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Abstract

Several non-cardiovascular drugs have been withdrawn from the market due to their inhibition of
hERG K* channels that can potentially lead to severe heart arrhythmia and death. As hERG safety
testing is a mandatory FDA-required procedure, there is a considerable interest for developing
predictive computational tools to identify and filter out potential hERG blockers early in the drug
discovery process. In this study, we aimed to generate predictive and well-characterized
quantitative structure—activity relationship (QSAR) models for hERG blockage using the largest
publicly available dataset of 11,958 compounds from the ChEMBL database. The models have
been developed and validated according to OECD guidelines using four types of descriptors and
four different machine-learning techniques. The classification accuracies discriminating blockers
from non-blockers were as high as 0.83-0.93 on external set. Model interpretation revealed
several SAR rules, which can guide structural optimization of some hERG blockers into non-
blockers. We have also applied the generated models for screening the World Drug Index (WDI)
database and identify putative hERG blockers and non-blockers among currently marketed drugs.
The developed models can reliably identify blockers and non-blockers, which could be useful for
the scientific community. A freely accessible web server has been developed allowing users to
identify putative hERG blockers and non-blockers in chemical libraries of their interest (http://
labmol.farmacia.ufg.br/predherg).

"Address correspondence to this author at LabMol, Faculdade de Farmécia, Universidade Federal de Goias, Rua 240, Qd. 87, Setor

%este Universitario, Goiénia, Goiés 74605-170, Brazil. Tel: + 55 62 3209-6451; Fax: +55 62 3209 6037; carolina@ufg.br.
AUTHOR CONTRIBUTIONS

These authors contributed equally to this work.

CONFLICT OF INTERESTS

The authors confirm that this article content has no conflicts of interest.

SUPPLEMENTARY INFORMATION
Supplementary tables and curated datasets are available as supplementary material (http://labmol.farmacia.ufg.br/predherg).


http://labmol.farmacia.ufg.br/predherg
http://labmol.farmacia.ufg.br/predherg
http://labmol.farmacia.ufg.br/predherg

1duosnuen Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Braga et al.

Keywords

Page 2

antitarget; drug development; hERG; QSAR modeling; virtual screening

INTRODUCTION

The human ether-a-go-go related gene (hERG) encodes the subunit of a delayed rectifier
voltage-gated K* channel. These channels are expressed in a wide array of tissues, but their
physiological function is best characterized in cardiac cells, where they play a critical role in
the repolarization of the cardiac action potential [1]. The QT interval is the measure of the
duration of ventricular depolarization and repolarization in an electrocardiogram. hERG
inhibition is associated with QT interval prolongation and can evolve into a lethal cardiac
arrhythmia [2]. Many drugs covering a broad spectrum of pharmaceutical classes have been
withdrawn from the market or have had their usage limited due to blockage of the hERG,
e.g., astemizole, terfenadine [3], cisapride [4], sertindole [5], terolidine, droperidol,
lidoflazine, and grepafloxacin [6]. Those diverse chemicals can indeed interact with hERG
because of its notorious ligand promiscuity, mainly due to its large hydrophobic intracellular
binding pocket and its multiple states (open, inactive, and closed) [7].

The increased incidence of sudden death related to non-cardiac drugs earmarked the hERG
as one of the most important antitargets to be considered in the early stages of drug
development processes, elicited the interest of academia and industry, and has become a
major concern for regulatory agencies [8]. Currently, hERG safety is required by the US
Food and Drug Administration (FDA) in clinical trials [9, 10]. To identify the potential of a
substance to delay ventricular repolarization and to estimate the risk for QT interval
prolongation in humans, several experiments are conducted. Although new techniques have
appeared in the last few years [11-13], conventional patch-clamp electrophysiology remains
the “gold-standard.” In this test, the electric current passing through hERG channels
expressed in cells, is measured [14]. Often, the cell lines utilized as an expression system for
the hERG in studies include human embryonic kidney (HEK) 293 cells, Chinese hamster
ovary (CHO) cells, or Xenopus laevis oocytes (XO) cells. No proven advantage of one cell
line over another is known, but discrepancies of outcomes are clearly related to the lack of
standardized protocols. Unfortunately, these assays are time-consuming, expensive, labor-
intensive, and suffer from low throughput [15, 16]. High-throughput ion-channel screening
data exhibit significant levels of variability, which affects the reliability of the results and
the applicability for regulatory agencies [17]

