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Abstract

Several non-cardiovascular drugs have been withdrawn from the market due to their inhibition of 

hERG K+ channels that can potentially lead to severe heart arrhythmia and death. As hERG safety 

testing is a mandatory FDA-required procedure, there is a considerable interest for developing 

predictive computational tools to identify and filter out potential hERG blockers early in the drug 

discovery process. In this study, we aimed to generate predictive and well-characterized 

quantitative structure–activity relationship (QSAR) models for hERG blockage using the largest 

publicly available dataset of 11,958 compounds from the ChEMBL database. The models have 

been developed and validated according to OECD guidelines using four types of descriptors and 

four different machine-learning techniques. The classification accuracies discriminating blockers 

from non-blockers were as high as 0.83–0.93 on external set. Model interpretation revealed 

several SAR rules, which can guide structural optimization of some hERG blockers into non-

blockers. We have also applied the generated models for screening the World Drug Index (WDI) 

database and identify putative hERG blockers and non-blockers among currently marketed drugs. 

The developed models can reliably identify blockers and non-blockers, which could be useful for 

the scientific community. A freely accessible web server has been developed allowing users to 

identify putative hERG blockers and non-blockers in chemical libraries of their interest (http://

labmol.farmacia.ufg.br/predherg).
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INTRODUCTION

The human ether-à-go-go related gene (hERG) encodes the subunit of a delayed rectifier 

voltage-gated K+ channel. These channels are expressed in a wide array of tissues, but their 

physiological function is best characterized in cardiac cells, where they play a critical role in 

the repolarization of the cardiac action potential [1]. The QT interval is the measure of the 

duration of ventricular depolarization and repolarization in an electrocardiogram. hERG 

inhibition is associated with QT interval prolongation and can evolve into a lethal cardiac 

arrhythmia [2]. Many drugs covering a broad spectrum of pharmaceutical classes have been 

withdrawn from the market or have had their usage limited due to blockage of the hERG, 

e.g., astemizole, terfenadine [3], cisapride [4], sertindole [5], terolidine, droperidol, 

lidoflazine, and grepafloxacin [6]. Those diverse chemicals can indeed interact with hERG 

because of its notorious ligand promiscuity, mainly due to its large hydrophobic intracellular 

binding pocket and its multiple states (open, inactive, and closed) [7].

The increased incidence of sudden death related to non-cardiac drugs earmarked the hERG 

as one of the most important antitargets to be considered in the early stages of drug 

development processes, elicited the interest of academia and industry, and has become a 

major concern for regulatory agencies [8]. Currently, hERG safety is required by the US 

Food and Drug Administration (FDA) in clinical trials [9, 10]. To identify the potential of a 

substance to delay ventricular repolarization and to estimate the risk for QT interval 

prolongation in humans, several experiments are conducted. Although new techniques have 

appeared in the last few years [11–13], conventional patch-clamp electrophysiology remains 

the “gold-standard.” In this test, the electric current passing through hERG channels 

expressed in cells, is measured [14]. Often, the cell lines utilized as an expression system for 

the hERG in studies include human embryonic kidney (HEK) 293 cells, Chinese hamster 

ovary (CHO) cells, or Xenopus laevis oocytes (XO) cells. No proven advantage of one cell 

line over another is known, but discrepancies of outcomes are clearly related to the lack of 

standardized protocols. Unfortunately, these assays are time-consuming, expensive, labor-

intensive, and suffer from low throughput [15, 16]. High-throughput ion-channel screening 

data exhibit significant levels of variability, which affects the reliability of the results and 

the applicability for regulatory agencies [17]

Meanwhile, computational approaches are emerging as a practical solution for the quick and 

inexpensive evaluation of chemical substances [18]. The main question relates to their 

inherent lack of reliability (due to the high complexity of the underlying biological 

mechanisms and the non-negligible experimental variability of toxicity endpoints) [19]. 

Many Quantitative Structure-Activity Relationship (QSAR) models discriminating hERG 

blockers from non-blockers were reported in the scientific literature (see Table 1 for the 

overview).
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Although these models appear to be well-fitted, a critical analysis reveals that the vast 

majority of the published QSAR models do not comply with the standard validation 

procedures and the different statistical criteria described in the best practices of QSAR 

modeling [80, 81]. Most of those models are indeed not compliant with the OECD guidance 

on QSAR model development and validation [82]. More specifically, the primary drawbacks 

of the majority of published QSAR studies are: (i) most models do not have proof of passing 

the Y-randomization test [21, 23, 26, 28, 29, 31–35, 38, 40, 41, 45–49, 51–56, 58, 59, 63–

65, 68–70, 75, 79]; (ii) no proof of applicability domain (AD) estimation is provided [21, 23, 

26–29, 31–36, 40, 45, 48–53, 56, 58, 63–65, 68–71, 75, 79]; and (iii) model predictivity is 

not acceptable [39, 61, 66]. As a consequence, despite the large number of QSAR models 

for hERG blockage available in the literature, only very few models can actually be 

employed to predict hERG blockage [60, 61, 74, 78]. Most of the models and associated 

datasets used to build them are not available online for the scientific community. These 

major drawbacks compromise the practical use of prior models for reliable assessment of 

drug-induced QT syndrome.

Given the risks associated with hERG inhibition and the lack of reliable models freely 

available for the research community, we aimed to build predictive and well-characterized 

QSAR models for hERG blockage using the largest publicly available dataset for hERG 

blockage. In this study, we developed several consensus QSAR models combining different 

descriptor types and machine learning techniques (Combi-QSAR), all validated using a 

modeling workflow fully compliant with OECD guidelines. Moreover, we have applied 

these models to the World Drug Index (WDI) database for assessing whether some putative 

hERG blockers and non-blockers among marketed drugs and drug candidates could be 

identified.

MATERIALS AND METHODS

Data preparation

hERG modeling set—We retrieved 11,958 chemical records containing affinity and 

inhibition data for the hERG channel from ChEMBL [83] v13 database (March, 2013).

Only the records related to the potency and the affinity values reported in activity as IC50, 

Ki, and EC50, were retained. Subsequently, all concentrations were converted to −log(M) 

values. Compounds with multiple hERG measurements were identified during analyses of 

duplicates (see Data curation section). Because this dataset was composed from 

measurements done by multiple laboratories and different types of assays, the binary hERG 

blockade potential for duplicated records was analyzed to verify the dataset consistency as 

well as inter- and intra-laboratory assay variability. Different threshold levels have been 

proposed in the literature; for this reason we have used three binary classification thresholds 

(1 μM, 10 μM, and 20 μM) to discriminate between hERG blockers and non-blockers. 

Importantly, we have found an overall concordance between duplicates, considering 

multiple assays, as high as 93.61%, 90.73%, and 90.19% for the three aforementioned 

thresholds respectively. Given the high concordance between multiple assays for the same 

compound, we decided to merge the data. Original references were verified to guarantee that 

biological activities were correct in ChEMBL database and adjusted if needed. We have 

Braga et al. Page 3

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noted that compounds from five publications [73, 84–87] had their potencies wrongly 

transcribed from original sources to the ChEMBL database. Moreover, compounds with 

undetermined activities (e.g., >20 μM; <1 μM; etc.) were kept only if they fit the class 

discrimination threshold. Finally, the datasets were divided into modeling sets (80%) and 

test sets (20%) using the modified Kennard-Stone algorithm (http://labmol.farmacia.ufg.br/

qsar).

External validation set—Additional chemical data for 561 compounds were retrieved 

from the hERG study published by Li et al. [48]. After curating the data, 553 compounds 

were retained. Subsequently, the overlap between this collection and the hERG dataset 

generated from the ChEMBL database was determined. There were 174 compounds that 

were present in both datasets, and only nine divergent binary hERG annotations were 

identified (94.8% of agreement), demonstrating the strong consistency for this dataset. The 

remaining 379 compounds that were absent from the modeling set were thus utilized for 

external validation of the QSAR models (see Results).

WOMBAT-PK dataset—As an additional external validation set, the performance of the 

models developed in this study were compared to the ones from Li et al. [48]. The authors 

used 66 compounds with reported hERG activity from the WOMBAT-PK database [88]. 

These data originated from different sources with experimental binding activities evaluated 

in mammalian and non-mammalian cell lines, and were expressed in IC50, Ki, or percentage 

of current inhibition [89–93].

