33 research outputs found

    3D Capture and 3D Contents Generation for Holographic Imaging

    Get PDF
    The intrinsic properties of holograms make 3D holographic imaging the best candidate for a 3D display. The holographic display is an autostereoscopic display which provides highly realistic images with unique perspective for an arbitrary number of viewers, motion parallax both vertically and horizontally, and focusing at different depths. The 3D content generation for this display is carried out by means of digital holography. Digital holography implements the classic holographic principle as a two‐step process of wavefront capture in the form of a 2D interference pattern and wavefront reconstruction by applying numerically or optically a reference wave. The chapter follows the two main tendencies in forming the 3D holographic content—direct feeding of optically recorded digital holograms to a holographic display and computer generation of interference fringes from directional, depth and colour information about the 3D objects. The focus is set on important issues that comprise encoding of 3D information for holographic imaging starting from conversion of optically captured holographic data to the display data format, going through different approaches for forming the content for computer generation of holograms from coherently or incoherently captured 3D data and finishing with methods for the accelerated computing of these holograms

    Partial Monte Carlo sampling for computer generated holograms

    Get PDF
    CGH is considered as the key technology to integrate synthetic 3D imaging to get best photo-realistic rendering quality and optimum viewing experience. We present a partial Monte Carlo sampling algorithm that uses a random subset of rays for the calculation of the CGH, reducing the computational cost. The similarity of the images obtained from the CGH with respect to the original one is evaluated as a function of the image resolution and the percentage of rays used. The results obtained are presented for both simulation and experimental set-up

    All-Dielectric Meta-optics for High-Efficiency Independent Amplitude and Phase Manipulation

    Full text link
    Metasurfaces, composed of subwavelength scattering elements, have demonstrated remarkable control over the transmitted amplitude, phase, and polarization of light. However, manipulating the amplitude upon transmission has required loss if a single metasurface is used. Here, we describe high-efficiency independent manipulation of the amplitude and phase of a beam using two lossless phase-only metasurfaces separated by a distance. With this configuration, we experimentally demonstrate optical components such as combined beam-forming and splitting devices, as well as those for forming complex-valued, three-dimensional holograms. The compound meta-optic platform provides a promising approach for achieving high performance optical holographic displays and compact optical components, while exhibiting a high overall efficiency