Meanwhile, computational approaches are emerging as a practical solution for the quick and
inexpensive evaluation of chemical substances [18]. The main question relates to their
inherent lack of reliability (due to the high complexity of the underlying biological
mechanisms and the non-negligible experimental variability of toxicity endpoints) [19].
Many Quantitative Structure-Activity Relationship (QSAR) models discriminating hERG
blockers from non-blockers were reported in the scientific literature (see Table 1 for the
overview).
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Although these models appear to be well-fitted, a critical analysis reveals that the vast
majority of the published QSAR models do not comply with the standard validation
procedures and the different statistical criteria described in the best practices of QSAR
modeling [80, 81]. Most of those models are indeed not compliant with the OECD guidance
on QSAR model development and validation [82]. More specifically, the primary drawbacks
of the majority of published QSAR studies are: (i) most models do not have proof of passing
the Y-randomization test [21, 23, 26, 28, 29, 31-35, 38, 40, 41, 45-49, 51-56, 58, 59, 63—
65, 6870, 75, 79]; (ii) no proof of applicability domain (AD) estimation is provided [21, 23,
26-29, 31-36, 40, 45, 48-53, 56, 58, 63-65, 68-71, 75, 79]; and (iii) model predictivity is
not acceptable [39, 61, 66]. As a consequence, despite the large number of QSAR models
for hERG blockage available in the literature, only very few models can actually be
employed to predict hERG blockage [60, 61, 74, 78]. Most of the models and associated
datasets used to build them are not available online for the scientific community. These
major drawbacks compromise the practical use of prior models for reliable assessment of
drug-induced QT syndrome.

Given the risks associated with hERG inhibition and the lack of reliable models freely
available for the research community, we aimed to build predictive and well-characterized
QSAR models for hERG blockage using the largest publicly available dataset for hERG
blockage. In this study, we developed several consensus QSAR models combining different
descriptor types and machine learning techniques (Combi-QSAR), all validated using a
modeling workflow fully compliant with OECD guidelines. Moreover, we have applied
these models to the World Drug Index (WDI) database for assessing whether some putative
hERG blockers and non-blockers among marketed drugs and drug candidates could be
identified.

MATERIALS AND METHODS

Data preparation

hERG modeling set—We retrieved 11,958 chemical records containing affinity and
inhibition data for the hERG channel from ChEMBL [83] v13 database (March, 2013).

Only the records related to the potency and the affinity values reported in activity as 1Csgp,
Kj, and ECsp, were retained. Subsequently, all concentrations were converted to —log(M)
values. Compounds with multiple hRERG measurements were identified during analyses of
duplicates (see Data curation section). Because this dataset was composed from
measurements done by multiple laboratories and different types of assays, the binary hERG
blockade potential for duplicated records was analyzed to verify the dataset consistency as
well as inter- and intra-laboratory assay variability. Different threshold levels have been
proposed in the literature; for this reason we have used three binary classification thresholds
(1 uM, 10 uM, and 20 uM) to discriminate between hERG blockers and non-blockers.
Importantly, we have found an overall concordance between duplicates, considering
multiple assays, as high as 93.61%, 90.73%, and 90.19% for the three aforementioned
thresholds respectively. Given the high concordance between multiple assays for the same
compound, we decided to merge the data. Original references were verified to guarantee that
biological activities were correct in ChEMBL database and adjusted if needed. We have
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noted that compounds from five publications [73, 84—87] had their potencies wrongly
transcribed from original sources to the ChEMBL database. Moreover, compounds with
undetermined activities (e.g., >20 puM; <1 uM; etc.) were kept only if they fit the class
discrimination threshold. Finally, the datasets were divided into modeling sets (80%) and
test sets (20%) using the modified Kennard-Stone algorithm (http://labmol.farmacia.ufg.br/
gsar).

