
Expert Systems With Applications 230 (2023) 120661

Available online 2 June 2023
0957-4174/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

CUDA-bigPSF: An optimized version of bigPSF accelerated with graphics
processing Unit

D. Criado-Ramón a,1,*, L.B.G. Ruiz b,2, M.C. Pegalajar a,3

a Department of Computer Science and Artificial Intelligence, University of Granada C/Periodista Daniel Saucedo Aranda s.n, 18014, Granada, Granada, Spain
b Department of Software Engineering, University of Granada C/Periodista Daniel Saucedo Aranda s.n, 18014, Granada, Granada, Spain

A R T I C L E I N F O

Keywords:
Time series forecasting
Hybrid models
CUDA
Energy
Big data

A B S T R A C T

Accurate and fast short-term load forecasting is crucial in efficiently managing energy production and distri
bution. As such, many different algorithms have been proposed to address this topic, including hybrid models
that combine clustering with other forecasting techniques. One of these algorithms is bigPSF, an algorithm that
combines K-means clustering and a similarity search optimized for its use in distributed environments. The work
presented in this paper aims to improve the time required to execute the algorithm with two main contributions.
First, some of the issues of the original proposal that limited the number of cores simultaneously used are studied
and highlighted. Second, a version of the algorithm optimized for Graphics Processing Unit (GPU) is proposed,
solving the previously mentioned issues while taking into account the GPU architecture and memory structure.
Experimentation was done with seven years of real-world electric demand data from Uruguay. Results show that
the proposed algorithm executed consistently faster than the original version, achieving speedups up to 500
times faster during the training phase.

1. Introduction

Since electricity was discovered, humanity has created a steadily
growing number of devices that make use of electricity. Most of the time,
people use electricity simultaneously for multiple applications such as
lighting, refrigeration, cooling, or heating, among others. The energy
required for this is usually provided via an interconnected electricity
network known as “power grid”.

However, many complex factors have to be taken into account in the
management of the power grid, such as the use of renewable energy
sources, which rely on weather conditions or electricity transmission
losses. Thus, it is common to use Artificial Intelligence (AI) systems to
assist in the management of the power grid, particularly in the predic
tion of energy demand and renewable energy production (Bose, 2017).

Over the last two decades, technical advancements have led to the
higher use of smart meters (Zheng et al., 2013), devices that measure the

electricity imported and exported from the grid by the consumer in real
time. These devices also provide the energy provider with energy con
sumption data periodically, which can be used to optimize energy pro
duction and distribution in entire regions. With the adoption of these
devices and the increasing energy consumption transparency of public
entities and governments, researchers have a wide range of data avail
able to study energy consumption. However, in many cases, usage of this
type of data poses considerable challenges, as the sheer amount of data
may significantly increase the computational power required to train
these AI systems.

The relevance of energy in our current society has led to its study
under many different scenarios. The algorithms used for this task (Kong
et al., 2019) cover a wide range from easy-to-understand and interpret
models, such as ARIMA, to highly accurate black-box models: neural
networks, deep learning, and ensembles of different models, among
others. Pattern Sequence-based Forecasting (PSF) (Martinez Alvarez

Abbreviations: ANN, Artificial Neural Network; CNN, Convolutional Neural Network; CUDA, Compute Unified Device Architecture; GPU, Graphics Processing
Unit; LSTM, Long-Short Term Memory; MAE, Mean Absolute Error; MAPE, Mean Absolute Percentage Error; PSF, Pattern Sequence-Based Forecasting; RDD, Resilient
Distributed Dataset; RMSE, Root Mean Square Error; SOM, Self-Organizing Map.

* Corresponding author.
E-mail addresses: dcriado@ugr.es (D. Criado-Ramón), bacaruiz@ugr.es (L.B.G. Ruiz), mcarmen@decsai.ugr.es (M.C. Pegalajar).

1 0000-0003-3030-792X.
2 0000-0001-6716-5115.
3 0000-0001-9408-6770.

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2023.120661
Received 31 January 2023; Received in revised form 6 May 2023; Accepted 30 May 2023

mailto:dcriado@ugr.es
mailto:bacaruiz@ugr.es
mailto:mcarmen@decsai.ugr.es
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2023.120661
https://doi.org/10.1016/j.eswa.2023.120661
https://doi.org/10.1016/j.eswa.2023.120661
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.120661&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 230 (2023) 120661

2

et al., 2011) is an interesting middle-ground approach that has previ
ously provided remarkable results in the energy field. This algorithm
creates hybrid models that combine clustering and additional methods
to extract patterns and make computations based on those patterns. PSF
and many of its improved versions present some interesting properties in
big data scenarios, e.g., the clustering-based pattern extraction reduces
the computational cost for the second step of the algorithm, the pattern
sequence-based forecast. However, they still require intense computa
tional power as each prediction requires an independent clustering and
pattern sequence-based forecast, severely hindering the time needed to
train and predict with these models.

Parallel and distributed approaches are frequently used to reduce the
time needed to train algorithms with high computational demands. An
improved specialized version for Apache Spark clusters called “bigPSF”
was presented in 2020 (Pérez-Chacón et al., 2020). However, there is no
work to this date that studies PSF algorithms under parallel architec
tures. In this paper, a new version of the bigPSF algorithm accelerated
with Graphic Processing Units (GPUs) is proposed, hereafter referred to
as “CUDA-bigPSF”. Two main contributions are provided to this
research field in this work:

• The first GPU implementation of a pattern sequence-based algorithm
is developed, reducing significantly the time required to train and
use this model.

• Some of the issues of the original BigPSF proposal are highlighted
and how they could be solved to obtain better performance when
using a distributed environment.

This manuscript is structured as follows: Section 2 reviews relevant
related papers on pattern sequence-based forecasting and GPU algo
rithms with a focus on big data energy problems. Section 3 describes the
CUDA/GPU architecture and explains the CUDA-bigPSF algorithm.
Section 4 studies the GPU implementation’s accuracy, speedup, and
scalability. Lastly, section 5 draws the most relevant accomplishments of
this work and proposes future lines of research.