    Coherent and Holographic Imaging Methods for Immersive Near-Eye Displays

    Get PDF
    Lähinäytöt on suunniteltu tarjoamaan realistisia kolmiulotteisia katselukokemuksia, joille on merkittävää tarvetta esimerkiksi työkoneiden etäkäytössä ja 3D-suunnittelussa. Nykyaikaiset lähinäytöt tuottavat kuitenkin edelleen ristiriitaisia visuaalisia vihjeitä, jotka heikentävät immersiivistä kokemusta ja haittaavat niiden miellyttävää käyttöä. Merkittävänä ratkaisuvaihtoehtona pidetään koherentin valon, kuten laservalon, käyttöä näytön valaistukseen, millä voidaan korjata nykyisten lähinäyttöjen puutteita. Erityisesti koherentti valaistus mahdollistaa holografisen kuvantamisen, jota käyttävät holografiset näytöt voivat tarkasti jäljitellä kolmiulotteisten mallien todellisia valoaaltoja. Koherentin valon käyttäminen näyttöjen valaisemiseen aiheuttaa kuitenkin huomiota vaativaa korkean kontrastin häiriötä pilkkukuvioiden muodossa. Lisäksi holografisten näyttöjen laskentamenetelmät ovat laskennallisesti vaativia ja asettavat uusia haasteita analyysin, pilkkuhäiriön ja valon mallintamisen suhteen. Tässä väitöskirjassa tutkitaan laskennallisia menetelmiä lähinäytöille koherentissa kuvantamisjärjestelmässä käyttäen signaalinkäsittelyä, koneoppimista sekä geometrista (säde) ja fysikaalista (aalto) optiikan mallintamista. Työn ensimmäisessä osassa keskitytään holografisten kuvantamismuotojen analysointiin sekä kehitetään hologrammien laskennallisia menetelmiä. Holografian korkeiden laskentavaatimusten ratkaisemiseksi otamme käyttöön holografiset stereogrammit holografisen datan likimääräisenä esitysmuotona. Tarkastelemme kyseisen esitysmuodon visuaalista oikeellisuutta kehittämällä analyysikehyksen holografisen stereogrammin tarjoamien visuaalisten vihjeiden tarkkuudelle akkommodaatiota varten suhteessa sen suunnitteluparametreihin. Lisäksi ehdotamme signaalinkäsittelyratkaisua pilkkuhäiriön vähentämiseksi, ratkaistaksemme nykyisten menetelmien valon mallintamiseen liittyvät visuaalisia artefakteja aiheuttavat ongelmat. Kehitämme myös uudenlaisen holografisen kuvantamismenetelmän, jolla voidaan mallintaa tarkasti valon käyttäytymistä haastavissa olosuhteissa, kuten peiliheijastuksissa. Väitöskirjan toisessa osassa lähestytään koherentin näyttökuvantamisen laskennallista taakkaa koneoppimisen avulla. Kehitämme koherentin akkommodaatioinvariantin lähinäytön suunnittelukehyksen, jossa optimoidaan yhtäaikaisesti näytön staattista optiikka ja näytön kuvan esikäsittelyverkkoa. Lopuksi nopeutamme ehdottamaamme uutta holografista kuvantamismenetelmää koneoppimisen avulla reaaliaikaisia sovelluksia varten. Kyseiseen ratkaisuun sisältyy myös tehokkaan menettelyn kehittäminen funktionaalisten satunnais-3D-ympäristöjen tuottamiseksi. Kehittämämme menetelmä mahdollistaa suurten synteettisten moninäkökulmaisten kuvien datasettien tuottamisen, joilla voidaan kouluttaa sopivia neuroverkkoja mallintamaan holografista kuvantamismenetelmäämme reaaliajassa. Kaiken kaikkiaan tässä työssä kehitettyjen menetelmien osoitetaan olevan erittäin kilpailukykyisiä uusimpien koherentin valon lähinäyttöjen laskentamenetelmien kanssa. Työn tuloksena nähdään kaksi vaihtoehtoista lähestymistapaa ristiriitaisten visuaalisten vihjeiden aiheuttamien nykyisten lähinäyttöongelmien ratkaisemiseksi joko staattisella tai dynaamisella optiikalla ja reaaliaikaiseen käyttöön soveltuvilla laskentamenetelmillä. Esitetyt tulokset ovat näin ollen tärkeitä seuraavan sukupolven immersiivisille lähinäytöille.Near-eye displays have been designed to provide realistic 3D viewing experience, strongly demanded in applications, such as remote machine operation, entertainment, and 3D design. However, contemporary near-eye displays still generate conflicting visual cues which degrade the immersive experience and hinders their comfortable use. Approaches using coherent, e.g., laser light for display illumination have been considered prominent for tackling the current near-eye display deficiencies. Coherent illumination enables holographic imaging whereas holographic displays are expected to accurately recreate the true light waves of a desired 3D scene. However, the use of coherent light for driving displays introduces additional high contrast noise in the form of speckle patterns, which has to be taken care of. Furthermore, imaging methods for holographic displays are computationally demanding and impose new challenges in analysis, speckle noise and light modelling. This thesis examines computational methods for near-eye displays in the coherent imaging regime using signal processing, machine learning, and geometrical (ray) and physical (wave) optics modeling. In the first part of the thesis, we concentrate on analysis of holographic imaging modalities and develop corresponding computational methods. To tackle the high computational demands of holography, we adopt holographic stereograms as an approximative holographic data representation. We address the visual correctness of such representation by developing a framework for analyzing the accuracy of accommodation visual cues provided by a holographic stereogram in relation to its design parameters. Additionally, we propose a signal processing solution for speckle noise reduction to overcome existing issues in light modelling causing visual artefacts. We also develop a novel holographic imaging method to accurately model lighting effects in challenging conditions, such as mirror reflections. In the second part of the thesis, we approach the computational complexity aspects of coherent display imaging through deep learning. We develop a coherent accommodation-invariant near-eye display framework to jointly optimize static display optics and a display image pre-processing network. Finally, we accelerate the corresponding novel holographic imaging method via deep learning aimed at real-time applications. This includes developing an efficient procedure for generating functional random 3D scenes for forming a large synthetic data set of multiperspective images, and training a neural network to approximate the holographic imaging method under the real-time processing constraints. Altogether, the methods developed in this thesis are shown to be highly competitive with the state-of-the-art computational methods for coherent-light near-eye displays. The results of the work demonstrate two alternative approaches for resolving the existing near-eye display problems of conflicting visual cues using either static or dynamic optics and computational methods suitable for real-time use. The presented results are therefore instrumental for the next-generation immersive near-eye displays