WDI dataset—The WDI dataset (version 2010, http://thomsonreuters.com/world-drug-

index/) involved almost 53,965 chemical compounds and pharmacologically active 

compounds, including all marketed drugs and compounds that entered clinical trials.

Data curation

All aforementioned chemical datasets were carefully curated and standardized according to 

the protocol proposed by Fourches et al. [94]. Structural normalization of specific 

chemotypes, such as aromatic and nitro groups, was performed using ChemAxon 

Standardizer (v. 6.1, ChemAxon, Budapest, Hungary, http://www.chemaxon.com). 

Inorganic salts, organometallic compounds, polymers, and mixtures were removed. 

Duplicates, i.e., identical compounds reported several times in the dataset, were identified 

using ISIDA/Duplicates software [95] and analyzed. If the experimental hERG data varied 

from different sources for a given compound, it was removed.

Cheminformatics approaches

Dataset diversity analysis—The Sequential Agglomerative Hierarchical Non-

overlapping (SAHN) method implemented in the ISIDA/Cluster software (http://

fourches.web.unc.edu) was applied to check the dataset structure diversity [95]. In this 

method, sub-structural molecular fragments (SMF) [96] are used as input for Euclidean 

distance calculation. Each compound is initially treated as one cluster. The algorithm 

proceeds by merging the n compounds sequentially into clusters using their pairwise 

Euclidean distances. New clusters are formed by the merger of existent clusters with the 
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most similar clusters at each stage, whereas the distance matrix is updated with the distances 

between the newly formed cluster and all the other ones, according to the type of linkage 

specified by the user (complete linkage was used in this study). The process continues until 

one cluster remains. The software generates a dendrogram of the parent-child relationships 

between the clusters and a heat map of the proximity matrix colored according to the 

pairwise chemical similarity between compounds.

Molecular descriptors—Four different types of molecular fingerprints reflecting the 

absence (0) or presence (1) of substructural fragment for each compound [97] were utilized 

in this study.

The Molecular ACCess System (MACCS) structural keys: The MACCS structural keys 

were calculated using the RDKit (http://www.rdkit.org) in the KNIME platform [98]. The 

MACCS structural keys [99] are a collection of 166 predefined substructures associated with 

a SMARTS pattern and belonging to the dictionary-based fingerprint class. They were first 

planned for substructure searches and typically show a low performance level for virtual 

screening; thus, they are often used as a baseline fingerprint for benchmarking studies.

FeatMorgan: FeatMorgan fingerprints are circular fingerprints based on the Morgan 

algorithm and feature invariants (FCFP-like) [100, 101]. They combine the RDKit Morgan 

fingerprint algorithm with pharmacophoric features calculated using “better” feature 

definitions. A pharmacophore is the ensemble of steric and electronic features essential for 

interaction with the biological target and responsible for biological activity [102], FCFPs are 

circular topological fingerprints where each pharmacophore represents a bit at the start. A 

number of iterations are performed to combine the initial pharmacophore identifiers with 

identifiers of neighboring pharmacophores until a specified diameter is reached and counted. 

The FCFP rule is derived from pharmacophore feature definitions (e.g., donor, acceptor, 

aromatic, halogen, basic, acidic, etc.) of the atoms in a molecule (http://www.rdkit.org/docs/

index.html).

Pharmacophore fingerprints: The pharmacophore fingerprints were calculated using the 

JChem suite from ChemAxon (v. 6.1.3), ChemAxon, Budapest, Hungary, (http://

www.chemaxon.com) in the KNIME platform. The 2D pharmacophore fingerprints account 

for the pharmacophore properties of each atom, and the collection of all atom-atom 

pharmacophore feature pairs, along with their topological distances. More details are 

available at www.chemaxon.com/jchem/doc/user/PFp2D.html.

PubChem fingerprints: The PubChem fingerprints were calculated using the Chemistry 

Development Kit (CDK) [103] in the KNIME platform. PubChem fingerprints consist of an 

881-dimensional vector of bits that accounts for the absence (0) or presence (1) of a 

substructure (fragment) for each compound. The 2D chemical representation of compounds 

is based on specific elements, types of ring systems, atom pairing, or atomic environment 

(nearest neighbors), etc. A detailed description of this fingerprint system is available at 

ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt.
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QSAR modeling—The QSAR modeling workflow was carefully conducted in three major 

steps [81, 104]: (i) data curation/preparation/analysis (selection of compounds and 

descriptors), (ii) model building, and (iii) model validation/selection. First, each dataset was 

randomly divided into a modeling set (80%) and a test set (20%) using the modified 

Kennard-Stone algorithm implemented in qsaR package v. 0.7 made for R, available at our 

lab group webpage (http://labmol.farmacia.ufg.br/qsar). Five-fold cross-validation procedure 

was implemented for model generation. The modeling set with known experimental activity 

was randomly divided into five subsets; subsequently, one subset (20% of the compounds) 

was selected as a test set, while the other four subsets (80% of the compounds) were merged 

as a training set. This procedure was repeated with the other subsets, allowing each of the 

five subsets to be used once as a test set. The 5-fold external cross-validation procedure was 

repeated three times and the predictions were averaged. Although models were generated 

only using the training set, model selection depended on the performance of both the 

training and test sets, because training set accuracy alone is insufficient to establish robust 

and externally predictive models [80]. After model selection, the external test set was 

screened in order to evaluate the actual predictivity of the model. In addition, 10 rounds of 

Y-randomization were performed for each dataset to assure that the accuracy of the models 

was not obtained due to chance correlations. The applicability domain (AD) for each 

descriptor type was estimated based on the Euclidean distances among the training sets of 

each model generated in the 5-fold cross-validation procedure. The distance of a test 

compound to its nearest neighbor in the training set was compared to the predefined 

applicability domain threshold level. If the distance was greater than this threshold level, the 

prediction was considered to be less trustworthy [105]. Four different machine learning 

methods, including the support vector machine (SVM) method with a radial basis kernel 

function (SVMradii) [106], the random forest (RF) method [107], the tree bagging method, 

and the gradient boosting method (GBM) were used for model building. The models were 

built using the qsaR package and its integration workflow plan for KNIME 2.9. All these 

procedures were united in publicly available KSAR workflow (http://

labmol.farmacia.ufg.br/ksar) used in this study. KSAR workflow is tightly integrated with R 

and KNIME and includes many modules, such as the module for curating the data (e.g., 

removal of duplicates), the rational module (Kennard-Stone and modified Kennard-Stone 

algorithm), and the random dataset splits module, multiple machine learning methods, 

performance metrics to evaluate 5-fold cross-validation and external evaluation, the 

applicability domain (AD), the Y-randomization test, and many other utilities.

SVM method: The SVM method is a general data modeling methodology first developed 

by Vapnik [106]. Briefly, a hyperplane in a high-dimensional feature space is built based on 

molecular descriptors using kernel functions; subsequently, a linear or non-linear model is 

constructed in this feature space to segregate compounds with different activities. In this 

study, a radial basis kernel function (SVMradii) was chosen to seek the optimal pair of the 

penalty parameter C and the kernel parameter γ.

RF method: The complete description of the original RF algorithm can be found elsewhere 

[107]. The RF method is an ensemble learning method in which single decision trees are 

built, and the final prediction is defined by all tree outputs. In each tree, 1/3 of the training 
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set is randomly extracted (i.e., bootstrap sample) and used as an out-of-bag (OOB) set, while 

the remaining 2/3 of the training set is used for model building. The best split generated by 

the CART algorithm [108], among the m randomly selected descriptors from the entire pool 

in each node, is chosen. Then, each tree is grown to the largest possible extent without 

pruning. The OOB set is used as a test set for the current tree. The predicted classification 

values are defined by majority voting for one of the classes.

Tree bagging method: The tree bagging method averages the decision tree over many 

samples extracted from the modeling set by the bootstrap replicate. The same compound 

may appear multiple times in the bootstrap replicate, or it may not appear at all. Thus, on 

each of n rounds of bagging, a bootstrap replicate is created from the original training set. A 

base classifier is then trained on this replicate, and the process continues. After n rounds, a 

final combined classifier is formed by the majority vote of all of the base classifiers [109].