2. Related works.

This section is structured in two independent parts and reviews the
most relevant related works in the field. In the first part, works related to
the PSF algorithm are reported and discussed. In the second part, we
review the use of the GPU in AI and, more specifically, in the energy
field.

The PSF algorithm was published in 2011 (Martinez Alvarez et al.,
2011). This algorithm starts by applying K-means clustering to trans
form the time series before the prediction date into a sequence of cluster
identifiers (labels). Afterwards, the algorithm splits the labeled sequence
using a sliding window of size W. In order to make the prediction, the
algorithm looks for similar patterns to the last created with the sliding
window, i.e., the pattern of the W days before the prediction date. The
final prediction is the average of all the occurrences found using the
original time series.

PSF has shown excellent results when working with energy data, and,
as such, it is its primary use. Nevertheless, it has also been used to
forecast energy prices (Jin et al., 2015), wind speed (Bokde et al., 2017),
solar power (Fujimoto & Hayashi, 2012), or even to impute missing data
(Bokde et al., 2018). Several authors have proposed variants and im
provements to overcome some of the original algorithm’s limitations. In
(Jin et al., 2015) the authors used the Self-Organizing Map (SOM) and
neural networks to create a specialized version that preserves the input
space’s topological properties. Similarly, in (Martínez-Álvarez et al.,
2019) the authors proposed a specialized version for functional data
(funPSF) through the use of a functional clustering algorithm, funHDDC
(Bouveyron & Jacques, 2011). They also created a version with
specialized models for each day of the week (7-funPSF) that provided
significantly better results than the previous one. In (Shen et al., 2013)

the authors evaluated using PSF with five different clustering methods
(K-means, SOM, K-medoids, Hierarchical clustering, and Fuzzy
C-means) individually and in an ensemble. (Jin et al., 2014) introduced
a weighted mean that gives more relevance to the most frequent patterns
each day of the week. Lastly, the algorithm our work is based in
(Pérez-Chacón et al., 2020) proposes adapting the original PSF algo
rithm for clusters with Apache Spark. Beyond the distributed approach,
this algorithm also included a weighted mean that gives more relevance
to the matches closer to the prediction date and a grid search of
hyperparameters to find the best solution at the expense of more
computational power.

The rise of big data and many other data science methodologies that
are computationally expensive, such as AutoML, have led to a higher
interest in parallel and distributed algorithms capable of providing
similar results in less time. Researchers and companies have published
open-source access to GPU-accelerated implementations of traditional
machine learning algorithms. Facebook’s FAISS library (Johnson et al.,
2021) optimizes similarity search and clustering of dense vectors,
providing fast K-means clustering and nearest neighbour search algo
rithms. ThunderSVM (Wen et al., 2018) provides a GPU adaptation of
Support Vector Machines with the standard kernels used for classifica
tion and regression. Most gradient boosting machines provide GPU-
accelerated implementations, such as XGBoost (Chen & Guestrin,
2016) or LightGBM (Ke et al., 2017). NVIDIA recently launched cuML
(Raschka et al., 2020), a CUDA-specific open-source library to accelerate
all the algorithms included in the popular Python package scikit-learn.

Table 1
Summary of related works using the GPU on the energy field.

Citation Framework Application Contributions

(Kintsakis
et al.,
2015)

No Demand and
price forecast

They propose a parallelized
version of Particle Swarm
Optimization to train Local
Linear Wavelet Neural
networks.

(Coelho
et al.,
2017)

No Appliance load
forecast

They propose a hybrid model
combining fuzzy rules and
metaheuristics accelerated
with GPU.

(Tian et al.,
2019)

PyTorch Smart meters They developed a transfer
learning methodology to train
large sets of smart meters
based on similarity.

(Kim & Cho,
2019)

Keras Residential
buildings

consumption

They propose a combination
of Convolutional Neural
Networks (CNN) and Long-
Short Term Memory (LSTM).

(Iruela et al.,
2020)

No Public buildings
consumption

They develop a parallel
version of the NSGA-II
metaheuristic to train feed-
forward neural networks.

(Iruela et al.,
2021)

Tensorflow Public buildings
consumption

They present a methodology
to simultaneously train
specialized neural network
models for each hour of the
day.

(Said &
Alanazi,
2022)

Keras Solar energy
production

They combined the use of
autoenconders for feature
extraction with LSTM neural
networks.

(Haque &
Rahman,

2022)

Tensorflow Commercial
buildings

consumption.

They combined the use of
regularized LSTM and
Recurrent Neural Networks
(RNN) and developed a
heuristic to find the optimal
neural network configuration.

(Chen et al.,
2023)

Tensorflow Smart meters They developed a federated
framework for smart meters
that makes of generative
adversarial networks (GAN)
to create privacy-preserving
synthetic data.

D. Criado-Ramón et al.

Expert Systems With Applications 230 (2023) 120661

3

Neural network frameworks, such as Tensorflow (Abadi et al., 2016) or
PyTorch (Paszke et al., 2019), provide GPU-accelerated implementa
tions optimized for deep neural networks and represent the broadest use
of GPU in AI research nowadays.

The energy field is no different, and most relevant recently published
works use GPU-accelerated neural network frameworks or use paral
lelized metaheuristics to train neural networks. Table 1 presents a
summary of the most relevant works on the energy field using the GPU.

Although PSF algorithms have previously shown excellent results in
energy forecasting, to the best of our knowledge, the use of GPU for PSF
algorithms has yet to be studied. As such, the study and proposal of our
GPU-accelerated algorithm, CUDA-bigPSF, is justified.

3. Materials and Methods.

3.1. The CUDA architecture.

GPUs were initially conceived to accelerate graphical computation.
However, the massively parallel architecture of the GPU was also of
interest in many other fields that could use it to accelerate their appli
cations and simulations, leading to an evolution of the GPU program
ming model towards the paradigm known nowadays as General-Purpose
GPU (GPGPU). As part of this evolution, new user-friendly languages
were created to avoid the complexity of writing general-purpose code
through graphical APIs or assembly. An example of this is Compute
Unified Device Architecture (CUDA), a proprietary extension of C++,
made to facilitate GPGPU programming with NVIDIA graphics cards.