External validation set—Additional chemical data for 561 compounds were retrieved
from the hERG study published by Li et al. [48]. After curating the data, 553 compounds
were retained. Subsequently, the overlap between this collection and the hERG dataset
generated from the ChEMBL database was determined. There were 174 compounds that
were present in both datasets, and only nine divergent binary hERG annotations were
identified (94.8% of agreement), demonstrating the strong consistency for this dataset. The
remaining 379 compounds that were absent from the modeling set were thus utilized for
external validation of the QSAR models (see Results).

WOMBAT-PK dataset—As an additional external validation set, the performance of the
models developed in this study were compared to the ones from Li et al. [48]. The authors
used 66 compounds with reported hERG activity from the WOMBAT-PK database [88].
These data originated from different sources with experimental binding activities evaluated
in mammalian and non-mammalian cell lines, and were expressed in ICsg, Ki, or percentage
of current inhibition [89-93].

WDI dataset—The WDI dataset (version 2010, http://thomsonreuters.com/world-drug-
index/) involved almost 53,965 chemical compounds and pharmacologically active
compounds, including all marketed drugs and compounds that entered clinical trials.

Data curation

All aforementioned chemical datasets were carefully curated and standardized according to
the protocol proposed by Fourches et al. [94]. Structural normalization of specific
chemotypes, such as aromatic and nitro groups, was performed using ChemAxon
Standardizer (v. 6.1, ChemAxon, Budapest, Hungary, http://www.chemaxon.com).
Inorganic salts, organometallic compounds, polymers, and mixtures were removed.
Duplicates, i.e., identical compounds reported several times in the dataset, were identified
using ISIDA/Duplicates software [95] and analyzed. If the experimental hERG data varied
from different sources for a given compound, it was removed.

Cheminformatics approaches

Dataset diversity analysis—The Sequential Agglomerative Hierarchical Non-
overlapping (SAHN) method implemented in the ISIDA/Cluster software (http://
fourches.web.unc.edu) was applied to check the dataset structure diversity [95]. In this
method, sub-structural molecular fragments (SMF) [96] are used as input for Euclidean
distance calculation. Each compound is initially treated as one cluster. The algorithm
proceeds by merging the n compounds sequentially into clusters using their pairwise
Euclidean distances. New clusters are formed by the merger of existent clusters with the
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most similar clusters at each stage, whereas the distance matrix is updated with the distances
between the newly formed cluster and all the other ones, according to the type of linkage
specified by the user (complete linkage was used in this study). The process continues until
one cluster remains. The software generates a dendrogram of the parent-child relationships
between the clusters and a heat map of the proximity matrix colored according to the
pairwise chemical similarity between compounds.

Molecular descriptors—~Four different types of molecular fingerprints reflecting the
absence (0) or presence (1) of substructural fragment for each compound [97] were utilized
in this study.

The Molecular ACCess System (MACCS) structural keys: The MACCS structural keys
were calculated using the RDKit (http://www.rdkit.org) in the KNIME platform [98]. The
MACCS structural keys [99] are a collection of 166 predefined substructures associated with
a SMARTS pattern and belonging to the dictionary-based fingerprint class. They were first
planned for substructure searches and typically show a low performance level for virtual
screening; thus, they are often used as a baseline fingerprint for benchmarking studies.

FeatMorgan: FeatMorgan fingerprints are circular fingerprints based on the Morgan
algorithm and feature invariants (FCFP-like) [100, 101]. They combine the RDKit Morgan
fingerprint algorithm with pharmacophoric features calculated using “better” feature
definitions. A pharmacophore is the ensemble of steric and electronic features essential for
interaction with the biological target and responsible for biological activity [102], FCFPs are
circular topological fingerprints where each pharmacophore represents a bit at the start. A
number of iterations are performed to combine the initial pharmacophore identifiers with
identifiers of neighboring pharmacophores until a specified diameter is reached and counted.
The FCFP rule is derived from pharmacophore feature definitions (e.g., donor, acceptor,
aromatic, halogen, basic, acidic, etc.) of the atoms in a molecule (http://www.rdkit.org/docs/
index.html).