GBM: The GBM generates models by computing a sequence of trees, in which each 

successive tree is built from the prediction residuals of the preceding tree. A simple (best) 

partitioning of the data is determined at each step in the boosting tree algorithm, and the 

deviations of the observed values from the respective residuals for each partition are 

computed. Given the preceding sequence of trees, the next 3-node tree will then be fitted to 

the residuals in order to find another partition that will further reduce the residual (error) 

variance for the data [110].

Evaluation of prediction performance—The following metrics (Equations 1–8) were 

used to assess different aspects of model performance:

Equation (1)

Equation (2)

Equation (3)

Equation (4)

Equation (5)

Equation (6)

Equation (7)

Equation (8)
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where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives.

RESULTS AND DISCUSSION

The largest publicly available dataset for hERG liability retrieved from the ChEMBL 

database (https://www.ebi.ac.uk/chembl/) contained 11,958 associated bioactivity records 

for the hERG K+ channel. Once curated, this dataset only contained 4,980 compounds for 

modeling. Threshold values for the blocker/non-blocker classification vary in the literature 

from 1 μM to 40 μM [56, 66, 69, 111]. For this reason, binary classification models were 

built for three different thresholds: 1 μM, 10 μM, and 20 μM. Therefore, three datasets were 

derived from the original dataset and divided accordingly: 4,938 compounds met the 

threshold level of 1 μM, 4,833 compounds met the threshold level of 10 μM, and 4,544 

compounds met the threshold level of 20 μM (Table 2). Models were generated separately 

for each of the three different threshold levels to define the most suitable cutoff for 

discriminating between hERG blockers and non-blockers.

The examination of the 4,980 compounds suggested a high level of structural dissimilarity 

(dendrogram and heat map are shown on line at http://labmol.farmacia.ufg.br/predherg).

The 5-fold cross-validation procedure was used to estimate the robustness of the models 

developed. The test set was applied to validate and to estimate the predictive power of the 

models. In this work, we have chosen the models generated for the threshold level of 10 μM, 

which showed the best performance and were validated internally and externally. The 

statistical results of generated QSAR models for the modeling set of the 10 μM threshold 

level are summarized in Table 3. The detailed results for this threshold level, as well as the 

full results for the threshold levels of 1 μM and 20 μM, are available in Tables S1–S9 

(Supplementary Material). The combination of different descriptors and machine learning 

methods led to robust and predictive QSAR models, with balanced accuracy (BAC) values 

ranging between 0.74–0.87 and a coverage of 0.77–0.93 (Table 3).

The best individual model was generated using the combination of featMorgan fingerprints 

with SVM (BAC = 78%; sensitivity = 86%; specificity = 69%; see Table 3 for more details).

To assure that the accuracy of the models was not due to chance correlation, 10 rounds of Y-

randomization were performed for each dataset. The results are shown in Tables S3, S5 and 

S9 (Supplementary Material).

Several QSAR models were generated using multiple machine learning algorithms and 

descriptors. Consensus QSAR modeling, i.e., parallel development of multiple QSAR 

models using all pairwise combinations of different types of chemical descriptors and 

various machine learning techniques over single QSAR modes, has been shown to be 

advantageous [112, 113]. Nevertheless, no need exists of the overabundance of models in 

the consensus ensemble [94]. Therefore, a verification procedure was conducted to indicate 

whether a consensus model, based on models from Table 3, would offer additional 

advantages compared to the individual models. The consensus model was built by averaging 

the predicted values from the individual model for each machine learning technique that 
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yielded the best performance with higher coverage. Consensus model considered only 

compounds that were predicted identically (with AD taken into account) by all the models. 

For example, if models 1, 2, and 3 predicted a compound to be a blocker, and this compound 

is inside the AD for these models, but model 4 predicted this compound to be a non-blocker, 

and the compound is outside the AD for this model, in the consensus model this compound 

was still classified as a blocker. However, if the compound is predicted to be a blocker, and 

it is inside the AD for models 1, 2, and 3, but the compound is predicted to be a non-blocker 

by model 4 and is inside the AD, the final prediction of the consensus is specified as 

inconclusive. In another situation, if all four models, independently of the outcome, yielded 

predictions outside the AD, the result for this compound was classified as unreliable.

Thus, the consensus model was built by combining the SVM model with MACCS 

fingerprints (MACCS-SVM), the Tree Bagging method with PubChem Fingerprints 

(PubChem-TreeBag), the RF model with the ChemAxon Pharmacophore Fingerprint 

(Pharm. FP-RF), and the gradient boosting model (GBM) with the featMorgan fingerprint 

(featMorgan-GBM). The generated consensus model demonstrated BAC of 83%, sensitivity 

of 85%, specificity of 81%, and coverage of 74% (see Table 3 for more details). Therefore, 

the consensus model discriminates well between hERG blockers and nonblockers—better 

than any of the individual models.

More rigorous consensus model was also developed (consensus rigor), by combining the 

same models as in the consensus model with more restrictive conditions. The consensus 

rigor model only considered the outcome to be reliable when a compound was inside the AD 

for the four models, and all of the predictions were equal. Any non-concordant prediction 

was specified as inconclusive. If the compound was outside the AD for any model, then the 

outcome was specified as unreliable. Expectedly, the increase prediction performance of 

consensus rigor model (BAC = 87%, sensitivity = 89%, specificity = 84%; see Table 3) was 

achieved at the expense of coverage (34%). Although consensus rigor model is very 

accurate predictor, its applicability is limited only for certain chemical classes.

In summary, the consensus model demonstrated better results for 5-fold external CV, with 

5% accuracy and 20% sensitivity increase when compared with the best individual model 

(featMorgan-SVM). The statistical results for the external test set at the 10 μM threshold 

level are summarized in Table 4. The complete results are shown in Table S6 

(Supplementary Material). Consensus model demonstrated the best performance among all 

other individual models (BAC of 91%, sensitivity of 89%, specificity of 93%, and coverage 

of 78%).

Li et al. [48] compiled a dataset of 561 compounds with chemical data for hERG activity. 

After exclusion of duplicates with our modeling set, 377 unique compounds were retained at 

the threshold level of 10 μM and used as an additional external validation set. Our consensus 

model reached BAC of 95%, sensitivity of 91%, specificity of 99%, and 84% of coverage 

for this additional external validation set.

Moreover, Li et al. [48] used an additional evaluation set comprising 66 compounds from 

the WOMBAT-PK database with reported hERG activity to validate the performance of 
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their models. Therefore, this external set of 66 compounds from the WOMBAT-PK database 

was used to examine validation of the consensus model by comparing with the results from 

Li et al. [48] under the same conditions. The comparison of the statistical values is shown in 

Table 5. The consensus model outperformed the Li et al. [48] models in specificity, 

sensitivity, and in other performance metrics, which reflected a higher BAC (~ 0.27) for the 

models developed in this research. Moreover, the consensus model for the 10 μM threshold 

level presented a BAC of 98% (which represents 1 compound misclassified out of 59), 

sensitivity of 98%, specificity 99%, and coverage of 89% (Table 5).

Czodrowski [71] performed an analysis of the hERG dataset retrieved from ChEMBL in 

which four classification models were built with different divisions of the dataset using the 

RDKit descriptors and the RF model. To the best of our knowledge, this is the only study 

found to use the hERG dataset content in the ChEMBL database. Initially we wanted to 

compare the models obtained by Czodrowski with the ones developed in our study. But then 

we have found that Czodrowski [71] did not calculate the AD for the models that allowed 

prediction of 100% of compounds but compromises their practical use. Consensus models 

developed in this study has AD estimation that reduced the coverage. We wanted to use the 

same set of compounds for fair comparison, but unfortunately predicted values were not 

reported in the study [71] that does not allow us to make direct comparison.

QSAR models were developed as virtual screening tools for revealing putative hERG 

blockers among marketed drugs and those in development using the WDI database for a 

case study. A total of 179 compounds were present in both the hERG and the WDI datasets: 

103 blockers and 76 nonblockers. After the data curation 44,486 remaining unique 

compounds were predicted by consensus model developed in this research for revealing 

putative hERG blockers and non-blockers. 4,945 compounds were predicted to be blockers 

and 20,871 – to be non-blockers (the remaining compounds 18,670 were outside of the AD). 

