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available at the end of the article require large amounts of training data. Unfortunately, such data is usually not avail-

able, for example, due to new users or privacy concerns. Therefore, obtaining accurate
short-term load forecasts with little data is a major challenge. The present paper thus
proposes the latent space-based forecast enhancer (LSFE), a method which combines
transfer learning and data augmentation to enhance STLF when training data is limited.
The LSFE first trains a generative model on source data similar to the target data before
using the latent space data representation of the target data to generate seed noise.
Finally, we use this seed noise to generate synthetic data, which we combine with real
data to enhance STLF. We evaluate the LSFE on real-world electricity data by examin-
ing the influence of its components, analysing its influence on obtained forecasts, and
comparing its performance to benchmark models. We show that the Latent Space-
based Forecast Enhancer is generally capable of improving the forecast accuracy and
thus helps to successfully meet the challenge of limited available training data.
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Introduction

The transition to a sustainable energy system includes the increasing integration of
renewable energy sources into the power grid. Since these renewable energy sources
depend on fluctuating weather conditions, their increased integration magnifies fluc-
tuations in the energy supply that potentially destabilise the power grid (Kroposki et al.
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2017). Methods for coping with these fluctuations and maintaining a stable power grid—
e.g. load shifting—typically require accurate short-term load forecasts.

Therefore, in recent years, a large number of machine learning models for short-term
load forecasting (STLF) and load forecasting in general have been developed (Upadhaya
et al. 2019; Gonzalez Ordiano et al. 2018). Although these models provide an improved
forecasting accuracy, their increasing complexity is also associated with a growing need
for training data (Hippert et al. 2001; Hastie et al. 2009), often initially multiple years,
e.g., 1 year (Wu and Shahidehpour 2010), 2 years (Yona et al. 2008), or 3 years (Mabel
and Fernandez 2008). Unfortunately, training data, e.g. for buildings, is often not avail-
able (Do and Cetin 2018), also known as cold-start problem (Moon et al. 2020). This
lack of data may arise, for example, from manual data collection in non-advanced meter-
ing infrastructures (Fan et al. 2022), poor quality of the collected data (Fan et al. 2021),
or newly constructed buildings (Fan et al. 2022; Ribeiro et al. 2018; Hooshmand and
Sharma 2019). However, with limited data, machine learning-based STLF models can-
not provide accurate load forecasts required for load shifting, which severely limits the
potential of demand side flexibility and potentially affects grid stability.

Therefore, obtaining accurate forecasts from STLF models with limited available train-
ing data is a major challenge. The two most common approaches to meet this challenge
are transfer learning (TL) and data augmentation (DA). TL applies previously acquired
knowledge from one problem to solve another, similar problem. With regards to STLEF,
TL typically involves pre-training a machine learning model with similar existing data,
before fine-tuning that model to the target data. In case of buildings, this pre-training
could be performed on public data for similar buildings (Hooshmand and Sharma 2019),
data from buildings showing a high correlation with the target building (Ozer et al. 2021;
Gomez-Rosero et al. 2021; Tian et al. 2019; Lin and Wu 2021), or information-rich
buildings (Li et al. 2021). Instead of using separate data sets for TL, data from multiple
buildings can also be combined for the pre-training and individual buildings can be used
for the fine-tuning (Vof3 et al. 2018). Furthermore, to counteract negative transfer and
improve learning performance, specific source selection algorithms (Moon et al. 2020;
Zhang and Luo 2015) or time series decomposition (Xu and Meng 2020) can be applied.

Whilst TL focuses on transferring information through the trained model, DA aims to
increase the amount of available training data. Regarding STLF, one way to increase the
amount of training data is to create slightly modified copies of existing data. Examples
are applying noise to the existing data (Maalej and Rebai 2021) and simple data manipu-
lation techniques such as rotation, permutation, jittering, and scaling (Fan et al. 2022).
Another way is to create similar synthetic data with generative methods such as a con-
ditional Variational Autoencoder (cVAE) (Fan et al. 2022) and a bidirectional generative
adversarial network (BiGAN) (Zhou et al. 2020).