Pharmacophore fingerprints: The pharmacophore fingerprints were calculated using the
JChem suite from ChemAXxon (v. 6.1.3), ChemAxon, Budapest, Hungary, (http://
www.chemaxon.com) in the KNIME platform. The 2D pharmacophore fingerprints account
for the pharmacophore properties of each atom, and the collection of all atom-atom
pharmacophore feature pairs, along with their topological distances. More details are
available at www.chemaxon.com/jchem/doc/user/PFp2D.html.

PubChem fingerprints: The PubChem fingerprints were calculated using the Chemistry
Development Kit (CDK) [103] in the KNIME platform. PubChem fingerprints consist of an
881-dimensional vector of bits that accounts for the absence (0) or presence (1) of a
substructure (fragment) for each compound. The 2D chemical representation of compounds
is based on specific elements, types of ring systems, atom pairing, or atomic environment
(nearest neighbors), etc. A detailed description of this fingerprint system is available at
ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt.
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QSAR modeling—The QSAR modeling workflow was carefully conducted in three major
steps [81, 104]: (i) data curation/preparation/analysis (selection of compounds and
descriptors), (ii) model building, and (iii) model validation/selection. First, each dataset was
randomly divided into a modeling set (80%) and a test set (20%) using the modified
Kennard-Stone algorithm implemented in gsaR package v. 0.7 made for R, available at our
lab group webpage (http://labmol.farmacia.ufg.br/gsar). Five-fold cross-validation procedure
was implemented for model generation. The modeling set with known experimental activity
was randomly divided into five subsets; subsequently, one subset (20% of the compounds)
was selected as a test set, while the other four subsets (80% of the compounds) were merged
as a training set. This procedure was repeated with the other subsets, allowing each of the
five subsets to be used once as a test set. The 5-fold external cross-validation procedure was
repeated three times and the predictions were averaged. Although models were generated
only using the training set, model selection depended on the performance of both the
training and test sets, because training set accuracy alone is insufficient to establish robust
and externally predictive models [80]. After model selection, the external test set was
screened in order to evaluate the actual predictivity of the model. In addition, 10 rounds of
Y-randomization were performed for each dataset to assure that the accuracy of the models
was not obtained due to chance correlations. The applicability domain (AD) for each
descriptor type was estimated based on the Euclidean distances among the training sets of
each model generated in the 5-fold cross-validation procedure. The distance of a test
compound to its nearest neighbor in the training set was compared to the predefined
applicability domain threshold level. If the distance was greater than this threshold level, the
prediction was considered to be less trustworthy [105]. Four different machine learning
methods, including the support vector machine (SVM) method with a radial basis kernel
function (SVMradii) [106], the random forest (RF) method [107], the tree bagging method,
and the gradient boosting method (GBM) were used for model building. The models were
built using the gsaR package and its integration workflow plan for KNIME 2.9. All these
procedures were united in publicly available KSAR workflow (http://
labmol.farmacia.ufg.br/ksar) used in this study. KSAR workflow is tightly integrated with R
and KNIME and includes many modules, such as the module for curating the data (e.g.,
removal of duplicates), the rational module (Kennard-Stone and modified Kennard-Stone
algorithm), and the random dataset splits module, multiple machine learning methods,
performance metrics to evaluate 5-fold cross-validation and external evaluation, the
applicability domain (AD), the Y-randomization test, and many other utilities.

SVM method: The SVM method is a general data modeling methodology first developed
by Vapnik [106]. Briefly, a hyperplane in a high-dimensional feature space is built based on
molecular descriptors using kernel functions; subsequently, a linear or non-linear model is
constructed in this feature space to segregate compounds with different activities. In this
study, a radial basis kernel function (SVMradii) was chosen to seek the optimal pair of the
penalty parameter C and the kernel parameter .