In CUDA, the set of instructions to be executed by each GPU thread
are written in special functions called kernels. The programmer specifies
the kernel’s total number of threads by dividing the total number of
threads in a grid of blocks. Each block always contains a fixed number of
threads, and all threads within the same block can be synchronized and
access a special programmer-managed cache for fast collaboration. The
grid indicates the total number of blocks required to execute the kernel.
The number of threads in a given block can be provided in one, two or
three dimensions to overcome some limitations and to provide easier

abstractions in some algorithms involving complex structures such as
matrices. The same applies to the dimension of a grid.

A CUDA-capable GPU has one or more streaming multiprocessors,
each containing a set of cores, registers, cache memory and a scheduler.
When a kernel is launched, the blocks are distributed through the
different multiprocessors. All threads within the same block are
executed concurrently, and multiple blocks can be executed concur
rently by the same multiprocessor. At its core, the CUDA architecture
uses a Single Instruction Multiple Threads (SIMT) approach where 32
contiguous threads (a “warp”) will execute the same instruction inde
pendently of the number of threads used in a block. As such, branching
code can negatively impact the performance of the GPU algorithm, as
both options must be evaluated before proceeding with the next in
struction, even if only one thread in the warp takes the alternative
branch.

Memory accesses are one of the primary bottlenecks of GPU-
accelerated algorithms. As such, understanding the GPU memory hier
archy (Fig. 1), its advantages and caveats is critical in GPU algorithm
development. The GPU presents a slower and bigger global memory
used to communicate with the CPU (host) that all threads of the GPU can
access. Furthermore, it presents up to two levels of cache memory (L1
cache for each multiprocessor and L2 cache for all multiprocessors).
When writing a kernel, the developer can decide whether to store the
variable in the global scope (global memory), local scope, and the
specialized section of the L1 cache to cooperate with threads within the
same block called “shared memory”. Variables in the local scope follow
similar rules to those in the global memory, but the compiler can also
store them in the registers under certain circumstances. Nevertheless,
accesses to global and local memory can also be fast if we use a pre
dictable access pattern, as they will be cached once a store or load
happens. Only cache misses will hinder the performance. Lastly, we
must note that there are some other specialized memory abstractions,
such as the constant memory (read-only) or the texture memory, that we
have decided to omit for simplicity as they are irrelevant to this paper.

Fig. 1. A schematic of the memory layout and multiprocessors of the GPU device used in this research.

D. Criado-Ramón et al.

Expert Systems With Applications 230 (2023) 120661

4

3.2. The bigPSF algorithm.

BigPSF provides an improved PSF algorithm for distributed envi
ronments. The training process of the algorithm finds the optimal
hyperparameters (number of clusters and window size) through a grid
search evaluated in a validation partition. The training and test

processes are done sequentially over all the days on their corresponding
partition, using the additional computational power to accelerate each
prediction.

The BigPSF accelerated prediction algorithm (Fig. 2) starts by
creating a distributed structure denominated RDD (Resilient Distributed
Dataset) from the original dataset samples before the prediction date.

Fig. 2. A general scheme of the steps done by the bigPSF algorithm for each prediction.

Fig. 3. An example of how the BigPSF algorithm calculates a prediction in a simulated dataset for K = 5 and W = 3.

D. Criado-Ramón et al.

Expert Systems With Applications 230 (2023) 120661

5

This RDD is shuffled into random partitions distributed on the nodes
available in the cluster. The algorithm continues by applying K-means
over the RDD. Centroids are initialized using the k-means++ algorithm
(Arthur & Vassilvitskii, 2007).

Afterwards, each node finds the closest cluster for the partitions of
the RDD available in the node and computes a partial centroids update.
After each iteration, partial centroids are communicated to the primary
node to obtain the final centroids of the iteration. K-means clustering
ends after reaching a maximum number of iterations or convergence.
The clustering process finishes with the creation of a new RDD, in which
each sample is transformed to its closest cluster identifier. Each compute
node does this last step independently, as synchronization is unnec
essary. Then, the algorithm creates its more complex structure, the
“pattern matrix”, in a new RDD. Each row of this RDD contains a row
identifier id, a sequence of W labels from the days between id and id + W
− 1, and a data copy (hValue) of the day id + W of the original dataset.
This structure is generated by grouping all the possible sequences of
labels of length W from the previous RDD. Finally, the algorithm filters
all rows in the pattern matrix that share the same pattern and day of the
week of the prediction date. The prediction is the weighted average of
the data copies sharing the same sequence of labels and day of the week.
This weight for each match is calculated as:

wi =
idi

∑
j∈matchesidj

(1)

where idi is the row identifier of the match and matches contains all
pattern occurrences in the pattern matrix.

A small example of how the bigPSF calculates a prediction is pro
vided in Fig. 3, where the algorithm is computing the prediction for the
day with ID 100 with a window size of W = 3 and a number of clusters K
= 5. The algorithm starts by applying K-means with all the data prior to
the day to be predicted and labeling them with their corresponding best
cluster (upper row of the figure). Then, making use of the labeled dataset
and the window size, the pattern matrix is constructed. The last row of
the pattern matrix will indicate the pattern of the day to be predicted. All
previous rows in the pattern matrix containing the same pattern are
filtered and the final prediction is made with the weighted average of the
hValues of the rows selected (using the weights provided in eq. 1).

3.3. CUDA-bigPSF.

The bigPSF algorithm shows some level of parallelism in two primary
ways. In the first one (data parallelism), the computation for each
sample in the dataset in parallel is done in paralle, as it proposed in the
original bigPSF algorithm. In the second one, each prediction is made
sequentially in each thread. There are several reasons why the second
approach better when using the GPU. First, to obtain a significant
speedup, it is imperative to keep all GPU threads busy. However, if a
data parallelism strategy is used, there would be several instances in
which some threads would have to wait until all the others finish for
synchronization purposes. For example, after each K-means iteration,

Fig. 4. A flowchart of the work executed by each thread in CUDA-bigPSF.

