalan. Syria denied the charges and blamed Turkey’s belligerence on its
military alliance with Israel. As the dispute threatened to ignite the whole volatile region,
Egypt’s President Mubarak launched a mediation effort soon joined by Iran and Jordan.
Saudi Arabia, Yemen, Sudan, Lebanon and Greece voiced support for Syria, but all called
for a diplomatic solution. Israel did not take sides urging diplomatic talks and insisting that
Israeli-Turkish military cooperation played no role in the crisis.

System output: Cardoso, under pressure to repair an economy battered by the world
financial turmoil, is expected to unveil the full scope of his deficit-cutting plan next week.
It is believed to include a spate of new taxes on fuel, income, personal fortunes and bank
transactions. The plan is part of a deal with the International Monetary Fund for a rescue
package estimated at dlrs 30 billion. Brazil already has agreed to annual targets to sharply
reduce its deficit through the year 2001. “And that means he will try to stay as far away as
possible from any austerity measure.”
Human-written Reference summary: Latin leaders at Ibero-American summit explore
ways to avoid economic turmoil and warn of likely global recession. Brazil President
Cardoso will announce deficit-cutting austerity measures. Brazil and the IMF move closer
to an agreement on a 30 billion rescue package. Cardoso readies his plan for spending
cuts and tax increases as part of the IMF deal. He will unveil the full plan next week. The
success of his economic efforts may depend on the outcome of upcoming gubernatorial
elections. The Commerce Dept. measures the effects of global economic decline on the
U.S. economy. The U.S. will give billions of taxpayer dollars to the Brazil-IMF rescue deal.

System output: The attack took place Tuesday near Cailaco in East Timor, a former
Portuguese colony, according to a statement issued by the pro-independence Christian
Democratic Union of East Timor. Placido dos Santos, a 28-year-old farmer, was tortured
and killed by the Indonesian military during the attack, the statement, which cited
resistance sources in East Timor’s capital, Dili. The statement, released in the Portuguese
capital of Lisbon, also said that 22 people were injured and 26 were missing. Formal
diplomatic relations, however, will not be resumed. Turmoil has plagued East Timor
ever since Indonesian troops invaded in 1975, unleashing a separatist rebel war and the
resentment of a population pummeled by human rights abuses.
Human-written Reference summary: Indonesia invaded the former Portuguese territory
of East Timor in 1975 and annexed it in 1976. By late 1998 while East Timorese called
for independence and accused Indonesian troops of yet another massacre of civilians,
Portugal cut off talks with Indonesia. Internationally, Taiwan was timid fearing antago-
nizing Indonesia, Australians protested against training Indonesian military who might be
assigned to East Timor, and fifteen European Union leaders endorsed Portugal’s call for a
referendum on East Timor’s future. A U.N. enjoy saw a peaceful solution as distant, but
sensed a ”newfound taste for compromise.”
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Appendix H

Sample system multi-document
abstractive summaries from
MULTINEWS dataset

Here, we show some examples of our system abstractive summaries using our multi
document abstractive summarization model (EXPARCOM) described in Chapter 6 and
human-written reference summaries from MULTINEWS dataset.

System output: russell , kan. ( ap ) a 59-year-old kansas man was killed when the
motorcycle he was driving friday night collided with a black cow on a blacktopped road
. kansas highway patrol trooper brant birney said there were no witnesses when james
zordel hit the cow on a paved rural road about six miles south of interstate 70 near russell .
zordel was driving in the roadway when the accident happened and it is not clear if he was
speeding or if the cow suddenly appeared from the side of the road . ” it was dark . he was
driving down a blacktop road and he hit a black cow , ” birney said , adding that exactly
what caused the accident may never be known .
Human-written Reference summary: a 59-year-old kansas man was killed when the
motorcycle he was driving friday night collided with a black cow on a blacktopped road
, reports kake . kansas highway patrol trooper brant birney said there were no witnesses
when james zordel hit the cow on a paved rural road about six miles south of interstate 70
near russell . it ’ s not clear if zordel was speeding or if the cow suddenly appeared from
the side of the road , notes the ap . ” it was dark . he was driving down a blacktop road and
he hit a black cow , ” birney said , adding that exactly what caused the accident may never
be known . zordel , who was not wearing a helmet , died at the scene .

