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A B S T R A C T   

Accurate and fast short-term load forecasting is crucial in efficiently managing energy production and distri
bution. As such, many different algorithms have been proposed to address this topic, including hybrid models 
that combine clustering with other forecasting techniques. One of these algorithms is bigPSF, an algorithm that 
combines K-means clustering and a similarity search optimized for its use in distributed environments. The work 
presented in this paper aims to improve the time required to execute the algorithm with two main contributions. 
First, some of the issues of the original proposal that limited the number of cores simultaneously used are studied 
and highlighted. Second, a version of the algorithm optimized for Graphics Processing Unit (GPU) is proposed, 
solving the previously mentioned issues while taking into account the GPU architecture and memory structure. 
Experimentation was done with seven years of real-world electric demand data from Uruguay. Results show that 
the proposed algorithm executed consistently faster than the original version, achieving speedups up to 500 
times faster during the training phase.   

1. Introduction 

Since electricity was discovered, humanity has created a steadily 
growing number of devices that make use of electricity. Most of the time, 
people use electricity simultaneously for multiple applications such as 
lighting, refrigeration, cooling, or heating, among others. The energy 
required for this is usually provided via an interconnected electricity 
network known as “power grid”. 

However, many complex factors have to be taken into account in the 
management of the power grid, such as the use of renewable energy 
sources, which rely on weather conditions or electricity transmission 
losses. Thus, it is common to use Artificial Intelligence (AI) systems to 
assist in the management of the power grid, particularly in the predic
tion of energy demand and renewable energy production (Bose, 2017). 

Over the last two decades, technical advancements have led to the 
higher use of smart meters (Zheng et al., 2013), devices that measure the 

electricity imported and exported from the grid by the consumer in real 
time. These devices also provide the energy provider with energy con
sumption data periodically, which can be used to optimize energy pro
duction and distribution in entire regions. With the adoption of these 
devices and the increasing energy consumption transparency of public 
entities and governments, researchers have a wide range of data avail
able to study energy consumption. However, in many cases, usage of this 
type of data poses considerable challenges, as the sheer amount of data 
may significantly increase the computational power required to train 
these AI systems. 

The relevance of energy in our current society has led to its study 
under many different scenarios. The algorithms used for this task (Kong 
et al., 2019) cover a wide range from easy-to-understand and interpret 
models, such as ARIMA, to highly accurate black-box models: neural 
networks, deep learning, and ensembles of different models, among 
others. Pattern Sequence-based Forecasting (PSF) (Martinez Alvarez 
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et al., 2011) is an interesting middle-ground approach that has previ
ously provided remarkable results in the energy field. This algorithm 
creates hybrid models that combine clustering and additional methods 
to extract patterns and make computations based on those patterns. PSF 
and many of its improved versions present some interesting properties in 
big data scenarios, e.g., the clustering-based pattern extraction reduces 
the computational cost for the second step of the algorithm, the pattern 
sequence-based forecast. However, they still require intense computa
tional power as each prediction requires an independent clustering and 
pattern sequence-based forecast, severely hindering the time needed to 
train and predict with these models. 

Parallel and distributed approaches are frequently used to reduce the 
time needed to train algorithms with high computational demands. An 
improved specialized version for Apache Spark clusters called “bigPSF” 
was presented in 2020 (Pérez-Chacón et al., 2020). However, there is no 
work to this date that studies PSF algorithms under parallel architec
tures. In this paper, a new version of the bigPSF algorithm accelerated 
with Graphic Processing Units (GPUs) is proposed, hereafter referred to 
as “CUDA-bigPSF”. Two main contributions are provided to this 
research field in this work:  

• The first GPU implementation of a pattern sequence-based algorithm 
is developed, reducing significantly the time required to train and 
use this model.  

• Some of the issues of the original BigPSF proposal are highlighted 
and how they could be solved to obtain better performance when 
using a distributed environment. 

This manuscript is structured as follows: Section 2 reviews relevant 
related papers on pattern sequence-based forecasting and GPU algo
rithms with a focus on big data energy problems. Section 3 describes the 
CUDA/GPU architecture and explains the CUDA-bigPSF algorithm. 
Section 4 studies the GPU implementation’s accuracy, speedup, and 
scalability. Lastly, section 5 draws the most relevant accomplishments of 
this work and proposes future lines of research. 

2. Related works. 

This section is structured in two independent parts and reviews the 
most relevant related works in the field. In the first part, works related to 
the PSF algorithm are reported and discussed. In the second part, we 
review the use of the GPU in AI and, more specifically, in the energy 
field. 