All the compounds and corresponding predictions are available in the supplementary 

material and on-line (http://labmol.farmacia.ufg.br/predherg/vs-wdi.pdf).

Model interpretation revealed several SAR rules, which can guide structural optimization of 

hERG blockers into non-blockers. Figures 1 – 2 show some revealed SAR rules, involving 

changes in the amine nitrogen environment, adding oxygen atom, removing carbon atoms, 

aromatic substitutions, transformations involving some descriptors such as the difference 

between the topological polar surface area (ΔTPSA) [114] of the two molecules in the 

transformation and the Labute’s approximate surface area descriptor (Labute ASA) [115].

The general transformations in Fig. 1 show some changes in the environment of the amine 

nitrogen can reduce hERG inhibition. In Fig. 1A, we can see that removing carbons and/or 

changing the electronic environment around the basic nitrogen can result in a reduction in 

hERG inhibition. In this example, the modification of the pyrrolidine moiety by removing 

carbon atoms or changing it to another functionalized ring (in this example a morpholine 

ring), yielded in the reduction of the hERG binding. Furthermore, the next two 

transformations (Fig. 1B and 1C) show the same SAR rules that remove carbon atoms, 

reduce lipophilicity and/or change the electronic and steric environment around the basic 

Braga et al. Page 10

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://labmol.farmacia.ufg.br/predherg/vs-wdi.pdf


nitrogen can transform a potent hERG blocker to less potent blocker or even to a non-

blocker compound. Some of those observations were also found previously [48, 116].

We can also observe that transformations that add a hydroxyl group reduce hERG inhibition 

(Fig. 2A). As already mentioned, removing carbon atoms, as well as reducing the 

lipophilicity, can result in a reduction in hERG binding (Fig. 2B).

We also noticed some SAR rules revealing specific structural changes through descriptors, 

like the topological polar surface area (TPSA) of the compounds [114]. If the difference 

between the descriptor TPSA (ΔTPSA) of two compounds involved in the transformation is 

equal or greater to 60, this can result in reduction in hERG inhibition (Fig. 2C). We have 

found in our modeling set that 50 compounds follow this SAR rule and only 3 compounds 

do not follow this rule. Another descriptor observed and related with changes in hERG 

binding potency is the Labute’s approximate surface area (Labute ASA) [115]. If the 

calculated Labute ASA descriptor is between 309 and 337, then the compound is frequently 

a hERG blocker (Fig. 2D). 130 compounds in our modeling set followed this SAR rule and 

3 compounds do not follow this rule.

Importantly, our QSAR models were also capable of recognizing modifications that do not 

follow the general SAR rules, as shown in Fig. 3. As we can see, some bioisosteric 

replacements have resulted in dramatic changes in activity. For example, the replacement of 

a furane ring by a tetrazole ring, which is a bioisosteric replacement and therefore should 

preserve the activity, resulted in a substantial alteration in hERG binding, changing the 

compound from a blocker to non-blocker (Fig. 3A, left). The same is observed with the 

substitution of benzene to pyridine ring (Fig. 3A, right). The bioisosteric replacement of 

aromatic rings in our modeling set had 169 examples that follow the SAR rule, as the 

bioisosteric replacement did not altered the activity. However, there were 21 examples in 

which this modification had altered dramatically the activity, changing from a blocker to 

non-blocker compound, and our model could capture such modifications. These cases 

represent the activity cliffs, i.e., structurally similar compounds with large differences in 

potency [117]. The modification of a chlorine to hydroxyl group in a aromatic ring also 

reduced dramatically the binding to hERG (Fig. 3B, left). Although these groups are classic 

bioisosteres, this transformation involved the introduction of a hydroxyl group in an 

aromatic ring that alters the electronic environment in the aromatic group. The same is 

observed with the substitution of a chlorine by a nitrile group (Fig. 3B, right), leading to a 

notable change in hERG binding, changing from a blocker compound to a non-blocker 

compound. The following examples in Fig. 3C and 3D are also activity cliffs.

In general, our SAR rules showed that to decrease toxicity of hERG blockers one should 

consider decreasing their lipophilicity, removing carbons and/or changing the electronic 

environment around the basic nitrogen, and increasing the topological polar surface area. It 

is important to note that our observations also indicated that hERG inhibition has complex 

structure-activity relationship as subtle changes in the structure often result in small changes 

in activity. Moreover, we observed a considerable number of activity cliffs in hERG dataset, 

most of them span a potency difference of at least 2 orders of magnitude. The final model 
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showed the ability to predict such transformations and the threshold effect for compounds 

near to the border regions.

CONCLUSIONS

Poor pharmacokinetics and toxicity are important causes of costly late-stage failures in drug 

development. Our laboratory has been working to overcome or reduce these failures, 

developing in silico tools to early predict and optimize some properties, such as metabolism 

[118–125], mutagenicity (Ames test), Caco-2 permeability, blood-brain barrier penetration 

(BBBP), and water solubility [126], skin sensitization, skin permeability, among others 

[127–131].

We have developed statistically significant and externally predictive QSAR models of 

hERG blockage. The best model was obtained for the 10 μM threshold using the largest 

publicly available dataset of structurally diverse compounds including variety of drug 

classes. Consensus modeling by merging models developed with different sets of descriptors 

increased the balanced accuracy, sensitivity, and specificity of the models up to 81–85% 

with the coverage of ~75%. The models developed in this study can be used by the research 

community and regulatory scientists for the rapid evaluation of cardiac toxicity liability via 

hERG inhibition in chemical inventories. For instance, we applied our models for the virtual 

screening of the WDI dataset and identified 4,945 potential hERG blockers that may be 

candidates for targeted testing to determine hERG liability. As a result of our study, all 

curated datasets and developed models that can be used for the rapid identification of hERG 

blockers and non-blockers in the context of virtual screening for drug development, have 

been made publicly available at the LabMol (http://labmol.farmacia.ufg.br/predherg) and 

Chembench web-portals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank Brazilian Funding Agencies CAPES, CNPq and FAPEG for financial support and 
fellowships. We are also grateful to ChemAxon for providing us with academic licenses for their software. DF, EM, 
and AT thank NIH (grants GM66940 and GM096967) and EPA (grant RD 83499901) for financial support.

References

1. Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, 
Function, and Clinical Significance. Physiol Rev. 2012; 92:1393–1478. [PubMed: 22988594] 

2. Brown AM. Drugs, hERG and sudden death. Cell Calcium. 2004; 35:543–547. [PubMed: 
15110144] 

3. Woosley RL. Cardiac actions of antihistamines. Annu Rev Pharmacol Toxicol. 1996; 36:233–252. 
[PubMed: 8725389] 

4. Rampe D, Roy ML, Dennis A, Brown AM. A mechanism for the proarrhythmic effects of cisapride 
(Propulsid): high affinity blockade of the human cardiac potassium channel HERG. FEBS Lett. 
1997; 417:28–32. [PubMed: 9395068] 

5. Alvarez PA, Pahissa J. QT alterations in psychopharmacology: proven candidates and suspects. Curr 
Drug Saf. 2010; 5:97–104. [PubMed: 20210726] 

Braga et al. Page 12

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://labmol.farmacia.ufg.br/predherg


6. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004; 350:1013–1022. 
[PubMed: 14999113] 

7. Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced 
long QT syndrome. Proc Natl Acad Sci U S A. 2000; 97:12329–12333. [PubMed: 11005845] 

8. Picard S, Goineau S, Guillaume P, Henry J, Hanouz JL, Rouet R. Supplemental studies for 
cardiovascular risk assessment in safety pharmacology: a critical overview. Cardiovasc Toxicol. 
2011; 11:285–307. [PubMed: 21805209] 

9. FDA. Guidance for industry. S7B nonclinical evaluation of the potential for delayed ventricular 
repolarization (QT interval prolongation) by human pharmaceuticals. Rockville, MD: 2005. p. 1-13.

10. FDA. E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for 
non-antiarrhythmic drugs. Rockville, MD: 2005. p. 1-20.