RF method: The complete description of the original RF algorithm can be found elsewhere
[107]. The RF method is an ensemble learning method in which single decision trees are
built, and the final prediction is defined by all tree outputs. In each tree, 1/3 of the training
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set is randomly extracted (i.e., bootstrap sample) and used as an out-of-bag (OOB) set, while
the remaining 2/3 of the training set is used for model building. The best split generated by
the CART algorithm [108], among the m randomly selected descriptors from the entire pool
in each node, is chosen. Then, each tree is grown to the largest possible extent without
pruning. The OOB set is used as a test set for the current tree. The predicted classification
values are defined by majority voting for one of the classes.

Tree bagging method: The tree bagging method averages the decision tree over many
samples extracted from the modeling set by the bootstrap replicate. The same compound
may appear multiple times in the bootstrap replicate, or it may not appear at all. Thus, on
each of n rounds of bagging, a bootstrap replicate is created from the original training set. A
base classifier is then trained on this replicate, and the process continues. After n rounds, a
final combined classifier is formed by the majority vote of all of the base classifiers [109].

GBM: The GBM generates models by computing a sequence of trees, in which each
successive tree is built from the prediction residuals of the preceding tree. A simple (best)
partitioning of the data is determined at each step in the boosting tree algorithm, and the
deviations of the observed values from the respective residuals for each partition are
computed. Given the preceding sequence of trees, the next 3-node tree will then be fitted to
the residuals in order to find another partition that will further reduce the residual (error)
variance for the data [110].

Evaluation of prediction performance—The following metrics (Equations 1-8) were
used to assess different aspects of model performance:
TP+TN

AccuracyzW Equation (1)

BAC: Sensitivity+ Specificity Equation (2)

— TPXTN—FPxFN .
MCC= V(TP1FP)(TP+FN)(IN+FP)(TN+FN) Equation (3)

Sensitivity (recall)=7 5~ Equation (4)

Specificity=1x-+5 Equation (5)
TP

Precision=+75+ Equation (6)

—9) Precision X Recall .
Fl=25z52202  Equation (7)

A UC’zZi [ (Sensitivity; 1 )(Specificity; ., —Specificity;)] Equation (8)
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where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives.

RESULTS AND DISCUSSION

The largest publicly available dataset for hERG liability retrieved from the ChEMBL
database (https://www.ebi.ac.uk/chembl/) contained 11,958 associated bioactivity records
for the hERG K™ channel. Once curated, this dataset only contained 4,980 compounds for
modeling. Threshold values for the blocker/non-blocker classification vary in the literature
from 1 uM to 40 uM [56, 66, 69, 111]. For this reason, binary classification models were
built for three different thresholds: 1 uM, 10 uM, and 20 uM. Therefore, three datasets were
derived from the original dataset and divided accordingly: 4,938 compounds met the
threshold level of 1 pM, 4,833 compounds met the threshold level of 10 pM, and 4,544
compounds met the threshold level of 20 uM (Table 2). Models were generated separately
for each of the three different threshold levels to define the most suitable cutoff for
discriminating between hERG blockers and non-blockers.

The examination of the 4,980 compounds suggested a high level of structural dissimilarity
(dendrogram and heat map are shown on line at http://labmol.farmacia.ufg.br/predherg).

The 5-fold cross-validation procedure was used to estimate the robustness of the models
developed. The test set was applied to validate and to estimate the predictive power of the
models. In this work, we have chosen the models generated for the threshold level of 10 pM,
which showed the best performance and were validated internally and externally. The
statistical results of generated QSAR models for the modeling set of the 10 uM threshold
level are summarized in Table 3. The detailed results for this threshold level, as well as the
full results for the threshold levels of 1 uM and 20 uM, are available in Tables S1-S9
(Supplementary Material). The combination of different descriptors and machine learning
methods led to robust and predictive QSAR models, with balanced accuracy (BAC) values
ranging between 0.74-0.87 and a coverage of 0.77-0.93 (Table 3).