The PSF algorithm was published in 2011 (Martinez Alvarez et al., 
2011). This algorithm starts by applying K-means clustering to trans
form the time series before the prediction date into a sequence of cluster 
identifiers (labels). Afterwards, the algorithm splits the labeled sequence 
using a sliding window of size W. In order to make the prediction, the 
algorithm looks for similar patterns to the last created with the sliding 
window, i.e., the pattern of the W days before the prediction date. The 
final prediction is the average of all the occurrences found using the 
original time series. 

PSF has shown excellent results when working with energy data, and, 
as such, it is its primary use. Nevertheless, it has also been used to 
forecast energy prices (Jin et al., 2015), wind speed (Bokde et al., 2017), 
solar power (Fujimoto & Hayashi, 2012), or even to impute missing data 
(Bokde et al., 2018). Several authors have proposed variants and im
provements to overcome some of the original algorithm’s limitations. In 
(Jin et al., 2015) the authors used the Self-Organizing Map (SOM) and 
neural networks to create a specialized version that preserves the input 
space’s topological properties. Similarly, in (Martínez-Álvarez et al., 
2019) the authors proposed a specialized version for functional data 
(funPSF) through the use of a functional clustering algorithm, funHDDC 
(Bouveyron & Jacques, 2011). They also created a version with 
specialized models for each day of the week (7-funPSF) that provided 
significantly better results than the previous one. In (Shen et al., 2013) 

the authors evaluated using PSF with five different clustering methods 
(K-means, SOM, K-medoids, Hierarchical clustering, and Fuzzy 
C-means) individually and in an ensemble. (Jin et al., 2014) introduced 
a weighted mean that gives more relevance to the most frequent patterns 
each day of the week. Lastly, the algorithm our work is based in 
(Pérez-Chacón et al., 2020) proposes adapting the original PSF algo
rithm for clusters with Apache Spark. Beyond the distributed approach, 
this algorithm also included a weighted mean that gives more relevance 
to the matches closer to the prediction date and a grid search of 
hyperparameters to find the best solution at the expense of more 
computational power. 

The rise of big data and many other data science methodologies that 
are computationally expensive, such as AutoML, have led to a higher 
interest in parallel and distributed algorithms capable of providing 
similar results in less time. Researchers and companies have published 
open-source access to GPU-accelerated implementations of traditional 
machine learning algorithms. Facebook’s FAISS library (Johnson et al., 
2021) optimizes similarity search and clustering of dense vectors, 
providing fast K-means clustering and nearest neighbour search algo
rithms. ThunderSVM (Wen et al., 2018) provides a GPU adaptation of 
Support Vector Machines with the standard kernels used for classifica
tion and regression. Most gradient boosting machines provide GPU- 
accelerated implementations, such as XGBoost (Chen & Guestrin, 
2016) or LightGBM (Ke et al., 2017). NVIDIA recently launched cuML 
(Raschka et al., 2020), a CUDA-specific open-source library to accelerate 
all the algorithms included in the popular Python package scikit-learn. 

Table 1 
Summary of related works using the GPU on the energy field.  

Citation Framework Application Contributions 

(Kintsakis 
et al., 
2015) 

No Demand and 
price forecast 

They propose a parallelized 
version of Particle Swarm 
Optimization to train Local 
Linear Wavelet Neural 
networks. 

(Coelho 
et al., 
2017) 

No Appliance load 
forecast 

They propose a hybrid model 
combining fuzzy rules and 
metaheuristics accelerated 
with GPU. 

(Tian et al., 
2019) 

PyTorch Smart meters They developed a transfer 
learning methodology to train 
large sets of smart meters 
based on similarity. 

(Kim & Cho, 
2019) 

Keras Residential 
buildings 

consumption 

They propose a combination 
of Convolutional Neural 
Networks (CNN) and Long- 
Short Term Memory (LSTM). 

(Iruela et al., 
2020) 

No Public buildings 
consumption 

They develop a parallel 
version of the NSGA-II 
metaheuristic to train feed- 
forward neural networks. 

(Iruela et al., 
2021) 

Tensorflow Public buildings 
consumption 

They present a methodology 
to simultaneously train 
specialized neural network 
models for each hour of the 
day. 

(Said & 
Alanazi, 
2022) 

Keras Solar energy 
production 

They combined the use of 
autoenconders for feature 
extraction with LSTM neural 
networks. 

(Haque & 
Rahman, 

2022) 

Tensorflow Commercial 
buildings 

consumption. 

They combined the use of 
regularized LSTM and 
Recurrent Neural Networks 
(RNN) and developed a 
heuristic to find the optimal 
neural network configuration. 