D. Criado-Ramón et al.

Expert Systems With Applications 230 (2023) 120661

6

the algorithm would need synchronization to ensure centroids are
updated before the next iteration begins. Second, if the number of days
in the dataset is smaller than the number of cores available in the GPU,
using the first approach would keep more CUDA cores busy as long as
three or more different numbers of clusters are being evaluated simul
taneously. Last, the limited memory available in the GPU makes using
the second approach better for scalability as memory accesses are local
to the thread except for reading the dataset and writing the final result.
Therefore, after each thread finishes its work, the local memory re
sources can be released to be used by another thread, significantly
improving the scalability of the proposed approach.

As such, CUDA-bigPSF (Fig. 4) distributes the work in independent
threads, each computing the prediction for a given date. They have ac
cess to the entire dataset and the final output structure in global mem
ory. The thread identifier will be used to determine up to which date of
the input dataset they should be able to access and where they must
write their predictions in the output structure. The kernel (algorithm 1)
will launch using a bi-dimensional grid of quantity of number of clusters
to be evaluated by the minimum number of blocks to cover the valida
tion (or test) partition.

Algorithm 1 CUDA-bigPSF (Each thread)

1: cluster_centers = KMeans(K, input, max_iterations, ∊)
2: query[0:max w-1] = closest_cluster(cluster_centers, input[rows(input)w:rows

(input)])
3: weekday = n mod 7
4: for all i in weekday, weekday + 7, …, n-7 do
5: for all w in 1,2,…,max_w do
6: label = closest_cluster(cluster_centers, sample[i-w])
7: if label = query[max_w-w] then
8: weight = i - w + 1
9: prediction_weights[w] += weight
10: my_predictions[w-1] += weight * input[i]
11 else
12: break
13: end if
14: end for
15: end for
16: for all w in 1, 2, …, max_w do
17: if prediction_weights[w] != 0 then
18: my_predictions[w] = my_predictions[w] / prediction_weights[w]
19: else
20: if w = 1 then
21: Repeat for loop at line 4 with i from 0 to n-1
22: my_predictions[w] = my_predictions[w] / prediction_weights[w]
23: else
24: my_predictions[w] = my_predictions[w-1]
25 end if
26: end if
27: end for
28: Put my_predictions in its corresponding place in global memory

The kernel (algorithm each thread executes) starts with a standard
implementation of Lloyd’s K-means algorithm, initializing the centroids
with the K-means++ algorithm. The clustering process finishes after
reaching a maximum number of iterations or convergence. The objective
function of the K-means algorithm is to minimize the Within Set Sum of
Squared Errors (WSSSE) of each cluster, which is defined as follows (eq.
2):

WSSSE =
∑K

j=1

∑

xi∈Cj

d
(
xi, cj

)2 (2)

where d
(
xi, cj

)2 is the Euclidean distance between each sample xi of the
cluster Cj and the centroid of that cluster cj. The algorithm iterates over
the entire dataset once in each iteration, calculating the closest cluster to
each sample, adding the sample to a new array to compute the centroids
for the next iteration, and incrementing by one another structure used to
count the number of samples in each cluster. The centroids for the next
iteration are obtained by dividing these last two data structures

(computing the mean).
Next, the pattern sequence-based algorithm starts. First, the query is

calculated, i.e., the labels (cluster identifiers) for the w samples before
the prediction date. Then, the algorithm strides weekly over the days in
the dataset that share the same day of the week of the prediction date. To
evaluate a dataset sample i, the label of the sample w days before it is
computed. A match is found for a window size of one if it shares the same
label as the position w of the query in reverse order. The same conditions
apply for any window size w except the previous window size w − 1 also
needs to have a match. The computation for each w is done in ascending
order to avoid any unnecessary calculations.

Every match found indicates that we must use the sample in the
weighted average for the current prediction date and window size. To
use only a stride over the entire dataset, two data structures are required
to compute the weighted average, similar to the procedure previously
used for the k-means centroids. Since the weights of BigPSF are a divi
sion that has the sum of all numerators in the denominator, whenever a
match is found the sample is partially weighted by multiplying by the
numerator and stored in a data structure and an additional data struc
ture is used to eventually compute the sum of all numerators
(denominator).

Lastly, the thread computes the division of the previous two data
structures to obtain the prediction for a given data for all possible values
of w that we are using. As the BigPSF algorithm specifies, the prediction
obtained by a window of size w − 1 is used if there are no matches for a
window size of w. Occasionally the algorithm may fail for a window size
of one. In those scenarios, all samples before the prediction date are
used, regardless of the day of the week. The kernel finishes by putting
the local structure containing the predictions for all possible values of w
in their corresponding place in the global memory so the CPU can access
the results.

As a last note, different clustering algorithms could be used instead of
K-means. Although a similar approach to the one proposed for K-means
could be used for any clustering algorithm, the optimal GPU imple
mentation of the algorithm will change significantly depending on the
data structures and computations required by each algorithm. Never
theless, using K-means provides several advantages that will lead to
substantially faster execution times than most clustering methods. This
is due to the fact that only one hyper-parameter has to be tuned for K-
means (the number of clusters) and only to store a really small data
structure per execution of K-means is required in memory (the cluster
centroids) that will usually always fit in the cache memory even when
there are many predictions and, as such, clustering processes, being
computed in parallel.

Fig. 5. Box plot of the energy consumption each day of the week.

D. Criado-Ramón et al.

Expert Systems With Applications 230 (2023) 120661

7

4. Discussion

4.1. Experimental Setup

We have used the same dataset used in the bigPSF paper to compare
our results. This dataset contains electricity consumption data from
Uruguay between 2007 and 2014 recorded hourly. The average demand
observed is 1092.21 MW, with a minimum of 609.87 MW and a
maximum of 1907.55 MW. Fig. 5 displays the energy consumption
distribution by day of the week. We can observe from this figure that
energy demand on weekends is lower than on weekdays, as it is expected
(Raza & Khosravi, 2015). We did not need additional preprocessing
since the dataset did not present any missing observations or extreme
outliers. The dataset was split in 70 % training and 30 % test, with the
last 30 % of the training partition used as validation for the hyper
parameter optimization, as it is specified in the bigPSF paper.