11. Polonchuk L. Toward a New Gold Standard for Early Safety: Automated Temperature-Controlled 
hERG Test on the PatchLiner. Front Pharmacol. 2012; 3:3. [PubMed: 22303293] 

12. Kiss L, Bennett PB, Uebele VN, Koblan KS, Kane SA, Neagle B, Schroeder K. High throughput 
ion-channel pharmacology: planar-array-based voltage clamp. Assay Drug Dev Technol. 2003; 
1:127–135. [PubMed: 15090139] 

13. Wen D, Liu A, Chen F, Yang J, Dai R. Validation of visualized transgenic zebrafish as a high 
throughput model to assay bradycardia related cardio toxicity risk candidates. J Appl Toxicol. 
2012; 32:834–842. [PubMed: 22744888] 

14. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for 
high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981; 
391:85–100. [PubMed: 6270629] 

15. Wiśniowska B, Polak S. hERG in vitro interchange factors--development and verification. Toxicol 
Mech Methods. 2009; 19:278–284. [PubMed: 19778217] 

16. Witchel HJ, Milnes JT, Mitcheson JS, Hancox JC. Troubleshooting problems with in vitro 
screening of drugs for QT interval prolongation using HERG K+ channels expressed in 
mammalian cell lines and Xenopus oocytes. J Pharmacol Toxicol Methods. 2003; 48:65–80. 
[PubMed: 14565563] 

17. Elkins RC, Davies MR, Brough SJ, Gavaghan DJ, Cui Y, Abi-Gerges N, Mirams GR. Variability 
in high-throughput ion-channel screening data and consequences for cardiac safety assessment. J 
Pharmacol Toxicol Methods. 2013; 68:112–122. [PubMed: 23651875] 

18. Raunio H. In silico toxicology - non-testing methods. Front Pharmacol. 2011; 2:33. [PubMed: 
21772821] 

19. Gleeson MP, Modi S, Bender A, Robinson RLM, Kirchmair J, Promkatkaew M, Hannongbua S, 
Glen RC. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des. 
2012; 18:1266–1291. [PubMed: 22316153] 

20. De Ponti F, Poluzzi E, Montanaro N. Organising evidence on QT prolongation and occurrence of 
Torsades de Pointes with non-antiarrhythmic drugs: a call for consensus. Eur J Clin Pharmacol. 
2001; 57:185–209. [PubMed: 11497335] 

21. Cavalli A, Poluzzi E, De Ponti F, Recanatini M, De Ponti F. Toward a pharmacophore for drugs 
inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers. J 
Med Chem. 2002; 45:3844–3853. [PubMed: 12190308] 

22. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 
2001; 104:569–580. [PubMed: 11239413] 

23. Pearlstein RA, Vaz RJ, Kang J, Chen XL, Preobrazhenskaya M, Shchekotikhin AE, Korolev AM, 
Lysenkova LN, Miroshnikova OV, Hendrix J, Rampe D. Characterization of HERG potassium 
channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg Med 
Chem Lett. 2003; 13:1829–1835. [PubMed: 12729675] 

24. Roche O, Trube G, Zuegge J, Pflimlin P, Alanine A, Schneider G. A virtual screening method for 
prediction of the HERG potassium channel liability of compound libraries. Chembiochem. 2002; 
3:455–459. [PubMed: 12007180] 

25. Keserü GM. Prediction of hERG potassium channel affinity by traditional and hologram qSAR 
methods. Bioorg Med Chem Lett. 2003; 13:2773–2775. [PubMed: 12873512] 

Braga et al. Page 13

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Bains W, Basman A, White C. HERG binding specificity and binding site structure: evidence from 
a fragment-based evolutionary computing SAR study. Prog Biophys Mol Biol. 2004; 86:205–233. 
[PubMed: 15288759] 

27. Yap CW, Cai CZ, Xue Y, Chen YZ. Prediction of torsade-causing potential of drugs by support 
vector machine approach. Toxicol Sci. 2004; 79:170–177. [PubMed: 14976348] 

28. Tobita M, Nishikawa T, Nagashima R. A discriminant model constructed by the support vector 
machine method for HERG potassium channel inhibitors. Bioorg Med Chem Lett. 2005; 15:2886–
2890. [PubMed: 15911273] 

29. O’Brien SE, de Groot MJ. Greater than the sum of its parts: combining models for useful ADMET 
prediction. J Med Chem. 2005; 48:1287–1291. [PubMed: 15715500] 

30. Kang J, Wang L, Cai F, Rampe D. High affinity blockade of the HERG cardiac K(+) channel by 
the neuroleptic pimozide. Eur J Pharmacol. 2000; 392:137–140. [PubMed: 10762666] 

31. Cianchetta G, Li Y, Kang J, Rampe D, Fravolini A, Cruciani G, Vaz RJ. Predictive models for 
hERG potassium channel blockers. Bioorg Med Chem Lett. 2005; 15:3637–3642. [PubMed: 
15978804] 

32. Coi A, Massarelli I, Murgia L, Saraceno M, Calderone V, Bianucci AM. Prediction of hERG 
potassium channel affinity by the CODESSA approach. Bioorg Med Chem. 2006; 14:3153–3159. 
[PubMed: 16426850] 

33. Ekins S, Balakin KV, Savchuk N, Ivanenkov Y. Insights for human ether-a-go-go-related gene 
potassium channel inhibition using recursive partitioning and Kohonen and Sammon mapping 
techniques. J Med Chem. 2006; 49:5059–5071. [PubMed: 16913696] 

34. Gepp MM, Hutter MC. Determination of hERG channel blockers using a decision tree. Bioorg 
Med Chem. 2006; 14:5325–5332. [PubMed: 16616507] 

35. Seierstad M, Agrafiotis DK. A QSAR model of HERG binding using a large, diverse, and 
internally consistent training set. Chem Biol Drug Des. 2006; 67:284–296. [PubMed: 16629826] 

36. Song M, Clark M. Development and evaluation of an in silico model for hERG binding. J Chem 
Inf Model. 2006; 46:392–400. [PubMed: 16426073] 

37. Sun H. An accurate and interpretable bayesian classification model for prediction of HERG 
liability. Chem Med Chem. 2006; 1:315–322. [PubMed: 16892366] 

38. Dubus E, Ijjaali I, Petitet F, Michel A. In silico classification of HERG channel blockers: a 
knowledge-based strategy. Chem Med Chem. 2006; 1:622–630. [PubMed: 16892402] 

39. Gavaghan CL, Arnby CH, Blomberg N, Strandlund G, Boyer S. Development, interpretation and 
temporal evaluation of a global QSAR of hERG electrophysiology screening data. J Comput 
Aided Mol Des. 2007; 21:189–206. [PubMed: 17384921] 

40. Leong MK. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) 
for prediction of hERG liability. Chem Res Toxicol. 2007; 20:217–226. [PubMed: 17261034] 

41. Obrezanova O, Csanyi G, Gola JMR, Segall MD. Gaussian processes: a method for automatic 
QSAR modeling of ADME properties. J Chem Inf Model. 2007; 47:1847–1857. [PubMed: 
17602549] 

42. Kramer C, Beck B, Kriegl JM, Clark T. A composite model for HERG blockade. Chem Med 
Chem. 2008; 3:254–265. [PubMed: 18061919] 

43. Filz O, Lagunin A, Filimonov D, Poroikov V. Computer-aided prediction of QT-prolongation. 
SAR QSAR Environ Res. 2008; 19:81–90. [PubMed: 18311636] 

44. Garg D, Gandhi T, Gopi Mohan C. Exploring QSTR and toxicophore of hERG K+ channel 
blockers using GFA and HypoGen techniques. J Mol Graph Model. 2008; 26:966–976. [PubMed: 
17928249] 

45. Inanobe A, Kamiya N, Murakami S, Fukunishi Y, Nakamura H, Kurachi Y. In Silico Prediction of 
the Chemical Block of Human Ether-a-Go-Go-Related Gene (hERG) K+ Current. J Physiol Sci. 
2008; 58:459–470. [PubMed: 19032804] 

46. Thai KM, Ecker GF. A binary QSAR model for classification of hERG potassium channel 
blockers. Bioorg Med Chem. 2008; 16:4107–4119. [PubMed: 18243713] 

47. Chekmarev DS, Kholodovych V, Balakin KV, Ivanenkov Y, Ekins S, Welsh WJ. Shape signatures: 
new descriptors for predicting cardiotoxicity in silico. Chem Res Toxicol. 2008; 21:1304–1314. 
[PubMed: 18461975] 

Braga et al. Page 14

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



48. Li Q, Jørgensen FS, Oprea T, Brunak S, Taboureau O. hERG classification model based on a 
combination of support vector machine method and GRIND descriptors. Mol Pharm. 2008; 5:117–
127. [PubMed: 18197627] 

49. Jia L, Sun H. Support vector machines classification of hERG liabilities based on atom types. 
Bioorg Med Chem. 2008; 16:6252–6260. [PubMed: 18448342] 

50. Gunturi SB, Archana K, Khandelwal A, Narayanan R. Prediction of hERG Potassium Channel 
Blockade Using kNN-QSAR and Local Lazy Regression Methods. QSAR Comb Sci. 2008; 
27:1305–1317.