(Chen et al., 
2023) 

Tensorflow Smart meters They developed a federated 
framework for smart meters 
that makes of generative 
adversarial networks (GAN) 
to create privacy-preserving 
synthetic data.  
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Neural network frameworks, such as Tensorflow (Abadi et al., 2016) or 
PyTorch (Paszke et al., 2019), provide GPU-accelerated implementa
tions optimized for deep neural networks and represent the broadest use 
of GPU in AI research nowadays. 

The energy field is no different, and most relevant recently published 
works use GPU-accelerated neural network frameworks or use paral
lelized metaheuristics to train neural networks. Table 1 presents a 
summary of the most relevant works on the energy field using the GPU. 

Although PSF algorithms have previously shown excellent results in 
energy forecasting, to the best of our knowledge, the use of GPU for PSF 
algorithms has yet to be studied. As such, the study and proposal of our 
GPU-accelerated algorithm, CUDA-bigPSF, is justified. 

3. Materials and Methods. 

3.1. The CUDA architecture. 

GPUs were initially conceived to accelerate graphical computation. 
However, the massively parallel architecture of the GPU was also of 
interest in many other fields that could use it to accelerate their appli
cations and simulations, leading to an evolution of the GPU program
ming model towards the paradigm known nowadays as General-Purpose 
GPU (GPGPU). As part of this evolution, new user-friendly languages 
were created to avoid the complexity of writing general-purpose code 
through graphical APIs or assembly. An example of this is Compute 
Unified Device Architecture (CUDA), a proprietary extension of C++, 
made to facilitate GPGPU programming with NVIDIA graphics cards. 

In CUDA, the set of instructions to be executed by each GPU thread 
are written in special functions called kernels. The programmer specifies 
the kernel’s total number of threads by dividing the total number of 
threads in a grid of blocks. Each block always contains a fixed number of 
threads, and all threads within the same block can be synchronized and 
access a special programmer-managed cache for fast collaboration. The 
grid indicates the total number of blocks required to execute the kernel. 
The number of threads in a given block can be provided in one, two or 
three dimensions to overcome some limitations and to provide easier 

abstractions in some algorithms involving complex structures such as 
matrices. The same applies to the dimension of a grid. 

A CUDA-capable GPU has one or more streaming multiprocessors, 
each containing a set of cores, registers, cache memory and a scheduler. 
When a kernel is launched, the blocks are distributed through the 
different multiprocessors. All threads within the same block are 
executed concurrently, and multiple blocks can be executed concur
rently by the same multiprocessor. At its core, the CUDA architecture 
uses a Single Instruction Multiple Threads (SIMT) approach where 32 
contiguous threads (a “warp”) will execute the same instruction inde
pendently of the number of threads used in a block. As such, branching 
code can negatively impact the performance of the GPU algorithm, as 
both options must be evaluated before proceeding with the next in
struction, even if only one thread in the warp takes the alternative 
branch. 

Memory accesses are one of the primary bottlenecks of GPU- 
accelerated algorithms. As such, understanding the GPU memory hier
archy (Fig. 1), its advantages and caveats is critical in GPU algorithm 
development. The GPU presents a slower and bigger global memory 
used to communicate with the CPU (host) that all threads of the GPU can 
access. Furthermore, it presents up to two levels of cache memory (L1 
cache for each multiprocessor and L2 cache for all multiprocessors). 
When writing a kernel, the developer can decide whether to store the 
variable in the global scope (global memory), local scope, and the 
specialized section of the L1 cache to cooperate with threads within the 
same block called “shared memory”. Variables in the local scope follow 
similar rules to those in the global memory, but the compiler can also 
store them in the registers under certain circumstances. Nevertheless, 
accesses to global and local memory can also be fast if we use a pre
dictable access pattern, as they will be cached once a store or load 
happens. Only cache misses will hinder the performance. Lastly, we 
must note that there are some other specialized memory abstractions, 
such as the constant memory (read-only) or the texture memory, that we 
have decided to omit for simplicity as they are irrelevant to this paper. 

Fig. 1. A schematic of the memory layout and multiprocessors of the GPU device used in this research.  
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3.2. The bigPSF algorithm. 

BigPSF provides an improved PSF algorithm for distributed envi
ronments. The training process of the algorithm finds the optimal 
hyperparameters (number of clusters and window size) through a grid 
search evaluated in a validation partition. The training and test 

processes are done sequentially over all the days on their corresponding 
partition, using the additional computational power to accelerate each 
prediction. 

The BigPSF accelerated prediction algorithm (Fig. 2) starts by 
creating a distributed structure denominated RDD (Resilient Distributed 
Dataset) from the original dataset samples before the prediction date. 

Fig. 2. A general scheme of the steps done by the bigPSF algorithm for each prediction.  