All experiments were done with a personal computer with an AMD 5
Ryzen 2600X CPU running at 3.6 GHz, an NVIDIA GeForce RTX 3060 Ti
8 GB graphics card, and 32 GB of DDR4 RAM. The code was written
using Python 3.11 and CUDA 11.8. CUDA experiments were repeated 30
times with seeds from 1996 to 2025. For the CUDA-BigPSF kernel, we
used 32 threads per block, as it provided the fastest results.

4.2. Implementation accuracy.

In this section, we will compare the accuracy of our implementation
with the results provided in the original paper. Even though we have
implemented the same algorithm with different approaches, we cannot
obtain the same results as the original authors due to the randomness in
the initialization of k-means and the fact that the original authors did not
seed their experiments. As such, we can only evaluate if we have ob
tained reasonably similar results during training and test.

During the training phase, the Mean Absolute Percentage Error
(MAPE) was used, as it is done in bigPSF. This metric (eq. 2) has the
advantage of being scale-independent and easy to interpret as it repre
sents the average distance between forecasted and expected value in
percentage. For all equations, n represents the total number of samples,
yi the forecasted sample at index i and ŷi the expected values.

MAPE(%) =
100

n

∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (2)

Table 2 displays the difference in MAPE during training between the
average of 30 repetitions of CUDA-bigPSF and BigPSF (enclosed in pa
rentheses). As we can observe, both algorithms provide relatively

similar results considering the randomness of k-means initialization. The
most significant difference in MAPE between the approaches is 0.59 %
with k = 6 and w = 6. The best averaged MAPE found by CUDA-bigPSF
was 4.51 % with k = 14 and w = 1, while the best MAPE for BigPSF was
4.52 % with k = 13 and w = 2. In 1 of the experiment’s repetitions with k
= 15, CUDA-bigPSF could not provide at least one prediction, even
removing the day of the week constraint. Thus, we have excluded that
seed (1998) from the average displayed in the table for k = 15. In 27 out
of the 30 experiment repetitions, a window size of one provided the best
results, questioning whether it is advantageous to study the use of a
broader window size or whether we should limit the window size from
the start to reduce the algorithm’s computational complexity. In 18 out
of the 30 experiment repetitions, a window size of k = 15 provided the
best results, followed by 5 repetitions with k = 13 and 4 repetitions with
k = 14.

We applied a similar methodology to compare the results in test
using the 30 seeds with their optimal hyperparameters. For test, two
additional metrics are used: the Mean Absolute Error (MAE) and the
Root Mean Squared Error. The MAE (eq. 3) provides the average dif
ference between the forecasted value and the expected value in the
original scale of the data while the RMSE (eq. 4) gives a higher penali
zation to large errors between forecasted values and expected values.

MAE =

∑n
i=1|yi − ŷi|

n
(3)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

(4)

Table 3 summarizes the results of our 30 repetitions for CUDA-
bigPSF and the results reported for bigPSF. Our implementations
obtain similar results on average for MAPE and MAE, and the best
experiment done with CUDA even improves the results reported in
bigPSF substantially. However, there is an unexpected difference in the

Table 2
MAPE (%) for the grid search during the training phase for CUDA-bigPSF and bigPSF (enclosed in parentheses). Best values for each method in bold.

K ¼ 2 K ¼ 3 K ¼ 4 K ¼ 5 K ¼ 6 K ¼ 7 K ¼ 8 K ¼ 9 K ¼ 10 K ¼ 11 K ¼ 12 K ¼ 13 K ¼ 14 K ¼ 15

W ¼ 1 7.54
(7.12)

6.75
(6.43)

6.16
(6.02)

5.65
(5.47)

5.27
(5.33)

4.99
(5.18)

4.87
(4.96)

4.79
(4.95)

4.70
(4.89)

4.64
(4.73)

4.60
(4.65)

4.55
(4.59)

4.51
(4.67)

4.49
(4.67)

W ¼ 2 7.27
(6.70)

6.50
(6.30)

5.88
(5.83)

5.39
(5.39)

5.10
(5.22)

4.88
(4.99)

4.78
(4.83)

4.72
(4.85)

4.65
(4.89)

4.64
(4.73)

4.61
(4.65)

4.59
(4.52)

4.58
(4.61)

4.56
(4.61)

W ¼ 3 7.12
(6.59)

6.42
(6.34)

5.71
(5.76)

5.26
(5.38)

5.08
(5.20)

4.89
(5.05)

4.84
(4.95)

4.79
(4.95)

4.74
(4.93)

4.73
(4.84)

4.71
(4.77)

4.70
(4.64)

4.70
(4.68)

4.69
(4.77)

W ¼ 4 7.04
(6.55)

6.46
(6.34)

5.70
(5.77)

5.21
(5.40)

5.14
(5.31)

4.97
(5.19)

4.94
(4.97)

4.90
(5.04)

4.86
(5.08)

4.86
(4.94)

4.84
(4.89)

4.85
(4.80)

4.84
(4.88)

4.85
(4.88)

W ¼ 5 6.90
(6.50)

6.50
(6.51)

5.70
(5.83)

5.19
(5.51)

5.16
(5.41)

5.02
(5.26)

5.02
(5.05)

4.99
(5.17)

4.97
(5.24)

4.98
(5.12)

4.96
(5.02)

4.98
(4.97)

4.99
(4.99)

4.98
(4.95)

W ¼ 6 6.79
(6.46)

6.56
(6.64)

5.74
(5.90)

5.20
(5.59)

5.21
(5.80)

5.08
(5.37)

5.08
(5.14)

5.07
(5.25)

5.05
(5.32)

5.06
(5.l8)

5.05
(5.10)

5.07
(5.07)

5.07
(5.11)

5.07
(5.00)

W ¼ 7 6.80
(6.52)

6.66
(6.74)

5.82
(5.99)

5.28
(5.66)