Although TL and DA provide promising results, both approaches have limitations. TL
relies on the assumption that the information in the target data is similar to information
in the source data and thus the information transfer is suitable (Goodfellow et al. 2016).
At the same time, given a very limited amount of data, the performance of DA is severely
restricted. DA can only create slightly modified additional data with noise and simple
data manipulation techniques or, when using generative methods, no additional data at
all due to an insufficient amount of available training data. DA is also only advantageous
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if the data used for augmentation is sufficiently diverse, for example, covering a com-
plete year in case of yearly seasonalities. As a result, using TL and DA currently does not
enable accurate forecasts from STLF models when little or no training data is available.

Therefore, the main contribution of the present paper is the latent space-based fore-
cast enhancer (LSFE). The LSFE combines transfer learning and data augmentation to
enhance STLF when training data is limited. The LSFE first trains a generative method
conditioned with external information similar to the target data to capture relevant tem-
poral patterns. In the present paper, we only include calendar information as an external
feature. Using the resulting trained generative model, the LSFE then maps the availa-
ble target data to a normally distributed latent space, before applying a seed noise sam-
pling strategy to the latent space representation of the target data. Afterwards, the LSFE
inputs the generated seed noise to the generative model to create synthetic target data.
Lastly, the LSFE combines the synthetic and the previously existing real target data and
uses this data to train the STLF model. By using a generative model to create additional
training data, the LSFE is able to take advantage of source data similar to the target data
whilst still considering the structure of the target data in the data generation process.

To evaluate the LSFE, we first examine the influence of its components, before analys-
ing the influence of the LSFE on the obtained forecasts. We finally compare the perfor-
mance of the LSFE to that of benchmark models. For the evaluation, we use real-world
electricity data and apply our method with two state-of-the-art generative methods,
three seed noise sampling strategies, and three data combination strategies.

The rest of the paper is structured as follows. We first present the LSFE in detail,
including the possible generative methods, seed noise sampling strategies, and data
combination strategies. We then introduce the experimental setting, comprising the
used data, generative models, forecasting models, and metrics. The subsequent sections
examine the influence of the LSFE’s components, analyse the influence of the LSFE on
obtained forecasts, and benchmark it to assess its performance. We finally discuss the
LSFE and conclude the paper.

Latent space-based forecast enhancer

This section introduces the Latent Space-based Forecast Enhancer (LSFE) for enhancing
STLF when available training data is limited. It comprises the three components gen-
erative method, seed noise sampling strategy, and data combination strategy. Before we
introduce these components in detail, we shortly describe how the LSFE works using
these components.

As shown in Fig. 1, the LSFE makes use of data from various sources to train a gen-
erative method. It then applies the available real data of the target to the trained gen-
erative method to obtain the representation of this data in the normally distributed
latent space. Afterwards, the LSFE uses this latent space representation of the tar-
get data to determine suitable seed noise based on the selected seed noise sampling
strategy. This sampling of seed noise is simplified by the LSFE, since sampling from
a normal distribution is easier than from the unknown distribution in the original
space. Given the generated seed noise, the LSFE passes it as an input to the generative
model to create synthetic target data. Lastly, the LSFE combines the synthetic and the
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Fig. 1 The LSFE (dashed) consists of three components, i.e. the generative method with the mappings fand
g, the seed noise sampling strategy, and the data combination strategy

previously existing real target data based on a selected data combination strategy. The
resulting comparatively large data set serves as training data for a forecasting method.

Generative method

The first component of the LSFE is the generative method. The LSFE applies the gen-
erative method to generate synthetic data for the target, e.g., a building. Since the
available real target data, such as electrical load data, can greatly vary between work-
ing days and weekends and may have strong seasonal profiles (Alrawi et al. 2019), it
is highly dependent on calendar information. For this reason, the generative method
has to consider calendar information when generating synthetic data for the target.
Overall, the generative method performs two tasks within the LSFE.

The first task is to map the available real target data to the latent space so that the
seed noise sampling strategy can use the latent space data representation of the avail-
able real target data. For this task, the generative model has to realise a mapping from
the data space to the latent space, i.e.

f:XxC—7Z x'— f(x;c0) =1, (1)

where x' € X is a time series segment of fixed length, ¢ € C is the considered calendar
information, z' € Z is the latent space representation of this time series segment, and 0
are the trainable parameters.

