6 research outputs found

    Tuning hERG Out: Antitarget QSAR Models for Drug Development

    Get PDF
    Several non-cardiovascular drugs have been withdrawn from the market due to their inhibition of hERG K+ channels that can potentially lead to severe heart arrhythmia and death. As hERG safety testing is a mandatory FDA-required procedure, there is a considerable interest for developing predictive computational tools to identify and filter out potential hERG blockers early in the drug discovery process. In this study, we aimed to generate predictive and well-characterized quantitative structure–activity relationship (QSAR) models for hERG blockage using the largest publicly available dataset of 11,958 compounds from the ChEMBL database. The models have been developed and validated according to OECD guidelines using four types of descriptors and four different machine-learning techniques. The classification accuracies discriminating blockers from non-blockers were as high as 0.83–0.93 on external set. Model interpretation revealed several SAR rules, which can guide structural optimization of some hERG blockers into non-blockers. We have also applied the generated models for screening the World Drug Index (WDI) database and identify putative hERG blockers and non-blockers among currently marketed drugs. The developed models can reliably identify blockers and non-blockers, which could be useful for the scientific community. A freely accessible web server has been developed allowing users to identify putative hERG blockers and non-blockers in chemical libraries of their interest (http://labmol.farmacia.ufg.br/predherg)

    Development of in silico models for the prediction of toxicity incorporating ADME information

    Get PDF
    Drug discovery is a process that requires a significant investment in both time and resources. Although recent developments have reduced the number of drugs failing at the later stages of development due to poor pharmacokinetic and/or toxicokinetic profiles, late stage attrition of drug candidates remains a problem. Additionally, there is a need to reduce animal testing for toxicological risk assessment for ethical and financial reasons. In silico methods offer an alternative that can address these challenges. A variety of computational approaches have been developed in the last two decades, these must be evaluated to ensure confidence in their use. The research presented in this thesis has assessed a range of existing tools for the prediction of toxicity and absorption, distribution, metabolism and elimination (ADME) parameters with an emphasis on absorption and xenobiotic metabolism. These two ADME properties largely determine bioavailability of a drug and, in turn, also influence toxicity. In vitro (Caco-2 cells and the parallel artificial membrane permeation assay) and in silico approaches, such as various druglikeness filters, can be used to estimate human intestinal absorption; a comparison between different methods was performed to identify relative strengths and weaknesses of the approaches. In terms of xenobiotic metabolism it is not only important to predict metabolites correctly, but it is also crucial to identify those compounds that can be biotransformed into species that can covalently bind to biomolecules. Structural alerts are routinely used to screen for such potential reactive metabolites. The balance between sensitivity and specificity of such reactive metabolite alerts has been discussed in the context of correctly predicting reactive metabolites of pharmaceuticals (using data available from DrugBank). Off-target toxicity, exemplified by human Ether-à-go-go-Related Gene (hERG) channel inhibition, was also explored. A number of novel structural alerts for hERG toxicity were developed based on groups of structurally similar compounds. Finally, the importance of predicting potential ecotoxicological effects of drugs was also considered. The utility of zebrafish embryos to distinguish between baseline and excess toxicity was investigated. In evaluating this selection of existing tools, improvements to the methods have been proposed where possible

    Application of 3D Zernike descriptors to shape-based ligand similarity searching

    Get PDF
    Background: The identification of promising drug leads from a large database of compounds is an important step in the preliminary stages of drug design. Although shape is known to play a key role in the molecular recognition process, its application to virtual screening poses significant hurdles both in terms of the encoding scheme and speed. Results: In this study, we have examined the efficacy of the alignment independent three-dimensional Zernike descriptor (3DZD) for fast shape based similarity searching. Performance of this approach was compared with several other methods including the statistical moments based ultrafast shape recognition scheme (USR) and SIMCOMP, a graph matching algorithm that compares atom environments. Three benchmark datasets are used to thoroughly test the methods in terms of their ability for molecular classification, retrieval rate, and performance under the situation that simulates actual virtual screening tasks over a large pharmaceutical database. The 3DZD performed better than or comparable to the other methods examined, depending on the datasets and evaluation metrics used. Reasons for the success and the failure of the shape based methods for specific cases are investigated. Based on the results for the three datasets, general conclusions are drawn with regard to their efficiency and applicability

    Application of fragment-based drug discovery to membrane proteins

    Get PDF
    Membrane proteins are an interesting class due to the variety of cellular functions and their importance as pharmaceutical targets, but they pose significant challenges for fragment-based drug discovery approaches. Here we present the first successful use of biophysical methods to screen for fragment ligands to an integral membrane protein. Using the recently developed Target Immobilized NMR Screening (TINS) approach, we screened 1,200 fragments for binding to the enzyme Disulphide bond forming protein B. Biochemical and biophysical validation of the 8 most potent hits revealed an IC50 range of 7 to 200 uM, which could be categorized as cofactor binding inhibitors or mixed model inhibitors of both cofactor and substrate protein interaction. Our results establish the utility of fragment-based methods in the development of inhibitors of membrane proteins, making a wide variety3of important membrane bound pharmaceutical targets amenable to such an approach. We first tested the immobilization procedure on G protein coupled receptors and ion channels. Furthermore, we used Nanodiscs, an alternative solubilization strategy, to solubilize teh protein without detergents. This resulted in less broad NMR signals, less non-specific binding issues, and identification of the binders from the original screen, proving that the nanodisc solubilization technique is compatible with TINS.Medicinal Chemistr

    QSAR Modeling: Where Have You Been? Where Are You Going To?

    Get PDF
    Quantitative Structure-Activity Relationship modeling is one of the major computational tools employed in medicinal chemistry. However, throughout its entire history it has drawn both praise and criticism concerning its reliability, limitations, successes, and failures. In this paper, we discuss: (i) the development and evolution of QSAR; (ii) the current trends, unsolved problems, and pressing challenges; and (iii) several novel and emerging applications of QSAR modeling. Throughout this discussion, we provide guidelines for QSAR development, validation, and application, which are summarized in best practices for building rigorously validated and externally predictive QSAR models. We hope that this Perspective will help communications between computational and experimental chemists towards collaborative development and use of QSAR models. We also believe that the guidelines presented here will help journal editors and reviewers apply more stringent scientific standards to manuscripts reporting new QSAR studies, as well as encourage the use of high quality, validated QSARs for regulatory decision making
    corecore