    Augmented Reality and Its Application

    Get PDF
    Augmented Reality (AR) is a discipline that includes the interactive experience of a real-world environment, in which real-world objects and elements are enhanced using computer perceptual information. It has many potential applications in education, medicine, and engineering, among other fields. This book explores these potential uses, presenting case studies and investigations of AR for vocational training, emergency response, interior design, architecture, and much more

    HoloBeam: Paper-Thin Near-Eye Displays

    Get PDF
    An emerging alternative to conventional Augmented Reality (AR) glasses designs, Beaming displays promise slim AR glasses free from challenging design trade-offs, including battery-related limits or computational budget-related issues. These beaming displays remove active components such as batteries and electronics from AR glasses and move them to a projector that projects images to a user from a distance (1-2 meters), where users wear only passive optical eyepieces. However, earlier implementations of these displays delivered poor resolutions (7 cycles per degree) without any optical focus cues and were introduced with a bulky form-factor eyepiece (50 mm thick). This paper introduces a new milestone for beaming displays, which we call HoloBeam. In this new design, a custom holographic projector populates a micro-volume located at some distance (1-2 meters) with multiple planes of images. Users view magnified copies of these images from this small volume with the help of an eyepiece that is either a Holographic Optical Element (HOE) or a set of lenses. Our HoloBeam prototypes demonstrate the thinnest AR glasses to date with a submillimeter thickness (e.g., HOE film is only 120 um thick). In addition, HoloBeam prototypes demonstrate near retinal resolutions (24 cycles per degree) with a 70 degrees-wide field of view.Comment: 15 pages, 18 Figures, 1 Table, 1 Listin

    Acceleration Techniques for Photo Realistic Computer Generated Integral Images

    Get PDF
    The research work presented in this thesis has approached the task of accelerating the generation of photo-realistic integral images produced by integral ray tracing. Ray tracing algorithm is a computationally exhaustive algorithm, which spawns one ray or more through each pixel of the pixels forming the image, into the space containing the scene. Ray tracing integral images consumes more processing time than normal images. The unique characteristics of the 3D integral camera model has been analysed and it has been shown that different coherency aspects than normal ray tracing can be investigated in order to accelerate the generation of photo-realistic integral images. The image-space coherence has been analysed describing the relation between rays and projected shadows in the scene rendered. Shadow cache algorithm has been adapted in order to minimise shadow intersection tests in integral ray tracing. Shadow intersection tests make the majority of the intersection tests in ray tracing. Novel pixel-tracing styles are developed uniquely for integral ray tracing to improve the image-space coherence and the performance of the shadow cache algorithm. Acceleration of the photo-realistic integral images generation using the image-space coherence information between shadows and rays in integral ray tracing has been achieved with up to 41 % of time saving. Also, it has been proven that applying the new styles of pixel-tracing does not affect of the scalability of integral ray tracing running over parallel computers. The novel integral reprojection algorithm has been developed uniquely through geometrical analysis of the generation of integral image in order to use the tempo-spatial coherence information within the integral frames. A new derivation of integral projection matrix for projecting points through an axial model of a lenticular lens has been established. Rapid generation of 3D photo-realistic integral frames has been achieved with a speed four times faster than the normal generation

    Haptic holography : an early computational plastic

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2001.Includes bibliographical references (p. 135-148).This dissertation introduces haptic holography, a combination of computational modeling and multimodal spatial display, as an early computationalplastic In this work, we combine various holographic displays with a force feedback device to image free-standing material surfaces with programmatically prescribed behavior. We present three implementations, Touch, Lathe, and Poke, each named for the primitive functional affordance it offers. In Touch, we present static holographic images of simple geometry, reconstructed in front of the hologram plane (in the viewer's space), and precisely co-located with a force model of the same geometry. These images can be visually inspected and haptically explored using a hand-held interface. In Lathe, we again display holo-haptic images of simple geometry, this time allowing those images to be reshaped by haptic interaction in a dynamic but constrained manner. Finally in Poke, we present a holo-haptic image that permits arbitrary reshaping of its reconstructed surface. As supporting technology, we offer a new technique for incrementally computing and locally updating interference-modeled holographic fringe patterns. This technique permits electronic holograms to be updated arbitrarily and interactively, marking a long-held goal in display holography. As a broader contribution, we offer a new behavior-based spatial framework, based on both perception and action, for informing the design of spatial interactive systems.Wendy J. Plesniak.Ph.D
    corecore