The second task is to generate synthetic target data based on the seed noise pro-
vided. For this, the generative model has to realise a second mapping from the latent
space to the data space, i.e.
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g2:ZxC—X, 2 g@zcb) =x, (2)

where x! € X, ¢ € C, z’ € Z, and 6 are defined as above.

To realise both mappings fand g with consideration of calendar information, one can
select cVAEs (Sohn et al. 2015) and conditional Invertible Neural Networks (cINNs)
(Ardizzone et al. 2019) from existing generative methods because their architecture sup-
ports both mappings and conditional information by design. VAEs comprise a jointly
trained encoder and decoder where the encoder realises the mapping fand the generator
the mapping g. INNs are based on the bijective mapping f~! = g that realises both map-
pings. For VAEs and INNs, conditioning mechanism are available to consider calendar

information during the data generation.

Seed noise sampling strategy

The second component of the LSFE is the seed noise sampling strategy. In the follow-
ing, we present three possible seed noise sampling strategies including their underlying
assumption and formal definition.

Random The random seed noise sampling strategy assumes that the latent space rep-
resentation of the target data is normally distributed. Therefore, this strategy samples
the seed noise as rgeq = €, Where rgeq is the seed noise and € ~ N (0, 1) is normally
distributed.

Around The around seed noise sampling strategy assumes that the latent space rep-
resentation of additional target data is similar to the latent space representation of the
available target data. In other words, the available target data already sufficiently points
to the appropriate location in the latent space. Therefore, this strategy aims to sample
the seed noise around the latent space representation of the available target data, i.e.
Fseed = f (X' €,0) + €, where reeq is the seed noise, € ~ N(0,0) is normally distributed,
and f(x’; c,0) is the latent space representation of the target data x'.

Shift The shift seed noise sampling strategy assumes that the latent space represen-
tation of the target data has a similar shape as the one of the source data. This strat-
egy therefore aims to find a linear mapping from the latent space representation of the
source data to the latent space representation of the target data. To find this mapping,
we train a linear regression using source data with the same calendar information as
independent variable and the latent space representation of the target data as dependent
variable. Afterwards, we apply the linear regression on the source data to obtain the seed
noise, i.e. reeeq = [(f (X'; ¢, 0)), Where reeeq is the seed noise, [ is the linear mapping from
the source data to the target data, and f(x’; c, ) is the latent space representation of the
source data x'.

Data combination strategy
The third component of the LSFE decides whether and how target data and sampled
data are combined for training. In the following, we present three different data combi-
nation strategies and their underlying assumption.

Synthetic The synthetic data combination strategy uses only the generated synthetic
target data to train the forecasting model.
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Fig. 2 The time series of the three clients from the UCI Electricity Load Dataset are used as target data in the
evaluation

By only considering the synthetic target data, this strategy assumes that existing real
target data do not provide any additional information and thus can be ignored.

Combined The combined data combination strategy uses the available target data and
the generated synthetic target data. By considering both the existing real target data and
the synthetic target data, this strategy assumes that—regardless of the amount—both
target and synthetic data contain information that is relevant for the training of the fore-
casting method.

Fine-tune The fine-tune data combination strategy also considers both the existing real
target data and the generated synthetic target data. It first trains the forecasting method
on the synthetic target data, before fine-tuning the resulting forecasting model on the
existing real target data. By using the existing real target data to fine-tune the forecasting
model, this strategy assumes that it is beneficial to specialise the forecasting model on
this real target data.

Experimental setting

This section describes how we evaluate the LSFE using pyWATTS (Heidrich et al. 2021).
We first present the used data, before describing the used generative models and fore-
casting models. We then present the applied metrics.

Data

For the evaluation, we use the publicly available “ElectricityLoadDiagrams20112014
Data Set”! from the UCI Machine Learning Repository (Dua and Graff 2019). This data
set contains real-world time series of 370 clients that have a quarter-hourly resolution
and mostly cover the period from January 2011 to December 2014. This data set con-
tains clients with different consumption behaviour such as factories and hotels (Rod-
rigues and Trindade 2018). To use the full period and to avoid negative impacts from
concept drifts, we select three clients—namely MT 124,MT 200, and MT 317—for the
evaluation (for the selected time series, see Fig. 2). We use the time series of each of
these clients as target data and the time series of the other two selected clients as source
data, resulting in three different combinations of source and target data.