The best individual model was generated using the combination of featMorgan fingerprints
with SVM (BAC = 78%; sensitivity = 86%; specificity = 69%; see Table 3 for more details).

To assure that the accuracy of the models was not due to chance correlation, 10 rounds of Y-
randomization were performed for each dataset. The results are shown in Tables S3, S5 and
S9 (Supplementary Material).

Several QSAR models were generated using multiple machine learning algorithms and
descriptors. Consensus QSAR modeling, i.e., parallel development of multiple QSAR
models using all pairwise combinations of different types of chemical descriptors and
various machine learning techniques over single QSAR modes, has been shown to be
advantageous [112, 113]. Nevertheless, no need exists of the overabundance of models in
the consensus ensemble [94]. Therefore, a verification procedure was conducted to indicate
whether a consensus model, based on models from Table 3, would offer additional
advantages compared to the individual models. The consensus model was built by averaging
the predicted values from the individual model for each machine learning technique that
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yielded the best performance with higher coverage. Consensus model considered only
compounds that were predicted identically (with AD taken into account) by all the models.
For example, if models 1, 2, and 3 predicted a compound to be a blocker, and this compound
is inside the AD for these models, but model 4 predicted this compound to be a non-blocker,
and the compound is outside the AD for this model, in the consensus model this compound
was still classified as a blocker. However, if the compound is predicted to be a blocker, and
it is inside the AD for models 1, 2, and 3, but the compound is predicted to be a non-blocker
by model 4 and is inside the AD, the final prediction of the consensus is specified as
inconclusive. In another situation, if all four models, independently of the outcome, yielded
predictions outside the AD, the result for this compound was classified as unreliable.

Thus, the consensus model was built by combining the SVM model with MACCS
fingerprints (MACCS-SVM), the Tree Bagging method with PubChem Fingerprints
(PubChem-TreeBag), the RF model with the ChemAxon Pharmacophore Fingerprint
(Pharm. FP-RF), and the gradient boosting model (GBM) with the featMorgan fingerprint
(featMorgan-GBM). The generated consensus model demonstrated BAC of 83%, sensitivity
of 85%, specificity of 81%, and coverage of 74% (see Table 3 for more details). Therefore,
the consensus model discriminates well between hERG blockers and nonblockers—better
than any of the individual models.

More rigorous consensus model was also developed (consensus rigor), by combining the
same models as in the consensus model with more restrictive conditions. The consensus
rigor model only considered the outcome to be reliable when a compound was inside the AD
for the four models, and all of the predictions were equal. Any non-concordant prediction
was specified as inconclusive. If the compound was outside the AD for any model, then the
outcome was specified as unreliable. Expectedly, the increase prediction performance of
consensus rigor model (BAC = 87%, sensitivity = 89%, specificity = 84%; see Table 3) was
achieved at the expense of coverage (34%). Although consensus rigor model is very
accurate predictor, its applicability is limited only for certain chemical classes.

In summary, the consensus model demonstrated better results for 5-fold external CV, with
5% accuracy and 20% sensitivity increase when compared with the best individual model
(featMorgan-SVM). The statistical results for the external test set at the 10 uM threshold
level are summarized in Table 4. The complete results are shown in Table S6
(Supplementary Material). Consensus model demonstrated the best performance among all
other individual models (BAC of 91%, sensitivity of 89%, specificity of 93%, and coverage
of 78%).

Li et al. [48] compiled a dataset of 561 compounds with chemical data for hERG activity.
After exclusion of duplicates with our modeling set, 377 unique compounds were retained at
the threshold level of 10 pM and used as an additional external validation set. Our consensus
model reached BAC of 95%, sensitivity of 91%, specificity of 99%, and 84% of coverage
for this additional external validation set.

