946 research outputs found

    Similarity-Based Chained Transfer Learning for Energy Forecasting with Big Data

    Get PDF
    Smart meter popularity has resulted in the ability to collect big energy data and has created opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for forecasting, such as neural networks, involve computationally intensive training typically with data from a single building or a single aggregated load to predict future consumption for that same building or aggregated load. With hundreds of thousands of meters, it becomes impractical or even infeasible to individually train a model for each meter. Consequently, this paper proposes Similarity-Based Chained Transfer Learning (SBCTL), an approach for building neural network-based models for many meters by taking advantage of already trained models through transfer learning. The first model is trained in a traditional way whereas all other models transfer knowledge from the existing models in a chain-like manner according to similarities between energy consumption profiles. A Recurrent Neural Network (RNN) was used as the base forecasting model, two initialization techniques were considered, and different similarity measures were explored. The experiments show that SBCTL achieves accuracy comparable to traditional ML training while taking only a fraction of time

    Cluster-Based Chained Transfer Learning for Energy Forecasting With Big Data

    Get PDF
    Smart meter popularity has resulted in the ability to collect big energy data and has created opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for forecasting, such as neural networks, involve computationally intensive training typically with data from a single building/group to predict future consumption for that same building/group. With hundreds of thousands of smart meters, it becomes impractical or even infeasible to individually train a model for each meter. Consequently, this paper proposes Cluster-Based Chained Transfer Learning (CBCTL), an approach for building neural network-based models for many meters by taking advantage of already trained models through transfer learning. CBCTL first clusters the meters based on their load profiles. Next, Similarity-Based Chained Transfer Learning (SBCTL) is applied within each cluster; the first model within each cluster is trained in a traditional way and all other models transfer knowledge from existing models in a chain-like manner according to similarities between energy consumption profiles. A Recurrent Neural Network (RNN) was used as the base forecasting model, two initialization techniques were considered, and different similarity measures were explored. The experiments show that CBCTL and SBCTL achieve accuracy comparable to traditional ML training while taking only a fraction of time

    Transfer learning for smart buildings: A critical review of algorithms, applications, and future perspectives

    Get PDF
    Smart buildings play a crucial role toward decarbonizing society, as globally buildings emit about one-third of greenhouse gases. In the last few years, machine learning has achieved a notable momentum that, if properly harnessed, may unleash its potential for advanced analytics and control of smart buildings, enabling the technique to scale up for supporting the decarbonization of the building sector. In this perspective, transfer learning aims to improve the performance of a target learner exploiting knowledge in related environments. The present work provides a comprehensive overview of transfer learning applications in smart buildings, classifying and analyzing 77 papers according to their applications, algorithms, and adopted metrics. The study identified four main application areas of transfer learning: (1) building load prediction, (2) occupancy detection and activity recognition, (3) building dynamics modeling, and (4) energy systems control. Furthermore, the review highlighted the role of deep learning in transfer learning applications that has been used in more than half of the analyzed studies. The paper also discusses how to integrate transfer learning in a smart building's ecosystem, identifying, for each application area, the research gaps and guidelines for future research directions

    A Novel Clustering Model Based on Set Pair Analysis for the Energy Consumption Forecast in China

    Get PDF
    The energy consumption forecast is important for the decision-making of national economic and energy policies. But it is a complex and uncertainty system problem affected by the outer environment and various uncertainty factors. Herein, a novel clustering model based on set pair analysis (SPA) was introduced to analyze and predict energy consumption. The annual dynamic relative indicator (DRI) of historical energy consumption was adopted to conduct a cluster analysis with Fisher’s optimal partition method. Combined with indicator weights, group centroids of DRIs for influence factors were transferred into aggregating connection numbers in order to interpret uncertainty by identity-discrepancy-contrary (IDC) analysis. Moreover, a forecasting model based on similarity to group centroid was discussed to forecast energy consumption of a certain year on the basis of measured values of influence factors. Finally, a case study predicting China’s future energy consumption as well as comparison with the grey method was conducted to confirm the reliability and validity of the model. The results indicate that the method presented here is more feasible and easier to use and can interpret certainty and uncertainty of development speed of energy consumption and influence factors as a whole

    CUDA-bigPSF: An optimized version of bigPSF accelerated with Graphics Processing Unit