5.27
(5.57)

5.14
(5.38)

5.14
(5.17)

5.13
(5.29)

5.10
(5.37)

5.12
(5.25)

5.10
(5.17)

5.12
(5.15)

5.12
(5.13)

5.11
(5.02)

W ¼ 8 6.81
(6.53)

6.75
(6.86)

5.87
(6.09)

5.35
(5.71)

5.33
(5.67)

5.18
(5.42)

5.19
(5.23)

5.18
(5.39)

5.15
(5.14)

5.16
(5.28)

5.13
(5.20)

5.14
(5.21)

5.14
(5.15)

5.14
(5.05)

W ¼ 9 6.84
(6.60)

6.84
(6.96)

5.91
(6.18)

5.43
(5.77)

5.41
(5.73)

5.25
(5.48)

5.26
(5.24)

5.23
(5.46)

5.19
(5.44)

5.19
(5.31)

5.16
(5.25)

5.17
(5.23)

5.16
(5.15)

5.15
(5.05)

W ¼ 10 6.91
(6.70)

6.89
(7.04)

5.96
(6.23)

5.49
(5.84)

5.48
(5.73)

5.31
(5.50)

5.31
(5.26)

5.29
(5.48)

5.24
(5.48)

5.23
(5.34)

5.20
(5.26)

5.19
(5.24)

5.18
(5.19)

5.16
(5.05)

Table 3
Summary of results obtained by the algorithms in quality metrics for the test
partition.

Algorithm MAPE MAE RMSE

bigPSF 4.70 57.15 61.23
CUDA-bigPSF (Average) 4.75 56.84 83.54
CUDA-bigPSF (Worst) 4.88 58.43 87.15
CUDA-bigPSF (Best) 4.62 55.29 80.40

D. Criado-Ramón et al.

Expert Systems With Applications 230 (2023) 120661

8

RMSE metric that we cannot explain. A comparison of the results pro
vided by the bigPSF / CUDA-bigPSF algorithm with other forecasting
algorithms such as neural networks, ARIMA and gradient boosting trees
can be found in (Pérez-Chacón et al., 2020).

4.3. Implementation speedup and scalability.

At last, we compare the executing times of the Spark version, the
CUDA version, and a sequential CPU version we will use as a baseline.
Table 4 reports the performance of each architecture with the original
dataset and synthetic datasets made by repeating the original dataset, as
is done in the BigPSF paper.

First, it is important to note that even though the number of cores
used for bigPSF seems small, authors reported that using a higher
number of cores does not improve the results but rather makes them go
even slower. This situation happens because many algorithm steps of
bigPSF using their data distribution approach require synchronization
and node cooperation, unlike our GPU approach. As such, even though it
takes almost 19 min to train the algorithm with Spark, our GPU version
can train it (find the optimal number of clusters and window size) in
under two seconds using the full potential of all its cores. Interestingly,
our sequential implementation was slightly faster than the Spark
version, training 2 min faster, although it is easily explained as our CPU
has a much higher clock speed and the Spark version only uses two
cores. The evolution of training time for all approaches and the speedup
obtained by bigPSF and CUDAbigPSF are displayed in Fig. 6, where the
speedup is calculated by dividing the sequential version time by the
accelerated version time. However, the Spark approach struggles to
obtain a significant speedup until using 28 years of data. Meanwhile, our
GPU approach can produce results over 500 times faster than both

methods for seven years of data and still manages to make results at least
300 times faster when using the highest amount of data evaluated in this
paper (112 years).

From the previously discussed results, it is clear that using a CUDA
device will produce faster results than the Spark approach in most sit
uations. In fact, the Spark approach only uses a significant number of
cores once training with an unreasonably large dataset. It is also
important to note that due to the weighting system used in bigPSF, older
samples influence the prediction at a much lower rate. As such, at some
point, adding more data, at best, will be no more than a rounding error
in the final forecast. The only situation in which the CUDA version
proposed in this paper should perform significantly worse than reported
is with GPU devices that cannot store all the data structures in the device
memory. During the implementation and explanation of our algorithm,
we have considered this and used local memory whenever possible so
that once a thread finishes its work, another thread can use that mem
ory. As a last resource, the user can reduce the number of clusters
evaluated simultaneously to reduce the amount of local memory used
per thread. Nevertheless, this algorithm should provide good results in
most cases, even using low-end NVIDIA graphics cards.

5. Conclusion

The main objective of the work presented in this paper was to create
a high-performance GPU implementation of an algorithm for load
forecasting made for distributed algorithms, bigPSF. The proposed al
gorithm was evaluated with the same dataset of energy consumption
from Uruguay used in bigPSF, allowing a direct comparison between
both methods. The design of the GPU version took into account some of
the limitations of the bigPSF algorithm through two main contributions.

Table 4
Execution time per version of the algorithm in hh:mm:ss.

Dataset CPU-Seq CUDA-bigPSF bigPSF(Spark)

Training Test Training Test N◦ Cores Training Test
N 00:16:44.17 00:02:37.05 00:00:01.87 00:00:00.47 2 00:18:54 00:01:30
(7 years)
2 N 01:03:56.76 00:09:18.47 00:00:09.71 00:00:00.89 4 00:22:03 00:01:45
(14 years)
4 N 04:00:29.14 00:37:04.03 00:00:38.49 00:00:09.48 4 00:29:24 00:02:20
(28 years)
8 N 14:58:00.58 02:25:40.14 00:02:36.62 00:00:42.00 4 00:42:50 00:03:24
(56 years)
16 N 56:08:18.72 09:23:37.46 00:10:33.48 00:02:46.42 4 1:07:25 00:05:21
(112 years)

Fig. 6. On the left, line plot of the time spent in training by each method. On the right, speedup obtained by the Spark and CUDA versions over a sequential
implementation.

D. Criado-Ramón et al.

Expert Systems With Applications 230 (2023) 120661

9

First, CUDA-bigPSF uses a completely different approach to distribute
the work between the cores, removing almost all the need for synchro
nization and communication between nodes. Second, CUDA-bigPSF
takes into account several factors to avoid any unnecessary computa
tions and removes one of the costly data structures used in bigPSF, the
pattern matrix.