! https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Fig. 3 As training data for the generative method, we choose the first year of source data (yellow). As test
data for the forecasting method, we use the last year of the target data (green). As available real target data,
we consider up to two years in 2012 and 2013 (red)

Table 1 The architecture of the subnetwork and the conditioning network in the used cINN

Layers of the subnetwork

1 Dense 64, activation tanh
2 Dense horizon, activation linear

Layers of the conditioning network

1 Dense 2, activation tanh
2 Dense 1, activation linear

As illustrated in Fig. 3, we select the first year of the respective source data as training
data for the generative method. As test data for the forecasting method, we use the last
year of the respective target data. From this target data, we additionally consider the sec-
ond and third year as available real target data, which we use to determine the seed noise
and to combine it with the synthetic target data to the training data for the forecasting
method. More specifically, we examine the most recent 1, 2, 4, 8, 12, 26, 52, and 104
weeks of the available real target data in our evaluation.

Before using the data for the generative and forecasting methods, we perform the fol-
lowing four preprocessing steps. Firstly, we aggregate the data to an hourly resolution.
Secondly, we standardise the data so that it has a mean of 0 and a variance of 1. Thirdly,
we extract calendar information, which serve as conditional input for the generative
method and as additional input for the forecasting method. Finally, we create overlap-
ping samples of size 48 for the generative method and samples of size 24 for the forecast-
ing method. These overlapping samples are due to our moving window approach, i.e.,
the first sample consists of the first 48 or 24 values, the second sample consists of the
second value and the following 48 and 24 values, etc.

Used generative models
Since cINNs and cVAEs can be applied as the generative method in the LSFE as men-
tioned above, we evaluate the LSFE with an implementation of each generative method.
First, we introduce the used cINN before we describe the used cVAE. Finally, we describe
the input data, which is the same for both generative models.

cINN The used cINN consists of 10 coupling layers, each followed by a random per-
mutation. We use GLOW coupling layers (Kingma and Dhariwal 2018) that implement
a type of generative flow. Each of the GLOW coupling layers contains a subnetwork that
enables the coupling layer to learn. As a subnetwork, we use a fully connected network
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Table 2 The architecture of the encoder and decoder in the used cVAE

Layers of the encoder

Input [Load data, Calendar information]

1 Dense 32, activation: tanh

2 Dense 16, activation: tanh

3 wu: Dense latent dimension, activation: linear

o: Dense latent dimension, activation: linear

Layers of the decoder

Input [Seed noise, Calendar information]
1 Dense 16, activation: tanh

2 Dense 32, activation: tanh

3 Dense horizon, activation: linear

as shown in Table 1. To consider conditional information, we use a conditioning network
as suggested by Ardizzone et al. (2019). As conditioning network that processes the con-
ditional information, we also use a fully connected network as proposed in Heidrich
et al. (2022) (see Table 1). We implement the cINN using FrEIA? and PyTorch (Paszke
et al. 2019).

To train the cINN, we use the ADAM optimiser (Kingma and Ba 2015) and 50 epochs.
In the training, we apply the maximum likelihood estimation as loss function to ensure
that the latent space is normally distributed.

cVAE In the selected cVAE, we use fully connected networks for the encoder and the
decoder. Table 2 shows the architecture of both. We implement the cVAE using Keras
(Chollet et al. 2015).

To train the cVAE, we use the ADAM optimiser (Kingma and Ba 2015) and 500
epochs. The higher number of epochs compared to the training of the cINN is due to
the different architectures. During the joint training of the encoder and the decoder,
the decoder aims to reconstruct the input of the encoder by using the normal distrib-
uted latent space representation of the input provided by the encoder. To ensure a good
reconstruction, we use the Root Mean Squared Error (RMSE) as reconstruction loss.
Additionally, we use the Kullback Leibler Divergence to make sure that the latent space
is normally distributed.

Input data All selected generative models receive time series segments of size 48 as
input since the forecasting models should use the past 24 hours to forecast the next 24
hours. Additionally, the selected generative models consider calendar information about
each entry of the time series segment as conditional information. More specifically, as
calendar information, we use the sine and cosine encoded month of the year, the sine
and cosine encoded hour of the day, a Boolean indicating whether it is a weekend, and a
Boolean indicating whether it is a public holiday.