System output: defuniak springs , fla. ( ap ) while his mother was preparing food in the
kitchen , a 5-year-old florida boy called 911 to invite law enforcement officers over for
thanksgiving dinner . monica webster of the walton county sheriff ’ s office tells the news
herald that with all the bad calls they receive every day , this was a happy call . but young
billy nolin ’ s family had no idea he ’ d invited guests to dinner . mom landi mccormick
says she was cooking when billy ’ s grandfather noticed him talking to someone on an old
cellphone . mccormick reprimanded billy when he admitted calling 911. he was crying
when deputy dannon byrd drove up the deputy walked up to mccormick and asked if billy
was the young man who had called 911. rather than scold the little boy , byrd knelt down
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and thanked billy for his kind invitation .
Human-written Reference summary: while his mother was preparing food in the
kitchen , a 5-year-old florida boy called 911 to invite law enforcement officers over for
thanksgiving dinner , the ap reports . monica webster of the walton county sheriff ’ s office
tells the news herald that with all the bad calls they receive every day , this was a happy
call . but young billy nolin ’ s family had no idea he ’ d invited guests to dinner . mom
landi mccormick says she was cooking when billy ’ s grandfather noticed him talking to
someone on an old cellphone . mccormick reprimanded billy when he admitted calling
911. he was crying when deputy dannon byrd drove up . she says the deputy thanked billy
for his kind invitation , then reminded him he should only use 911 for emergencies . the
deputies gave billy a sheriff ’ s badge .

System output: the military operation to wrest mosul from the islamic state group could
potentially become the single largest , most complex humanitarian operation in the world
in 2016 , a u.n. official said monday . speaking via video-link from iraq , lise grande ,
the u.n. humanitarian coordinator for iraq , said that in the worst case scenario , some 1
million civilians could flee the city with 700,000 of them requiring shelter overwhelming
emergency sites that currently only have the capacity to hold 60,000 people . ” our capacity
to support 700,000 people in the short-term we couldn ’ t do it . and certainly if we had to
mount a response over the intermediate-term , if they couldn ’ t go back to mosul quickly
, if there was too much damage in the city , then it would test us to the breaking point
, ” grande said . she said that the u.n. was especially concerned about the safety of the
estimated 1.2 to 1.5 million civilians inside mosul who may get caught in the fighting .
everyone is staying at home because we dont know what else to do . daesh [ another name
for islamic state ] are mostly moving around on motorbike and have small and heavy guns
. the planes started bombing mosul around 1am today and they are in the sky constantly
and occasionally striking targets ,abu mohammed , a 35-year-old from the east side of the
city told the guardian .
Human-written Reference summary: the military operation to wrest mosul from isis
could become the single largest , most complex humanitarian operation in the world in
2016 , a un official said monday . lise grande , the un humanitarian coordinator for iraq
, said that in the worst case scenario , some 1 million civilians could flee the city , with
700,000 of them requiring shelter overwhelming emergency sites that currently only have
the capacity to hold 60,000 people , the ap reports . it can ’ t be done right now , and even
in ” the intermediate-term , if they couldn ’ t go back to mosul quickly , if there was too
much damage in the city , then it would test us to the breaking point , ” grande said . ” in
the worst-case scenario , we can ’ t rule out the possibility that there may be a chemical
weapons attack , ” grande said , warning that isis ” may try and hold civilian populations
either as human shields or forcibly expel huge numbers of civilians in the face of an attack
by the iraqi security forces knowing the iraqi forces will not fire on their own people . ” the
guardian reports that american aircraft have started dropping millions of leaflets over mosul
, warning residents to stay in their homes , advising them on how to comfort children and
avoid flying glass during bombings and advising against trying to flee the city.
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