Results show that CUDA-bigPSF provides a correct implementation
of bigPSF capable of achieving speedups during the training phase up to
500 times faster than the original bigPSF. As such, the work presented in
this paper makes bigPSF more accessible to researchers and practi
tioners, as the availability of GPU devices is more widespread and
cheaper than access to a distributed cluster. Furthermore, many of the
solutions proposed in this paper for the GPU can also be used to improve
the distributed version of the algorithm.

There are several directions for future work on the algorithm pre
sented in this paper. One possibility is to evaluate and optimize the use
of different clustering methods or ensembles of them, evaluating the
training time and accuracy of them in different datasets. Additionally, it
may be useful to develop versions of the algorithm for multivariate time
series. Another possible direction for future work is to combine the use
of this algorithm in an ensemble with other forecasting algorithms to
potentially improve forecast accuracy.

CRediT authorship contribution statement

David Criado Ramón: Conceptualization, Methodology, Software,
Validation, Writing – original draft, Writing – review & editing. Luis
Gonzaga Baca Ruiz: Conceptualization, Methodology, Writing – orig
inal draft, Writing – review & editing, Supervision. María del Carmen
Pegalajar Jiménez: Conceptualization, Methodology, Writing – review
& editing, Supervision, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Funding for open access charge: Universidad de Granada / CBUA.
This work has been developed with the support of the Department of
Computer Science and Artificial Intelligence of the University of Gran
ada, TIC111. We acknowledge financial support from Grant PID2020-
112495RB-C21 funded by MCIN/ AEI /10.13039/501100011033 and
the I + D + i FEDER 2020 project B-TIC-42-UGR20. We thank Drs. Pérez-
Chacón and Martínez-Álvarez (Data Science and Big Data Lab, Pablo de
Olavide University) for all the help provided to reproduce their
algorithm.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X. (2016).
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
arXiv preprint. arXiv:1603.04467.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding.
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
1027–1035.

Bokde, N., Beck, M. W., Martínez Álvarez, F., & Kulat, K. (2018). A novel imputation
methodology for time series based on pattern sequence forecasting. Pattern
Recognition Letters, 116, 88–96. https://doi.org/10.1016/j.patrec.2018.09.020

Bokde, N., Troncoso, A., Asencio-Cortés, G., Kulat, K., & Martínez-Álvarez, F. (2017).
Pattern sequence similarity based techniques for wind speed forecasting. Proceedings
of the International Work-Conference on Time Series, Granada, Spain, 2, 786–794. http
s://itise.ugr.es/pdf/ITISE2017_vol2.pdf.

Bose, B. K. (2017). Power Electronics, Smart Grid, and Renewable Energy Systems.
Proceedings of the IEEE, 105(11), 2011–2018. https://doi.org/10.1109/
JPROC.2017.2745621

Bouveyron, C., & Jacques, J. (2011). Model-based clustering of time series in group-
specific functional subspaces. Advances in Data Analysis and Classification, 5(4),
281–300. https://doi.org/10.1007/s11634-011-0095-6

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785

Chen, Z., Li, J., Cheng, L., & Liu, X. (2023). Federated-WDCGAN: A federated smart meter
data sharing framework for privacy preservation. Applied Energy, 334, Article
120711. https://doi.org/10.1016/j.apenergy.2023.120711

Coelho, I. M., Coelho, V. N., Luz, E. J. da S., Ochi, L. S., Guimarães, F. G., & Rios, E.
(2017). A GPU deep learning metaheuristic based model for time series forecasting.
Applied Energy, 201, 412–418. doi: 10.1016/j.apenergy.2017.01.003.

Fujimoto, Y., & Hayashi, Y. (2012). Pattern sequence-based energy demand forecast
using photovoltaic energy records. International Conference on Renewable Energy
Research and Applications (ICRERA), 2012, 1–6. https://doi.org/10.1109/
ICRERA.2012.6477299

Haque, A., & Rahman, S. (2022). Short-term electrical load forecasting through heuristic
configuration of regularized deep neural network. Applied Soft Computing, 122,
Article 108877. https://doi.org/10.1016/j.asoc.2022.108877

Iruela, J. R. S., Ruiz, L. G. B., Capel, M. I., & Pegalajar, M. C. (2021). A TensorFlow
Approach to Data Analysis for Time Series Forecasting in the Energy-Efficiency
Realm. Energies, 14(13), Article 13. https://doi.org/10.3390/en14134038

Iruela, J. R. S., Ruiz, L. G. B., Pegalajar, M. C., & Capel, M. I. (2020). A parallel solution
with GPU technology to predict energy consumption in spatially distributed
buildings using evolutionary optimization and artificial neural networks. Energy
Conversion and Management, 207, Article 112535. https://doi.org/10.1016/j.
enconman.2020.112535

Jin, C. H., Pok, G., Lee, Y., Park, H.-W., Kim, K. D., Yun, U., & Ryu, K. H. (2015). A SOM
clustering pattern sequence-based next symbol prediction method for day-ahead
direct electricity load and price forecasting. Energy Conversion and Management, 90,
84–92. https://doi.org/10.1016/j.enconman.2014.11.010

Jin, C. H., Pok, G., Park, H.-W., & Ryu, K. H. (2014). Improved pattern sequence-based
forecasting method for electricity load. IEEJ Transactions on Electrical and Electronic
Engineering, 9(6), 670–674. https://doi.org/10.1002/tee.22024

Johnson, J., Douze, M., & Jégou, H. (2021). Billion-Scale Similarity Search with GPUs.
IEEE Transactions on Big Data, 7(3), 535–547. https://doi.org/10.1109/
TBDATA.2019.2921572

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017).
LightGBM: A highly efficient gradient boosting decision tree. In Proceedings of the
31st International Conference on Neural Information Processing Systems (pp.
3149–3157).