51. Thai KM, Ecker GF. Similarity-based SIBAR descriptors for classification of chemically diverse 
hERG blockers. Mol Divers. 2009; 13:321–336. [PubMed: 19219559] 

52. Fenu LA, Teisman A, De Buck SS, Sinha VK, Gilissen RAHJ, Nijsen MJMA, Mackie CE, 
Sanderson WE. Cardio-vascular safety beyond hERG: in silico modelling of a guinea pig right 
atrium assay. J Comput Aided Mol Des. 2009; 23:883–895. [PubMed: 19890608] 

53. Ermondi G, Visentin S, Caron G. GRIND-based 3D-QSAR and CoMFA to investigate topics 
dominated by hydrophobic interactions: the case of hERG K+ channel blockers. Eur J Med Chem. 
2009; 44:1926–1932. [PubMed: 19110341] 

54. Hansen K, Rathke F, Schroeter T, Rast G, Fox T, Kriegl JM, Mika S. Bias-correction of regression 
models: a case study on hERG inhibition. J Chem Inf Model. 2009; 49:1486–1496. [PubMed: 
19435326] 

55. Nisius B, Göller AH. Similarity-based classifier using topomers to provide a knowledge base for 
hERG channel inhibition. J Chem Inf Model. 2009; 49:247–256. [PubMed: 19434826] 

56. Su BH, Shen M, Esposito EX, Hopfinger AJ, Tseng YJ. In silico binary classification QSAR 
models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J Chem 
Inf Model. 2010; 50:1304–1318. [PubMed: 20565102] 

57. Doddareddy MR, Klaasse EC, Shagufta, Ijzerman AP, Bender A. Prospective validation of a 
comprehensive in silico hERG model and its applications to commercial compound and drug 
databases. Chem Med Chem. 2010; 5:716–729. [PubMed: 20349498] 

58. Obiol-Pardo C, Gomis-Tena J, Sanz F, Saiz J, Pastor M. A multiscale simulation system for the 
prediction of drug-induced cardiotoxicity. J Chem Inf Model. 2011; 51:483–492. [PubMed: 
21250697] 

59. Robinson RLM, Glen RC, Mitchell JBO. Development and Comparison of hERG Blocker 
Classifiers: Assessment on Different Datasets Yields Markedly Different Results. Mol Inform. 
2011; 30:443–458.

60. Sinha N, Sen S. Predicting hERG activities of compounds from their 3D structures: development 
and evaluation of a global descriptors based QSAR model. Eur J Med Chem. 2011; 46:618–630. 
[PubMed: 21185626] 

61. Du-Cuny L, Chen L, Zhang S. A critical assessment of combined ligand- and structure-based 
approaches to HERG channel blocker modeling. J Chem Inf Model. 2011; 51:2948–2960. 
[PubMed: 21902220] 

62. Thomson Reuters. IntegritySM. Barcelona: Prous Science, S.A.U a Thomson Reuters business; 
2001. Available from: http://integrity.prous.com

63. Kim JH, Chae CH, Kang SM, Lee JY, Lee GN, Hwang SH, Kang NS. The Predictive QSAR 
Model for hERG Inhibitors Using Bayesian and Random Forest Classification Method. Bull 
Korean Chem Soc. 2011; 32:1237–1240.

64. Su BH, Tu Y, Esposito EX, Tseng YJ. Predictive toxicology modeling: protocols for exploring 
hERG classification and Tetrahymena pyriformis end point predictions. J Chem Inf Model. 2012; 
52:1660–1673. [PubMed: 22642982] 

65. Broccatelli F, Mannhold R, Moriconi A, Giuli S, Carosati E. QSAR Modeling and Data Mining 
Link Torsades de Pointes Risk to the Interplay of Extent of Metabolism, Active Transport, and 
hERG Liability. Mol Pharm. 2012; 9:2290–2301. [PubMed: 22742658] 

66. Kar S, Roy K. Prediction of hERG Potassium Channel Blocking Actions Using Combination of 
Classification and Regression Based Models: A Mixed Descriptors Approach. Mol Inform. 2012; 
31:879–894.

Braga et al. Page 15

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://integrity.prous.com


67. Polak S, Wiśniowska B, Brandys J. Collation, assessment and analysis of literature in vitro data on 
hERG receptor blocking potency for subsequent modeling of drugs’ cardiotoxic properties. J Appl 
Toxicol. 2009; 29:183–206. [PubMed: 18988205] 

68. Tan Y, Chen Y, You Q, Sun H, Li M. Predicting the potency of hERG K+ channel inhibition by 
combining 3D-QSAR pharmacophore and 2D-QSAR models. J Mol Model. 2012; 18:1023–1036. 
[PubMed: 21660488] 

69. Wang S, Li Y, Wang J, Chen L, Zhang L, Yu H, Hou T. ADMET evaluation in drug discovery. 12. 
Development of binary classification models for prediction of hERG potassium channel blockage. 
Mol Pharm. 2012; 9:996–1010. [PubMed: 22380484] 

70. Wang Z, Mussa HY, Lowe R, Glen RC, Yan A. Probability Based hERG Blocker Classifiers. Mol 
Inform. 2012; 31:679–685.

71. Czodrowski P. hERG Me Out. J Chem Inf Model. 2013; 53:2240–2251. [PubMed: 23944269] 

72. Brugel TA, Smith RW, Balestra M, Becker C, Daniels T, Koether GM, Throner SR, Panko LM, 
Brown DG, Liu R, Gordon J, Peters MF. SAR development of a series of 8-
azabicyclo[3.2.1]octan-3-yloxy-benzamides as kappa opioid receptor antagonists. Part 2. Bioorg 
Med Chem Lett. 2010; 20:5405–5410. [PubMed: 20719509] 

73. Brugel TA, Smith RW, Balestra M, Becker C, Daniels T, Hoerter TN, Koether GM, Throner SR, 
Panko LM, Folmer JJ, Cacciola J, Hunter AM, Liu R, Edwards PD, Brown DG, Gordon J, 
Ledonne NC, Pietras M, Schroeder P, Sygowski LA, Hirata LT, Zacco A, Peters MF. Discovery of 
8-azabicyclo[3.2.1]octan-3-yloxy-benzamides as selective antagonists of the kappa opioid 
receptor. Part 1. Bioorg Med Chem Lett. 2010; 20:5847–5852. [PubMed: 20727752] 

74. Pourbasheer E, Beheshti A, Khajehsharifi H, Ganjali MR, Norouzi P. QSAR study on hERG 
inhibitory effect of kappa opioid receptor antagonists by linear and non-linear methods. Med 
Chem Res. 2013; 22:4047–4058.