Moreover, Li et al. [48] used an additional evaluation set comprising 66 compounds from
the WOMBAT-PK database with reported hERG activity to validate the performance of
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their models. Therefore, this external set of 66 compounds from the WOMBAT-PK database
was used to examine validation of the consensus model by comparing with the results from
Li et al. [48] under the same conditions. The comparison of the statistical values is shown in
Table 5. The consensus model outperformed the Li et al. [48] models in specificity,
sensitivity, and in other performance metrics, which reflected a higher BAC (~ 0.27) for the
models developed in this research. Moreover, the consensus model for the 10 uM threshold
level presented a BAC of 98% (which represents 1 compound misclassified out of 59),
sensitivity of 98%, specificity 99%, and coverage of 89% (Table 5).

Czodrowski [71] performed an analysis of the hERG dataset retrieved from ChEMBL in
which four classification models were built with different divisions of the dataset using the
RDK:it descriptors and the RF model. To the best of our knowledge, this is the only study
found to use the hERG dataset content in the ChEMBL database. Initially we wanted to
compare the models obtained by Czodrowski with the ones developed in our study. But then
we have found that Czodrowski [71] did not calculate the AD for the models that allowed
prediction of 100% of compounds but compromises their practical use. Consensus models
developed in this study has AD estimation that reduced the coverage. We wanted to use the
same set of compounds for fair comparison, but unfortunately predicted values were not
reported in the study [71] that does not allow us to make direct comparison.

QSAR models were developed as virtual screening tools for revealing putative hERG
blockers among marketed drugs and those in development using the WDI database for a
case study. A total of 179 compounds were present in both the hERG and the WDI datasets:
103 blockers and 76 nonblockers. After the data curation 44,486 remaining unique
compounds were predicted by consensus model developed in this research for revealing
putative hERG blockers and non-blockers. 4,945 compounds were predicted to be blockers
and 20,871 — to be non-blockers (the remaining compounds 18,670 were outside of the AD).
All the compounds and corresponding predictions are available in the supplementary
material and on-line (http://labmol.farmacia.ufg.br/predherg/vs-wdi.pdf).

Model interpretation revealed several SAR rules, which can guide structural optimization of
hERG blockers into non-blockers. Figures 1 — 2 show some revealed SAR rules, involving
changes in the amine nitrogen environment, adding oxygen atom, removing carbon atoms,
aromatic substitutions, transformations involving some descriptors such as the difference
between the topological polar surface area (ATPSA) [114] of the two molecules in the
transformation and the Labute’s approximate surface area descriptor (Labute ASA) [115].

The general transformations in Fig. 1 show some changes in the environment of the amine
nitrogen can reduce hERG inhibition. In Fig. 1A, we can see that removing carbons and/or
changing the electronic environment around the basic nitrogen can result in a reduction in
hERG inhibition. In this example, the modification of the pyrrolidine moiety by removing
carbon atoms or changing it to another functionalized ring (in this example a morpholine
ring), yielded in the reduction of the hERG binding. Furthermore, the next two
transformations (Fig. 1B and 1C) show the same SAR rules that remove carbon atoms,
reduce lipophilicity and/or change the electronic and steric environment around the basic
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nitrogen can transform a potent hERG blocker to less potent blocker or even to a non-
blocker compound. Some of those observations were also found previously [48, 116].

We can also observe that transformations that add a hydroxyl group reduce hERG inhibition
(Fig. 2A). As already mentioned, removing carbon atoms, as well as reducing the
lipophilicity, can result in a reduction in hERG binding (Fig. 2B).

We also noticed some SAR rules revealing specific structural changes through descriptors,
like the topological polar surface area (TPSA) of the compounds [114]. If the difference
between the descriptor TPSA (ATPSA) of two compounds involved in the transformation is
equal or greater to 60, this can result in reduction in hERG inhibition (Fig. 2C). We have
found in our modeling set that 50 compounds follow this SAR rule and only 3 compounds
do not follow this rule. Another descriptor observed and related with changes in hERG
binding potency is the Labute’s approximate surface area (Labute ASA) [115]. If the
calculated Labute ASA descriptor is between 309 and 337, then the compound is frequently
a hERG blocker (Fig. 2D). 130 compounds in our modeling set followed this SAR rule and
3 compounds do not follow this rule.