Fig. 3. An example of how the BigPSF algorithm calculates a prediction in a simulated dataset for K = 5 and W = 3.  
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This RDD is shuffled into random partitions distributed on the nodes 
available in the cluster. The algorithm continues by applying K-means 
over the RDD. Centroids are initialized using the k-means++ algorithm 
(Arthur & Vassilvitskii, 2007). 

Afterwards, each node finds the closest cluster for the partitions of 
the RDD available in the node and computes a partial centroids update. 
After each iteration, partial centroids are communicated to the primary 
node to obtain the final centroids of the iteration. K-means clustering 
ends after reaching a maximum number of iterations or convergence. 
The clustering process finishes with the creation of a new RDD, in which 
each sample is transformed to its closest cluster identifier. Each compute 
node does this last step independently, as synchronization is unnec
essary. Then, the algorithm creates its more complex structure, the 
“pattern matrix”, in a new RDD. Each row of this RDD contains a row 
identifier id, a sequence of W labels from the days between id and id + W 
− 1, and a data copy (hValue) of the day id + W of the original dataset. 
This structure is generated by grouping all the possible sequences of 
labels of length W from the previous RDD. Finally, the algorithm filters 
all rows in the pattern matrix that share the same pattern and day of the 
week of the prediction date. The prediction is the weighted average of 
the data copies sharing the same sequence of labels and day of the week. 
This weight for each match is calculated as: 

wi =
idi

∑
j∈matchesidj

(1)  

where idi is the row identifier of the match and matches contains all 
pattern occurrences in the pattern matrix. 

A small example of how the bigPSF calculates a prediction is pro
vided in Fig. 3, where the algorithm is computing the prediction for the 
day with ID 100 with a window size of W = 3 and a number of clusters K 
= 5. The algorithm starts by applying K-means with all the data prior to 
the day to be predicted and labeling them with their corresponding best 
cluster (upper row of the figure). Then, making use of the labeled dataset 
and the window size, the pattern matrix is constructed. The last row of 
the pattern matrix will indicate the pattern of the day to be predicted. All 
previous rows in the pattern matrix containing the same pattern are 
filtered and the final prediction is made with the weighted average of the 
hValues of the rows selected (using the weights provided in eq. 1). 

3.3. CUDA-bigPSF. 

The bigPSF algorithm shows some level of parallelism in two primary 
ways. In the first one (data parallelism), the computation for each 
sample in the dataset in parallel is done in paralle, as it proposed in the 
original bigPSF algorithm. In the second one, each prediction is made 
sequentially in each thread. There are several reasons why the second 
approach better when using the GPU. First, to obtain a significant 
speedup, it is imperative to keep all GPU threads busy. However, if a 
data parallelism strategy is used, there would be several instances in 
which some threads would have to wait until all the others finish for 
synchronization purposes. For example, after each K-means iteration, 

Fig. 4. A flowchart of the work executed by each thread in CUDA-bigPSF.  
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the algorithm would need synchronization to ensure centroids are 
updated before the next iteration begins. Second, if the number of days 
in the dataset is smaller than the number of cores available in the GPU, 
using the first approach would keep more CUDA cores busy as long as 
three or more different numbers of clusters are being evaluated simul
taneously. Last, the limited memory available in the GPU makes using 
the second approach better for scalability as memory accesses are local 
to the thread except for reading the dataset and writing the final result. 
Therefore, after each thread finishes its work, the local memory re
sources can be released to be used by another thread, significantly 
improving the scalability of the proposed approach. 

As such, CUDA-bigPSF (Fig. 4) distributes the work in independent 
threads, each computing the prediction for a given date. They have ac
cess to the entire dataset and the final output structure in global mem
ory. The thread identifier will be used to determine up to which date of 
the input dataset they should be able to access and where they must 
write their predictions in the output structure. The kernel (algorithm 1) 
will launch using a bi-dimensional grid of quantity of number of clusters 
to be evaluated by the minimum number of blocks to cover the valida
tion (or test) partition.  