    Get PDF
    Accurate and fast short-term load forecasting is crucial in efficiently managing energy production and distribution. As such, many different algorithms have been proposed to address this topic, including hybrid models that combine clustering with other forecasting techniques. One of these algorithms is bigPSF, an algorithm that combines K-means clustering and a similarity search optimized for its use in distributed environments. The work presented in this paper aims to improve the time required to execute the algorithm with two main contributions. First, some of the issues of the original proposal that limited the number of cores simultaneously used are studied and highlighted. Second, a version of the algorithm optimized for Graphics Processing Unit (GPU) is proposed, solving the previously mentioned issues while taking into account the GPU architecture and memory structure. Experimentation was done with seven years of real-world electric demand data from Uruguay. Results show that the proposed algorithm executed consistently faster than the original version, achieving speedups up to 500 times faster during the training phase.Funding for open access charge: Universidad de Granada / CBUAGrant PID2020-112495RB-C21 funded by MCIN/ AEI /10.13039/501100011033I + D + i FEDER 2020 project B-TIC-42-UGR2

    Transfer Learning for Electricity Price Forecasting

    Full text link
    Electricity price forecasting is an essential task for all the deregulated markets of the world. The accurate prediction of the day-ahead electricity prices is an active research field and available data from various markets can be used as an input for forecasting. A collection of models have been proposed for this task, but the fundamental question on how to use the available big data is often neglected. In this paper, we propose to use transfer learning as a tool for utilizing information from other electricity price markets for forecasting. We pre-train a bidirectional Gated Recurrent Units (BGRU) network on source markets and finally do a fine-tuning for the target market. Moreover, we test different ways to use the input data from various markets in the models. Our experiments on five different day-ahead markets indicate that transfer learning improves the performance of electricity price forecasting in a statistically significant manner

    Transfer Learning by Similarity Centred Architecture Evolution for Multiple Residential Load Forecasting

    Get PDF
    The development from traditional low voltage grids to smart systems has become extensive and adopted worldwide. Expanding the demand response program to cover the residential sector raises a wide range of challenges. Short term load forecasting for residential consumers in a neighbourhood could lead to a better understanding of low voltage consumption behaviour. Nevertheless, users with similar characteristics can present diversity in consumption patterns. Consequently, transfer learning methods have become a useful tool to tackle differences among residential time series. This paper proposes a method combining evolutionary algorithms for neural architecture search with transfer learning to perform short term load forecasting in a neighbourhood with multiple household load consumption. The approach centres its efforts on neural architecture search using evolutionary algorithms. The neural architecture evolution process retains the patterns of the centre-most house, and later the architecture weights are adjusted for each house in a multihouse set from a neighbourhood. In addition, a sensitivity analysis was conducted to ensure model performance. Experimental results on a large dataset containing hourly load consumption for ten houses in London, Ontario showed that the performance of the proposed approach performs better than the compared techniques. Moreover, the proposed method presents the average accuracy performance of 3.17 points higher than the state-of-the-art LSTM one shot method

    Generating Energy Data for Machine Learning with Recurrent Generative Adversarial Networks

    Get PDF
    The smart grid employs computing and communication technologies to embed intelligence into the power grid and, consequently, make the grid more efficient. Machine learning (ML) has been applied for tasks that are important for smart grid operation including energy consumption and generation forecasting, anomaly detection, and state estimation. These ML solutions commonly require sufficient historical data; however, this data is often not readily available because of reasons such as data collection costs and concerns regarding security and privacy. This paper introduces a recurrent generative adversarial network (R-GAN) for generating realistic energy consumption data by learning from real data. Generativea adversarial networks (GANs) have been mostly used for image tasks (e.g., image generation, super-resolution), but here they are used with time series data. Convolutional neural networks (CNNs) from image GANs are replaced with recurrent neural networks (RNNs) because of RNN’s ability to capture temporal dependencies. To improve training stability and increase quality of generated data,Wasserstein GANs (WGANs) and Metropolis-Hastings GAN (MH-GAN) approaches were applied. The accuracy is further improved by adding features created with ARIMA and Fourier transform. Experiments demonstrate that data generated by R-GAN can be used for training energy forecasting models
    • …
    corecore