Importantly, our QSAR models were also capable of recognizing modifications that do not
follow the general SAR rules, as shown in Fig. 3. As we can see, some bioisosteric
replacements have resulted in dramatic changes in activity. For example, the replacement of
a furane ring by a tetrazole ring, which is a bioisosteric replacement and therefore should
preserve the activity, resulted in a substantial alteration in hERG binding, changing the
compound from a blocker to non-blocker (Fig. 3A, left). The same is observed with the
substitution of benzene to pyridine ring (Fig. 3A, right). The bioisosteric replacement of
aromatic rings in our modeling set had 169 examples that follow the SAR rule, as the
bioisosteric replacement did not altered the activity. However, there were 21 examples in
which this modification had altered dramatically the activity, changing from a blocker to
non-blocker compound, and our model could capture such modifications. These cases
represent the activity cliffs, i.e., structurally similar compounds with large differences in
potency [117]. The modification of a chlorine to hydroxyl group in a aromatic ring also
reduced dramatically the binding to hERG (Fig. 3B, left). Although these groups are classic
bioisosteres, this transformation involved the introduction of a hydroxyl group in an
aromatic ring that alters the electronic environment in the aromatic group. The same is
observed with the substitution of a chlorine by a nitrile group (Fig. 3B, right), leading to a
notable change in hERG binding, changing from a blocker compound to a non-blocker
compound. The following examples in Fig. 3C and 3D are also activity cliffs.

In general, our SAR rules showed that to decrease toxicity of hERG blockers one should
consider decreasing their lipophilicity, removing carbons and/or changing the electronic
environment around the basic nitrogen, and increasing the topological polar surface area. It
is important to note that our observations also indicated that hERG inhibition has complex
structure-activity relationship as subtle changes in the structure often result in small changes
in activity. Moreover, we observed a considerable number of activity cliffs in hERG dataset,
most of them span a potency difference of at least 2 orders of magnitude. The final model
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showed the ability to predict such transformations and the threshold effect for compounds
near to the border regions.

CONCLUSIONS

Poor pharmacokinetics and toxicity are important causes of costly late-stage failures in drug
development. Our laboratory has been working to overcome or reduce these failures,
developing in silico tools to early predict and optimize some properties, such as metabolism
[118-125], mutagenicity (Ames test), Caco-2 permeability, blood-brain barrier penetration
(BBBP), and water solubility [126], skin sensitization, skin permeability, among others
[127-131].

We have developed statistically significant and externally predictive QSAR models of
hERG blockage. The best model was obtained for the 10 uM threshold using the largest
publicly available dataset of structurally diverse compounds including variety of drug
classes. Consensus modeling by merging models developed with different sets of descriptors
increased the balanced accuracy, sensitivity, and specificity of the models up to 81-85%
with the coverage of ~75%. The models developed in this study can be used by the research
community and regulatory scientists for the rapid evaluation of cardiac toxicity liability via
hERG inhibition in chemical inventories. For instance, we applied our models for the virtual
screening of the WDI dataset and identified 4,945 potential hERG blockers that may be
candidates for targeted testing to determine hERG liability. As a result of our study, all
curated datasets and developed models that can be used for the rapid identification of hERG
blockers and non-blockers in the context of virtual screening for drug development, have
been made publicly available at the LabMol (http://labmol.farmacia.ufg.br/predherg) and
Chembench web-portals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

SAR rules involving structural transformations that change the environment of the amine
nitrogen. For each compound, we show the experimental potency (ICsq) available on
ChEMBL database and the corresponding prediction by consensus model for 10 uM

threshold.
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prediction by consensus model for 10 uM threshold. (C) ATPSA is the difference between
the topological polar surface area of the two molecules involved in the transformation. (D)
Labute ASA is the Labute’s approximate surface area descriptor.
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Transformations involving bioisosteric replacements, showing activity cliffs. For each
compound, we show the experimental potency (ICsgg) available on ChEMBL database and
the corresponding prediction by consensus model for 10 pM threshold.
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