Algorithm 1 CUDA-bigPSF (Each thread) 

1: cluster_centers = KMeans(K, input, max_iterations, ∊) 
2: query[0:max w-1] = closest_cluster(cluster_centers, input[rows(input)w:rows 

(input)]) 
3: weekday = n mod 7 
4: for all i in weekday, weekday + 7, …, n-7 do 
5: for all w in 1,2,…,max_w do 
6: label = closest_cluster(cluster_centers, sample[i-w]) 
7: if label = query[max_w-w] then 
8: weight = i - w + 1 
9: prediction_weights[w] += weight 
10: my_predictions[w-1] += weight * input[i] 
11 else 
12: break 
13: end if 
14: end for 
15: end for 
16: for all w in 1, 2, …, max_w do 
17: if prediction_weights[w] != 0 then 
18: my_predictions[w] = my_predictions[w] / prediction_weights[w] 
19: else 
20: if w = 1 then 
21: Repeat for loop at line 4 with i from 0 to n-1 
22: my_predictions[w] = my_predictions[w] / prediction_weights[w] 
23: else 
24: my_predictions[w] = my_predictions[w-1] 
25 end if 
26: end if 
27: end for 
28: Put my_predictions in its corresponding place in global memory  

The kernel (algorithm each thread executes) starts with a standard 
implementation of Lloyd’s K-means algorithm, initializing the centroids 
with the K-means++ algorithm. The clustering process finishes after 
reaching a maximum number of iterations or convergence. The objective 
function of the K-means algorithm is to minimize the Within Set Sum of 
Squared Errors (WSSSE) of each cluster, which is defined as follows (eq. 
2): 

WSSSE =
∑K

j=1

∑

xi∈Cj

d
(
xi, cj

)2 (2)  

where d
(
xi, cj

)2 is the Euclidean distance between each sample xi of the 
cluster Cj and the centroid of that cluster cj. The algorithm iterates over 
the entire dataset once in each iteration, calculating the closest cluster to 
each sample, adding the sample to a new array to compute the centroids 
for the next iteration, and incrementing by one another structure used to 
count the number of samples in each cluster. The centroids for the next 
iteration are obtained by dividing these last two data structures 

(computing the mean). 
Next, the pattern sequence-based algorithm starts. First, the query is 

calculated, i.e., the labels (cluster identifiers) for the w samples before 
the prediction date. Then, the algorithm strides weekly over the days in 
the dataset that share the same day of the week of the prediction date. To 
evaluate a dataset sample i, the label of the sample w days before it is 
computed. A match is found for a window size of one if it shares the same 
label as the position w of the query in reverse order. The same conditions 
apply for any window size w except the previous window size w − 1 also 
needs to have a match. The computation for each w is done in ascending 
order to avoid any unnecessary calculations. 

Every match found indicates that we must use the sample in the 
weighted average for the current prediction date and window size. To 
use only a stride over the entire dataset, two data structures are required 
to compute the weighted average, similar to the procedure previously 
used for the k-means centroids. Since the weights of BigPSF are a divi
sion that has the sum of all numerators in the denominator, whenever a 
match is found the sample is partially weighted by multiplying by the 
numerator and stored in a data structure and an additional data struc
ture is used to eventually compute the sum of all numerators 
(denominator). 

Lastly, the thread computes the division of the previous two data 
structures to obtain the prediction for a given data for all possible values 
of w that we are using. As the BigPSF algorithm specifies, the prediction 
obtained by a window of size w − 1 is used if there are no matches for a 
window size of w. Occasionally the algorithm may fail for a window size 
of one. In those scenarios, all samples before the prediction date are 
used, regardless of the day of the week. The kernel finishes by putting 
the local structure containing the predictions for all possible values of w 
in their corresponding place in the global memory so the CPU can access 
the results. 

As a last note, different clustering algorithms could be used instead of 
K-means. Although a similar approach to the one proposed for K-means 
could be used for any clustering algorithm, the optimal GPU imple
mentation of the algorithm will change significantly depending on the 
data structures and computations required by each algorithm. Never
theless, using K-means provides several advantages that will lead to 
substantially faster execution times than most clustering methods. This 
is due to the fact that only one hyper-parameter has to be tuned for K- 
means (the number of clusters) and only to store a really small data 
structure per execution of K-means is required in memory (the cluster 
centroids) that will usually always fit in the cache memory even when 
there are many predictions and, as such, clustering processes, being 
computed in parallel. 

Fig. 5. Box plot of the energy consumption each day of the week.  

D. Criado-Ramón et al.                                                                                                                                                                                                                        



Expert Systems With Applications 230 (2023) 120661

7

4. Discussion 

4.1. Experimental Setup 

We have used the same dataset used in the bigPSF paper to compare 
our results. This dataset contains electricity consumption data from 
Uruguay between 2007 and 2014 recorded hourly. The average demand 
observed is 1092.21 MW, with a minimum of 609.87 MW and a 
maximum of 1907.55 MW. Fig. 5 displays the energy consumption 
distribution by day of the week. We can observe from this figure that 
energy demand on weekends is lower than on weekdays, as it is expected 
(Raza & Khosravi, 2015). We did not need additional preprocessing 
since the dataset did not present any missing observations or extreme 
outliers. The dataset was split in 70 % training and 30 % test, with the 
last 30 % of the training partition used as validation for the hyper
parameter optimization, as it is specified in the bigPSF paper. 