Kim, T.-Y., & Cho, S.-B. (2019). Predicting residential energy consumption using CNN-
LSTM neural networks. Energy, 182, 72–81. https://doi.org/10.1016/j.
energy.2019.05.230

Kintsakis, A. M., Chrysopoulos, A., & Mitkas, P. A. (2015). Agent-based short-term load
and price forecasting using a parallel implementation of an adaptive PSO-trained
local linear wavelet neural network. In 2015 12th International Conference on the
European Energy Market (EEM) (pp. 1–5). https://doi.org/10.1109/
EEM.2015.7216611

Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2019). Short-Term
Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE
Transactions on Smart Grid, 10(1), 841–851. https://doi.org/10.1109/
TSG.2017.2753802

Martinez Alvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar Ruiz, J. S. (2011). Energy
Time Series Forecasting Based on Pattern Sequence Similarity. IEEE Transactions on
Knowledge and Data Engineering, 23(8), 1230–1243. https://doi.org/10.1109/
TKDE.2010.227

Martínez-Álvarez, F., Schmutz, A., Asencio-Cortés, G., & Jacques, J. (2019). A Novel
Hybrid Algorithm to Forecast Functional Time Series Based on Pattern Sequence
Similarity with Application to Electricity Demand. Energies, 12(1), Article 1. https://
doi.org/10.3390/en12010094

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … Chintala, S. (2019).
In PyTorch: An imperative style, high-performance deep learning library (pp.
8026–8037). Curran Associates Inc.

Pérez-Chacón, R., Asencio-Cortés, G., Martínez-Álvarez, F., & Troncoso, A. (2020). Big
data time series forecasting based on pattern sequence similarity and its application
to the electricity demand. Information Sciences, 540, 160–174. https://doi.org/
10.1016/j.ins.2020.06.014

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine Learning in Python: Main
Developments and Technology Trends in Data Science, Machine Learning, and
Artificial Intelligence. Information, 11(4), Article 4. https://doi.org/10.3390/
info11040193

Raza, M. Q., & Khosravi, A. (2015). A review on artificial intelligence based load demand
forecasting techniques for smart grid and buildings. Renewable and Sustainable Energy
Reviews, 50, 1352–1372. https://doi.org/10.1016/j.rser.2015.04.065

Said, Y., & Alanazi, A. (2022). AI-based solar energy forecasting for smart grid
integration. Neural Computing and Applications, 35(11), 8625–8634. https://doi.org/
10.1007/s00521-022-08160-x

Shen, W., Babushkin, V., Aung, Z., & Woon, W. L. (2013). An ensemble model for day-
ahead electricity demand time series forecasting. In Proceedings of the Fourth
International Conference on Future Energy Systems (pp. 51–62). https://doi.org/
10.1145/2487166.2487173

D. Criado-Ramón et al.

http://refhub.elsevier.com/S0957-4174(23)01163-6/h0005
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0005
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0005
https://doi.org/10.1016/j.patrec.2018.09.020
https://itise.ugr.es/pdf/ITISE2017_vol2.pdf
https://itise.ugr.es/pdf/ITISE2017_vol2.pdf
https://doi.org/10.1109/JPROC.2017.2745621
https://doi.org/10.1109/JPROC.2017.2745621
https://doi.org/10.1007/s11634-011-0095-6
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.apenergy.2023.120711
https://doi.org/10.1109/ICRERA.2012.6477299
https://doi.org/10.1109/ICRERA.2012.6477299
https://doi.org/10.1016/j.asoc.2022.108877
https://doi.org/10.3390/en14134038
https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/10.1016/j.enconman.2020.112535
https://doi.org/10.1016/j.enconman.2014.11.010
https://doi.org/10.1002/tee.22024
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0075
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0075
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0075
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0075
https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/10.1016/j.energy.2019.05.230
https://doi.org/10.1109/EEM.2015.7216611
https://doi.org/10.1109/EEM.2015.7216611
https://doi.org/10.1109/TSG.2017.2753802
https://doi.org/10.1109/TSG.2017.2753802
https://doi.org/10.1109/TKDE.2010.227
https://doi.org/10.1109/TKDE.2010.227
https://doi.org/10.3390/en12010094
https://doi.org/10.3390/en12010094
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0110
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0110
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0110
https://doi.org/10.1016/j.ins.2020.06.014
https://doi.org/10.1016/j.ins.2020.06.014
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/info11040193
https://doi.org/10.1016/j.rser.2015.04.065
https://doi.org/10.1007/s00521-022-08160-x
https://doi.org/10.1007/s00521-022-08160-x
https://doi.org/10.1145/2487166.2487173
https://doi.org/10.1145/2487166.2487173

Expert Systems With Applications 230 (2023) 120661

10

Tian, Y., Sehovac, L., & Grolinger, K. (2019). Similarity-Based Chained Transfer Learning
for Energy Forecasting With Big Data. IEEE Access, 7, 139895–139908. https://doi.
org/10.1109/ACCESS.2019.2943752

Wen, Z., Shi, J., Li, Q., He, B., & Chen, J. (2018). ThunderSVM: A fast SVM library on
GPUs and CPUs. The Journal of Machine Learning Research, 19(1), 797–801.

Zheng, J., Gao, D. W., & Lin, L. (2013). Smart Meters in Smart Grid: An Overview. IEEE
Green Technologies Conference (GreenTech), 2013, 57–64. https://doi.org/10.1109/
GreenTech.2013.17

D. Criado-Ramón et al.

https://doi.org/10.1109/ACCESS.2019.2943752
https://doi.org/10.1109/ACCESS.2019.2943752
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0145
http://refhub.elsevier.com/S0957-4174(23)01163-6/h0145
https://doi.org/10.1109/GreenTech.2013.17
https://doi.org/10.1109/GreenTech.2013.17

	CUDA-bigPSF: An optimized version of bigPSF accelerated with graphics processing Unit
	1 Introduction
	2 Related works.
	3 Materials and Methods.
	3.1 The CUDA architecture.
	3.2 The bigPSF algorithm.
	3.3 CUDA-bigPSF.

	4 Discussion
	4.1 Experimental Setup
	4.2 Implementation accuracy.
	4.3 Implementation speedup and scalability.

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