Used forecasting models
In the evaluation of the LSFE, we consider three different neural networks as forecast-
ing models. From each popular architecture, we select one model, i.e. a convolutional

2 https://github.com/VLL-HD/FrEIA
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neural network (CNN), a fully connected neural network (FCN), and a long short-
term memory (LSTM) network. In the following, we describe their architecture,
training, and input data.

The CNN consists of four layers where the hidden layers are convolutional layers
with a kernel size of 3, a ReLu activation function, and different filter sizes. The first
hidden layer has a filter size of 5 and the second a size of 2. The output layer is a dense
layer with a linear activation function. The FCN comprises three layers. The hidden
layer has 32 units and a ReLu activation function whereas the output layer has a linear
activation function. The LSTM network consists of three layers. The hidden layer is a
LSTM layer with 32 units and the output layer is a dense layer with a linear activation
function. To implement all three models, we use Keras (Chollet et al. 2015).

To train the forecasting models, we use the RMSprop optimiser (Hinton et al. 2012)
and the Mean Absolute Error as loss function. We train each model with a maximum
of 30 epochs and use a batch size of 64. To avoid overfitting, we apply early stopping
with a patience of 5. As validation split, we use 0.2 with a random splitting, since it is
the default value of Keras.

As data inputs, all three models receive time series segments of size 24 and the
previously described calendar information of the values to be predicted. Each model
aims to forecast the next 24 hours.

Metrics

In the evaluation, we use two metrics. One metric measures the accuracy and one
metric measures the improvement in the accuracy. For the accuracy, we use the Root
Mean Squared Error (RMSE). To measure the improvement in the accuracy, we use
the RMSE skill score. The RMSE skill score is defined as 1 — RMSE ethod/RMSEpases
where RMSE cthod is the RMSE of the method to be evaluated and RMSEy,,. the
RMSE of a baseline. We consider a persistence model or a STLF model only trained
on the available data as baseline. A positive skill score means that the forecast of the
method to be evaluated is better than the baseline, while a negative skill score indi-
cates that the baseline is better.

Influence of the LSFE’s components

To evaluate the LSFE, we examine the influence of all its components. We first ana-
lyse the influence of the seed noise sampling strategy and then the influence of the
data combination strategy. Since we always report the results for the cINN and the
cVAE in these analyses, we hereby also investigate the influence of the used generative
model.

Seed noise sampling strategy

We examine the influence of the seed noise sampling strategy qualitatively using a

visualisation of the latent space and quantitatively calculating the accuracy.
Visualisation To qualitatively examine the influence of the different seed noise

sampling strategies, we visualise the latent space representation of the target data,

the seed noise, and the source data for the three seed noise sampling strategies and
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Fig. 4 The t-SNE visualisations of the latent space representation of 300 randomly selected samples from the
target data (MT 124), the seed noise rseeq, and the source data (MT_200 and MT_317) for the three seed
noise sampling strategies (random, around, and shift) and the two generative models (cINN and cVAE). Note
that the different subfigures can only be compared qualitatively due to randomly selected start values and
different input data

the two generative models. More specifically, we randomly select 300 samples from
the target data (MT 124), the seed noise rged, and the source data (MT 200 and
MT 317) for the visualisation but only consider samples with a start time at midnight
for a better comprehensibility. To visualise this high dimensional data, we use the
t-distributed stochastic neighbour embedding (t-SNE) (van der Maaten and Hinton
2008). The t-SNE maps the data points into a two-dimensional space such that similar
data points appear close together and dissimilar data points far apart. We apply the
t-SNE implementation from SKLearn (Pedregosa et al. 2011) with the random initiali-
sation method, a perplexity of 20, 1000 iterations, and a learning rate of 600.

In the resulting t-SNE visualisations for the three seed noise sampling strategies and
the two generative models in Fig. 4, we make the following three observations. First, for
both generative models, we observe that the latent space representations of the target
and source data do not overlap. Second, the normally distributed noise neither matches
the target data in the latent space generated by the cINN nor that generated by the cVAE.
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Fig. 5 The RMSE of the three seed noise sampling strategies and two generative models given different
amounts of available target data (MT _124). The used forecasting model is the FCN and the LSFE is applied
with the combined data combination strategy

Third, only the around and the shift seed noise sampling strategies lead to an overlap of
the latent space representations of the target data and the seed noise. More specifically,
the shift strategy leads to the best overlap for the cVAE and the around strategy for the
cINN.