All experiments were done with a personal computer with an AMD 5 
Ryzen 2600X CPU running at 3.6 GHz, an NVIDIA GeForce RTX 3060 Ti 
8 GB graphics card, and 32 GB of DDR4 RAM. The code was written 
using Python 3.11 and CUDA 11.8. CUDA experiments were repeated 30 
times with seeds from 1996 to 2025. For the CUDA-BigPSF kernel, we 
used 32 threads per block, as it provided the fastest results. 

4.2. Implementation accuracy. 

In this section, we will compare the accuracy of our implementation 
with the results provided in the original paper. Even though we have 
implemented the same algorithm with different approaches, we cannot 
obtain the same results as the original authors due to the randomness in 
the initialization of k-means and the fact that the original authors did not 
seed their experiments. As such, we can only evaluate if we have ob
tained reasonably similar results during training and test. 

During the training phase, the Mean Absolute Percentage Error 
(MAPE) was used, as it is done in bigPSF. This metric (eq. 2) has the 
advantage of being scale-independent and easy to interpret as it repre
sents the average distance between forecasted and expected value in 
percentage. For all equations, n represents the total number of samples, 
yi the forecasted sample at index i and ŷi the expected values. 

MAPE(%) =
100

n

∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (2) 

Table 2 displays the difference in MAPE during training between the 
average of 30 repetitions of CUDA-bigPSF and BigPSF (enclosed in pa
rentheses). As we can observe, both algorithms provide relatively 

similar results considering the randomness of k-means initialization. The 
most significant difference in MAPE between the approaches is 0.59 % 
with k = 6 and w = 6. The best averaged MAPE found by CUDA-bigPSF 
was 4.51 % with k = 14 and w = 1, while the best MAPE for BigPSF was 
4.52 % with k = 13 and w = 2. In 1 of the experiment’s repetitions with k 
= 15, CUDA-bigPSF could not provide at least one prediction, even 
removing the day of the week constraint. Thus, we have excluded that 
seed (1998) from the average displayed in the table for k = 15. In 27 out 
of the 30 experiment repetitions, a window size of one provided the best 
results, questioning whether it is advantageous to study the use of a 
broader window size or whether we should limit the window size from 
the start to reduce the algorithm’s computational complexity. In 18 out 
of the 30 experiment repetitions, a window size of k = 15 provided the 
best results, followed by 5 repetitions with k = 13 and 4 repetitions with 
k = 14. 

We applied a similar methodology to compare the results in test 
using the 30 seeds with their optimal hyperparameters. For test, two 
additional metrics are used: the Mean Absolute Error (MAE) and the 
Root Mean Squared Error. The MAE (eq. 3) provides the average dif
ference between the forecasted value and the expected value in the 
original scale of the data while the RMSE (eq. 4) gives a higher penali
zation to large errors between forecasted values and expected values. 

MAE =

∑n
i=1|yi − ŷi|

n
(3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − ŷi)

2

n

√
√
√
√
√

(4) 

Table 3 summarizes the results of our 30 repetitions for CUDA- 
bigPSF and the results reported for bigPSF. Our implementations 
obtain similar results on average for MAPE and MAE, and the best 
experiment done with CUDA even improves the results reported in 
bigPSF substantially. However, there is an unexpected difference in the 

Table 2 
MAPE (%) for the grid search during the training phase for CUDA-bigPSF and bigPSF (enclosed in parentheses). Best values for each method in bold.   

K ¼ 2 K ¼ 3 K ¼ 4 K ¼ 5 K ¼ 6 K ¼ 7 K ¼ 8 K ¼ 9 K ¼ 10 K ¼ 11 K ¼ 12 K ¼ 13 K ¼ 14 K ¼ 15 

W ¼ 1 7.54 
(7.12) 

6.75 
(6.43) 

6.16 
(6.02) 

5.65 
(5.47) 

5.27 
(5.33) 

4.99 
(5.18) 

4.87 
(4.96) 

4.79 
(4.95) 

4.70 
(4.89) 

4.64 
(4.73) 

4.60 
(4.65) 

4.55 
(4.59) 

4.51 
(4.67) 

4.49 
(4.67) 

W ¼ 2 7.27 
(6.70) 

6.50 
(6.30) 

5.88 
(5.83) 

5.39 
(5.39) 

5.10 
(5.22) 

4.88 
(4.99) 

4.78 
(4.83) 

4.72 
(4.85) 

4.65 
(4.89) 

4.64 
(4.73) 

4.61 
(4.65) 

4.59 
(4.52) 

4.58 
(4.61) 