75. Coi A, Bianucci AM. Combining structure- and ligand-based approaches for studies of interactions 
between different conformations of the hERG K(+) channel pore and known ligands. J Mol Graph 
Model. 2013; 46:93–104. [PubMed: 24185260] 

76. Bilodeau MT, Balitza AE, Koester TJ, Manley PJ, Rodman LD, Buser-Doepner C, Coll KE, 
Fernandes C, Gibbs JB, Heimbrook DC, Huckle WR, Kohl N, Lynch JJ, Mao X, McFall RC, 
McLoughlin D, Miller-Stein CM, Rickert KW, Sepp-Lorenzino L, Shipman JM, Subramanian R, 
Thomas KA, Wong BK, Yu S, Hartman GD. Potent N-(1,3-thiazol-2-yl)pyridin-2-amine vascular 
endothelial growth factor receptor tyrosine kinase inhibitors with excellent pharmacokinetics and 
low affinity for the hERG ion channel. J Med Chem. 2004; 47:6363–6372. [PubMed: 15566305] 

77. Berlin M, Lee YJ, Boyce CW, Wang Y, Aslanian R, McCormick KD, Sorota S, Williams SM, 
West RE, Korfmacher W. Reduction of hERG inhibitory activity in the 4-piperidinyl urea series of 
H3 antagonists. Bioorg Med Chem Lett. 2010; 20:2359–2364. [PubMed: 20188550] 

78. Moorthy NSHN, Ramos MJ, Fernandes P. a QSAR and pharmacophore analysis of a series of 
piperidinyl urea derivatives as HERG blockers and H3 antagonists. Curr Drug Discov Technol. 
2013; 10:47–58. [PubMed: 22564166] 

79. Polak S, Wiśniowska B, Glinka A, Fijorek K, Mendyk A. Slow delayed rectifying potassium 
current (IKs) - analysis of the in vitro inhibition data and predictive model development. J Appl 
Toxicol. 2013; 33:723–739. [PubMed: 22334483] 

80. Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002; 20:269–276. [PubMed: 
11858635] 

81. Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 
2010; 29:476–488.

82. [accessed April 11, 2013] OECD OECD principles for the validation, for regulatory purposes, of 
(Quantitative) Structure-Activity Relationship models. http://www.oecd.org/chemicalsafety/risk-
assessment/37849783.pdf

83. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, 
Michalovich D, Al-Lazikani B, Overington JP. ChEMBL: a large-scale bioactivity database for 
drug discovery. Nucleic Acids Res. 2012; 40:D1100–7. [PubMed: 21948594] 

84. Haga Y, Mizutani S, Naya A, Kishino H, Iwaasa H, Ito M, Ito J, Moriya M, Sato N, Takenaga N, 
Ishihara A, Tokita S, Kanatani A, Ohtake N. Discovery of novel phenylpyridone derivatives as 

Braga et al. Page 16

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
http://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf


potent and selective MCH1R antagonists. Bioorg Med Chem. 2011; 19:883–893. [PubMed: 
21190859] 

85. Marquis RW, Lago AM, Callahan JF, Rahman A, Dong X, Stroup GB, Hoffman S, Gowen M, 
DelMar EG, Van Wagenen BC, Logan S, Shimizu S, Fox J, Nemeth EF, Roethke T, Smith BR, 
Ward KW, Bhatnagar P. Antagonists of the calcium receptor. 2. Amino alcohol-based parathyroid 
hormone secretagogues. J Med Chem. 2009; 52:6599–6605. [PubMed: 19821575] 

86. Xue CB, Feng H, Cao G, Huang T, Glenn J, Anand R, Meloni D, Zhang K, Kong L, Wang A, 
Zhang Y, Zheng C, Xia M, Chen L, Tanaka H, Han Q, Robinson DJ, Modi D, Storace L, Shao L, 
Sharief V, Li M, Galya LG, Covington M, Scherle P, Diamond S, Emm T, Yeleswaram S, Contel 
N, Vaddi K, Newton R, Hollis G, Friedman S, Metcalf B. Discovery of INCB3284, a Potent, 
Selective, and Orally Bioavailable hCCR2 Antagonist. ACS Med Chem Lett. 2011; 2:450–454. 
[PubMed: 24900329] 

87. Lynch JK, Freeman JC, Judd AS, Iyengar R, Mulhern M, Zhao G, Napier JJ, Wodka D, Brodjian 
S, Dayton BD, Falls D, Ogiela C, Reilly RM, Campbell TJ, Polakowski JS, Hernandez L, Marsh 
KC, Shapiro R, Knourek-Segel V, Droz B, Bush E, Brune M, Preusser LC, Fryer RM, Reinhart 
Ga, Houseman K, Diaz G, Mikhail A, Limberis JT, Sham HL, Collins Ca, Kym PR. Optimization 
of chromone-2-carboxamide melanin concentrating hormone receptor 1 antagonists: assessment of 
potency, efficacy, and cardiovascular safety. J Med Chem. 2006; 49:6569–6584. [PubMed: 
17064075] 

88. Olah, M.; Rad, R.; Ostopovici, L.; Bora, A.; Hadaruga, N.; Hadaruga, D.; Moldovan, R.; Fulias, 
A.; Mractc, M.; Oprea, TI. Chemical Biology. Wiley-VCH Verlag GmbH; 2008. WOMBAT and 
WOMBAT-PK: Bioactivity Databases for Lead and Drug Discovery; p. 760-786.

89. Rowley M, Hallett DJ, Goodacre S, Moyes C, Crawforth J, Sparey TJ, Patel S, Marwood R, 
Thomas S, Hitzel L, O’Connor D, Szeto N, Castro JL, Hutson PH, MacLeod AM. 3-(4-
Fluoropiperidin-3-yl)-2-phenylindoles as high affinity, selective, and orally bioavailable h5-
HT(2A) receptor antagonists. J Med Chem. 2001; 44:1603–1614. [PubMed: 11334570] 

90. Bell IM, Gallicchio SN, Abrams M, Beshore DC, Buser CA, Culberson JC, Davide J, Ellis-
Hutchings M, Fernandes C, Gibbs JB, Graham SL, Hartman GD, Heimbrook DC, Homnick CF, 
Huff JR, Kassahun K, Koblan KS, Kohl NE, Lobell RB, Lynch JJ, Miller PA, Omer CA, 
Rodrigues AD, Walsh ES, Williams TM. Design and biological activity of (S)-4-(5-([1-(3-
chlorobenzyl)-2-oxopyrrolidin-3-ylamino]methyl)imidazol-1-ylmethyl)benzonitrile, a 3-
aminopyrrolidinone farnesyltransferase inhibitor with excellent cell potency. J Med Chem. 2001; 
44:2933–2949. [PubMed: 11520202] 

91. Bell IM, Gallicchio SN, Abrams M, Beese LS, Beshore DC, Bhimnathwala H, Bogusky MJ, Buser 
CA, Culberson JC, Davide J, Ellis-Hutchings M, Fernandes C, Gibbs JB, Graham SL, Hamilton 
KA, Hartman GD, Heimbrook DC, Homnick CF, Huber HE, Huff JR, Kassahun K, Koblan KS, 
Kohl NE, Lobell RB, Lynch JJ, Robinson R, Rodrigues AD, Taylor JS, Walsh ES, Williams TM, 
Zartman CB. 3-Aminopyrrolidinone farnesyltransferase inhibitors: design of macrocyclic 
compounds with improved pharmacokinetics and excellent cell potency. J Med Chem. 2002; 
45:2388–2409. [PubMed: 12036349] 

92. Peukert S, Brendel J, Pirard B, Brüggemann A, Below P, Kleemann HW, Hemmerle H, Schmidt 
W. Identification, synthesis, and activity of novel blockers of the voltage-gated potassium channel 
Kv1.5. J Med Chem. 2003; 46:486–498. [PubMed: 12570371] 

93. Blum CA, Zheng X, De Lombaert S. Design, synthesis, and biological evaluation of substituted 2-
cyclohexyl-4-phenyl-1H-imidazoles: potent and selective neuropeptide Y Y5-receptor antagonists. 
J Med Chem. 2004; 47:2318–2325. [PubMed: 15084130] 

94. Fourches D, Muratov E, Tropsha A. Trust, but verify: on the importance of chemical structure 
curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010; 50:1189–
1204. [PubMed: 20572635] 

95. Varnek A, Fourches D, Horvath D, Klimchuk O, Gaudin C, Vayer P, Solov’ev V, Hoonakker F, 
Tetko IV, Marcou G. ISIDA - Platform for virtual screening based on fragment and 
pharmacophoric descriptors. Curr Comput Aided Drug Des. 2008; 4:191–198.

96. Solov’ev V, Varnek A, Wipff G. Modeling of ion complexation and extraction using substructural 
molecular fragments. J Chem Inf Comput Sci. 2000; 40:847–858. [PubMed: 10850791] 

Braga et al. Page 17

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



97. Duan J, Dixon SL, Lowrie JF, Sherman W. Analysis and comparison of 2D fingerprints: insights 
into database screening performance using eight fingerprint methods. J Mol Graph Model. 2010; 
29:157–170. [PubMed: 20579912] 

98. Mazanetz MP, Marmon RJ, Reisser CBT, Morao I. Drug discovery applications for KNIME: an 
open source data mining platform. Curr Top Med Chem. 2012; 12:1965–1979. [PubMed: 
23110532] 

99. MACCS structural keys. Accelrys; San Diego, CA: 2013. 

100. Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010; 50:742–754. 
[PubMed: 20426451] 

101. Morgan HL. The Generation of a Unique Machine Description for Chemical Structures-A 
Technique Developed at Chemical Abstracts Service. J Chem Doc. 1965; 5:107–113.

102. Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent 
advances. Drug Discov Today. 2010; 15:444–450. [PubMed: 20362693] 

103. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E. The Chemistry 
Development Kit (CDK): an open-source Java library for Chemo- and Bioinformatics. J Chem 
Inf Comput Sci. 43:493–500. [PubMed: 12653513] 

104. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, Gramatica P, 
Martin YC, Todeschini R, Consonni V, Kuz’min VE, Cramer R, Benigni R, Yang C, Rathman J, 
Terfloth L, Gasteiger J, Richard A, Tropsha A. QSAR Modeling: Where Have You Been? Where 
Are You Going To? J Med Chem. 2014 Epub ahead. 

105. Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A. A novel automated lazy learning QSAR 
(ALL-QSAR) approach: method development, applications, and virtual screening of chemical 
databases using validated ALL-QSAR models. J Chem Inf Model. 2006; 46:1984–1995. 
[PubMed: 16995729] 

106. Vapnik, V. The Nature of Statistical Learning Theory. 2. Springer; New York: 2000. p. 314

107. Breiman LEO. Random Forests. Mach Learn. 2001; 45:5–32.

108. Breiman, L.; Friedman, JH.; Olshen, RA.; Stone, CJ. Classification and Regression Trees. In: Hall 
Crc, C., editor. Statistics/Probability Series. Vol. 19. Wadsworth; Belmont: 1984. p. 368

109. Breiman L. Bagging predictors. Mach Learn. 1996; 24:123–140.

110. Berk, RA. Springer Series in Statistics. Springer; New York, NY: 2008. Statistical Learning from 
a Regression Perspective; p. 360

111. Aronov AM, Goldman BB. A model for identifying HERG K+ channel blockers. Bioorg Med 
Chem. 2004; 12:2307–2315. [PubMed: 15080928] 

112. Kuz’min VE, Muratov EN, Artemenko AG, Varlamova EV, Gorb L, Wang J, Leszczynski J. 
Consensus QSAR modeling of phosphor-containing chiral AChE inhibitors. QSAR Comb Sci. 
2009; 28:664–677.

113. Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P, Cherkasov A, 
Tetko I. V Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena 
pyriformis. J Chem Inf Model. 2008; 48:766–784. [PubMed: 18311912] 

114. Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-
based contributions and its application to the prediction of drug transport properties. J Med 
Chem. 2000; 43:3714–3717. [PubMed: 11020286] 

115. Labute P. A widely applicable set of descriptors. J Mol Graph Model. 2000; 18:464–477. 
[PubMed: 11143563] 

116. Springer C, Sokolnicki KL. A fingerprint pair analysis of hERG inhibition data. Chem Cent J. 
2013; 7:167. [PubMed: 24144230] 

117. Stumpfe D, Bajorath J. Exploring activity cliffs in medicinal chemistry. J Med Chem. 2012; 
55:2932–2942. [PubMed: 22236250] 

118. Melo-Filho CC, Braga RC, Andrade CH. Advances in Methods for Predicting Phase I 
Metabolism of Polyphenols. Curr Drug Metab. 2014; 15:120–126. [PubMed: 24479689] 

119. Braga RC, Alves VM, Fraga CaM, Barreiro EJ, de Oliveira V, Andrade CH. Combination of 
docking, molecular dynamics and quantum mechanical calculations for metabolism prediction of 

Braga et al. Page 18

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3,4-methylenedioxybenzoyl-2-thienylhydrazone. J Mol Model. 2012; 18:2065–2078. [PubMed: 
21901409] 

120. Braga RC, Andrade CH. QSAR and QM/MM approaches applied to drug metabolism prediction. 
Mini Rev Med Chem. 2012; 12:573–582. [PubMed: 22587770] 

121. Andrade CH, Silva DC, Braga RC. In silico Prediction of Drug Metabolism by P450. Curr Drug 
Metab. 2014

122. Carneiro EO, Andrade CH, Braga RC, Tôrres ACB, Alves RO, Lião LM, Fraga CaM, Barreiro 
EJ, de Oliveira V. Structure-based prediction and biosynthesis of the major mammalian 
metabolite of the cardioactive prototype LASSBio-294. Bioorg Med Chem Lett. 2010; 20:3734–
3736. [PubMed: 20488703] 

123. Sousa MCM, Braga RRC, Cintra BASB, de Oliveira V, Andrade CH. In silico metabolism studies 
of dietary flavonoids by CYP1A2 and CYP2C9. Food Res Int. 2013; 50:102–110.

124. Pazini F, Menegatti R, Sabino JR, Andrade CH, Neves G, Rates SMK, Noël F, Fraga CaM, 
Barreiro EJ, de Oliveira V. Design of new dopamine D2 receptor ligands: biosynthesis and 
pharmacological evaluation of the hydroxylated metabolite of LASSBio-581. Bioorg Med Chem 
Lett. 2010; 20:2888–2891. [PubMed: 20363131] 

125. Andrade CH, de Freitas LM, de Oliveira V. Twenty-six years of HIV science: an overview of 
anti-HIV drugs metabolism. Brazilian J Pharm Sci. 2011; 47:209–230.

126. Braga RC, Alves VM, Silva AC, Liao LM, Andrade CH. Virtual Screening Strategies in 
Medicinal Chemistry: The state of the art and current challenges. Curr Top Med Chem. 2014

127. Neves BJ, Bueno RV, Braga RC, Andrade CH. Discovery of new potential hits of Plasmodium 
falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches. 
Bioorg Med Chem Lett. 2013; 23:2436–2441. [PubMed: 23499236] 

128. Bueno RV, Braga RC, Segretti ND, Ferreir EI, Trossini GHG, Andrade CH. New Tuberculostatic 
Agents Targeting Nucleic Acid Biosynthesis: Drug Design using QSAR Approaches. Curr Pharm 
Des. 2013

129. de Gil ES, Andrade CH, Barbosa NL, Braga RC, Serrano SHP. Cyclic Voltammetry and 
Computational Chemistry Studies on the Evaluation of the Redox Behavior of Parabens and 
other Analogues. J Braz Chem Soc. 2012; 23:565–572.

130. Braga, RC.; Sabino, JR.; de Valeria, O.; Andrade, CH. Discovery of novel hit compounds for 
Trypanosoma cruzi sterol 14α-demethylase through structure-based virtual screening. Abstracts 
of Papers, 240th American Chemical Society National Meeting & Exposition; Boston, MA, 
United States. August 22–26; 2010. p. MEDI–379

131. Braga, RC.; Lião, LM.; Bezerra, JCB.; Vinaud, MCB.; Andrade, CH. Integrated 
chemoinformatics approaches to virtual screening in the search of new lead compounds against 
Leishmania. Abstracts of Papers, 244th American Chemical Society National Meeting & 
Exposition; Philadelphia, PA, United States. August 19–23, 2012; 2012. p. CINF–46

Braga et al. Page 19

Curr Top Med Chem. Author manuscript; available in PMC 2015 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
SAR rules involving structural transformations that change the environment of the amine 

nitrogen. For each compound, we show the experimental potency (IC50) available on 

ChEMBL database and the corresponding prediction by consensus model for 10 μM 

threshold.
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Figure 2. 
SAR rules involving miscellaneous transformations. For each compound, we show the 

experimental potency (IC50) available on ChEMBL database and the corresponding 

prediction by consensus model for 10 μM threshold. (C) ΔTPSA is the difference between 

the topological polar surface area of the two molecules involved in the transformation. (D) 

Labute ASA is the Labute’s approximate surface area descriptor.
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Figure 3. 
Transformations involving bioisosteric replacements, showing activity cliffs. For each 

compound, we show the experimental potency (IC50) available on ChEMBL database and 

the corresponding prediction by consensus model for 10 μM threshold.
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