4.56 
(4.61) 

W ¼ 3 7.12 
(6.59) 

6.42 
(6.34) 

5.71 
(5.76) 

5.26 
(5.38) 

5.08 
(5.20) 

4.89 
(5.05) 

4.84 
(4.95) 

4.79 
(4.95) 

4.74 
(4.93) 

4.73 
(4.84) 

4.71 
(4.77) 

4.70 
(4.64) 

4.70 
(4.68) 

4.69 
(4.77) 

W ¼ 4 7.04 
(6.55) 

6.46 
(6.34) 

5.70 
(5.77) 

5.21 
(5.40) 

5.14 
(5.31) 

4.97 
(5.19) 

4.94 
(4.97) 

4.90 
(5.04) 

4.86 
(5.08) 

4.86 
(4.94) 

4.84 
(4.89) 

4.85 
(4.80) 

4.84 
(4.88) 

4.85 
(4.88) 

W ¼ 5 6.90 
(6.50) 

6.50 
(6.51) 

5.70 
(5.83) 

5.19 
(5.51) 

5.16 
(5.41) 

5.02 
(5.26) 

5.02 
(5.05) 

4.99 
(5.17) 

4.97 
(5.24) 

4.98 
(5.12) 

4.96 
(5.02) 

4.98 
(4.97) 

4.99 
(4.99) 

4.98 
(4.95) 

W ¼ 6 6.79 
(6.46) 

6.56 
(6.64) 

5.74 
(5.90) 

5.20 
(5.59) 

5.21 
(5.80) 

5.08 
(5.37) 

5.08 
(5.14) 

5.07 
(5.25) 

5.05 
(5.32) 

5.06 
(5.l8) 

5.05 
(5.10) 

5.07 
(5.07) 

5.07 
(5.11) 

5.07 
(5.00) 

W ¼ 7 6.80 
(6.52) 

6.66 
(6.74) 

5.82 
(5.99) 

5.28 
(5.66) 

5.27 
(5.57) 

5.14 
(5.38) 

5.14 
(5.17) 

5.13 
(5.29) 

5.10 
(5.37) 

5.12 
(5.25) 

5.10 
(5.17) 

5.12 
(5.15) 

5.12 
(5.13) 

5.11 
(5.02) 

W ¼ 8 6.81 
(6.53) 

6.75 
(6.86) 

5.87 
(6.09) 

5.35 
(5.71) 

5.33 
(5.67) 

5.18 
(5.42) 

5.19 
(5.23) 

5.18 
(5.39) 

5.15 
(5.14) 

5.16 
(5.28) 

5.13 
(5.20) 

5.14 
(5.21) 

5.14 
(5.15) 

5.14 
(5.05) 

W ¼ 9 6.84 
(6.60) 

6.84 
(6.96) 

5.91 
(6.18) 

5.43 
(5.77) 

5.41 
(5.73) 

5.25 
(5.48) 

5.26 
(5.24) 

5.23 
(5.46) 

5.19 
(5.44) 

5.19 
(5.31) 

5.16 
(5.25) 

5.17 
(5.23) 

5.16 
(5.15) 

5.15 
(5.05) 

W ¼ 10 6.91 
(6.70) 

6.89 
(7.04) 

5.96 
(6.23) 

5.49 
(5.84) 

5.48 
(5.73) 

5.31 
(5.50) 

5.31 
(5.26) 

5.29 
(5.48) 

5.24 
(5.48) 

5.23 
(5.34) 

5.20 
(5.26) 

5.19 
(5.24) 

5.18 
(5.19) 

5.16 
(5.05)  

Table 3 
Summary of results obtained by the algorithms in quality metrics for the test 
partition.  

Algorithm MAPE MAE RMSE 

bigPSF  4.70  57.15  61.23 
CUDA-bigPSF (Average)  4.75  56.84  83.54 
CUDA-bigPSF (Worst)  4.88  58.43  87.15 
CUDA-bigPSF (Best)  4.62  55.29  80.40  
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RMSE metric that we cannot explain. A comparison of the results pro
vided by the bigPSF / CUDA-bigPSF algorithm with other forecasting 
algorithms such as neural networks, ARIMA and gradient boosting trees 
can be found in (Pérez-Chacón et al., 2020). 

4.3. Implementation speedup and scalability. 

At last, we compare the executing times of the Spark version, the 
CUDA version, and a sequential CPU version we will use as a baseline. 
Table 4 reports the performance of each architecture with the original 
dataset and synthetic datasets made by repeating the original dataset, as 
is done in the BigPSF paper. 

First, it is important to note that even though the number of cores 
used for bigPSF seems small, authors reported that using a higher 
number of cores does not improve the results but rather makes them go 
even slower. This situation happens because many algorithm steps of 
bigPSF using their data distribution approach require synchronization 
and node cooperation, unlike our GPU approach. As such, even though it 
takes almost 19 min to train the algorithm with Spark, our GPU version 
can train it (find the optimal number of clusters and window size) in 
under two seconds using the full potential of all its cores. Interestingly, 
our sequential implementation was slightly faster than the Spark 
version, training 2 min faster, although it is easily explained as our CPU 
has a much higher clock speed and the Spark version only uses two 
cores. The evolution of training time for all approaches and the speedup 
obtained by bigPSF and CUDAbigPSF are displayed in Fig. 6, where the 
speedup is calculated by dividing the sequential version time by the 
accelerated version time. However, the Spark approach struggles to 
obtain a significant speedup until using 28 years of data. Meanwhile, our 
GPU approach can produce results over 500 times faster than both 

methods for seven years of data and still manages to make results at least 
300 times faster when using the highest amount of data evaluated in this 
paper (112 years). 

From the previously discussed results, it is clear that using a CUDA 
device will produce faster results than the Spark approach in most sit
uations. In fact, the Spark approach only uses a significant number of 
cores once training with an unreasonably large dataset. It is also 
important to note that due to the weighting system used in bigPSF, older 
samples influence the prediction at a much lower rate. As such, at some 
point, adding more data, at best, will be no more than a rounding error 
in the final forecast. The only situation in which the CUDA version 
proposed in this paper should perform significantly worse than reported 
is with GPU devices that cannot store all the data structures in the device 
memory. During the implementation and explanation of our algorithm, 
we have considered this and used local memory whenever possible so 
that once a thread finishes its work, another thread can use that mem
ory. As a last resource, the user can reduce the number of clusters 
evaluated simultaneously to reduce the amount of local memory used 
per thread. Nevertheless, this algorithm should provide good results in 
most cases, even using low-end NVIDIA graphics cards. 

5. Conclusion 

The main objective of the work presented in this paper was to create 
a high-performance GPU implementation of an algorithm for load 
forecasting made for distributed algorithms, bigPSF. The proposed al
gorithm was evaluated with the same dataset of energy consumption 
from Uruguay used in bigPSF, allowing a direct comparison between 
both methods. The design of the GPU version took into account some of 
the limitations of the bigPSF algorithm through two main contributions. 

Table 4 
Execution time per version of the algorithm in hh:mm:ss.  

Dataset CPU-Seq CUDA-bigPSF bigPSF(Spark)  

Training Test Training Test N◦ Cores Training Test 
N 00:16:44.17 00:02:37.05 00:00:01.87 00:00:00.47 2 00:18:54 00:01:30 
(7 years) 
2 N 01:03:56.76 00:09:18.47 00:00:09.71 00:00:00.89 4 00:22:03 00:01:45 
(14 years) 
4 N 04:00:29.14 00:37:04.03 00:00:38.49 00:00:09.48 4 00:29:24 00:02:20 
(28 years) 
8 N 14:58:00.58 02:25:40.14 00:02:36.62 00:00:42.00 4 00:42:50 00:03:24 
(56 years) 
16 N 56:08:18.72 09:23:37.46 00:10:33.48 00:02:46.42 4 1:07:25 00:05:21 
(112 years)  

Fig. 6. On the left, line plot of the time spent in training by each method. On the right, speedup obtained by the Spark and CUDA versions over a sequential 
implementation. 
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First, CUDA-bigPSF uses a completely different approach to distribute 
the work between the cores, removing almost all the need for synchro
nization and communication between nodes. Second, CUDA-bigPSF 
takes into account several factors to avoid any unnecessary computa
tions and removes one of the costly data structures used in bigPSF, the 
pattern matrix. 

Results show that CUDA-bigPSF provides a correct implementation 
of bigPSF capable of achieving speedups during the training phase up to 
500 times faster than the original bigPSF. As such, the work presented in 
this paper makes bigPSF more accessible to researchers and practi
tioners, as the availability of GPU devices is more widespread and 
cheaper than access to a distributed cluster. Furthermore, many of the 
solutions proposed in this paper for the GPU can also be used to improve 
the distributed version of the algorithm. 

There are several directions for future work on the algorithm pre
sented in this paper. One possibility is to evaluate and optimize the use 
of different clustering methods or ensembles of them, evaluating the 
training time and accuracy of them in different datasets. Additionally, it 
may be useful to develop versions of the algorithm for multivariate time 
series. Another possible direction for future work is to combine the use 
of this algorithm in an ensemble with other forecasting algorithms to 
potentially improve forecast accuracy. 
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