Accuracy To quantitatively evaluate the influence of the different seed noise sampling
strategies, we train the FCN with the combined data combination strategy on different
amounts of available target data and with different seed noise sampling strategies. After-
wards, we calculate the RMSE of the trained FCN on the test data.

Figure 5 shows the amount of available target data in weeks on the x-axis and the
resulting RMSE on the y-axis. Based on these results, we make three observations. First,
for both generative models, the LSFE achieves the worst results with the random seed
noise sampling strategy. Second, the shift data sampling strategy has a peak in the RMSE
at eight weeks of available target data for the cINN and at two weeks for the cVAE. Third,
the best seed noise sampling strategy for the cINN is around, whereas shift is the best
seed noise sampling strategy for the cVAE.

Data combination strategy

To examine the influence of the different strategies to combine real and synthetic data,
we train the above FCN with the three data combination strategies on different amounts
of available target data. As the seed noise sampling strategy, we use the best strategy
from the previous experiment, i.e. the around seed noise sampling strategy for the cINN
and the shift seed noise sampling strategy for the cVAE. After the training, we calculate
the RMSE of the trained FCN on the test data.

Figure 6 shows the amount of available target data in weeks on the x-axis and the
RMSE on the y-axis. In these results, we make two observations. First, for the cINN,
all data combination strategies perform similarly. The RMSE decreases until 12 weeks
of available target data and is then stable. Second, for the cVAE, the data combination
strategies have varying results. The best data combination strategy is fine-tune followed
by combined and synthetic.
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Fig. 6 The RMSE of the three data combination strategies and the two generative models given different
amounts of available target data (MT _124). The used forecasting model is the FCN and the LSFE is applied
with the around seed noise sampling strategy for the cINN and the shift seed noise sampling strategy for the
cVAE

Influence on the forecast

To evaluate the LSFE, we also investigate its influence on the performed forecast. For
this, we first examine how the LSFE improves the forecast accuracy. Second, we analyse
whether the selected forecasting model influences this accuracy improvement. Third,
we analyse whether the initialisation of the generative model influences the accuracy

improvement.

Accuracy improvement

To qualitatively examine how the LSFE improves the forecast accuracy, we compare a
24-hours forecast of the LSFE and a forecasting model only trained on twelve weeks of
data. For the LSFE, we select the cINN as generative model, the around seed noise sam-
pling strategy, the combined data combination strategy, and the FCN as the forecasting
model.

Figure 7 shows the 24-hours forecasts of the LSFE and the FCN trained on the last
twelve weeks of data from 2013 as well as the ground truth. The top row shows the fore-
casts for the complete period of the test data, the bottom row shows the forecast for a
period of one week. We observe that the LSFE provides better forecasts than the fore-
casting model trained only on twelve weeks of data. In particular, the LSFE improves
the forecasts for periods that differ from the data available in the training (e.g. July and
August).

Influence of forecasting model

To examine whether the selected forecasting model influences the accuracy improve-
ment by the LSFE, we apply different forecasting models with the LSFE and determine
the improvement in their accuracy using the RMSE skill score with the forecast trained
only on real data as RMSEy,,q.. As forecasting models, we select the CNN, the FCN, and
the LSTM network mentioned above. For the seed noise sampling strategy and the data
combination strategy, we use the best strategies determined in the previous experi-
ments, i.e. the around seed noise sampling strategy and the combined data combination
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Fig. 7 The 24-hours forecasts of the LSFE and the FCN trained on the last twelve weeks of data from 2013 as
well as the ground truth for the complete period of test data (top row) and one week of the test data (bottom
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Fig. 8 The RMSE skill score of the three forecasting models applied with the LSFE given different amounts
of available target data. The RMSE skill score considers the RMSE of the forecasting model trained using

the LSFE as RMSEmethog and the RMSE of the forecasting model trained only on the available target data
(MT 124) as RMSEpase. The LSFE is applied with the around seed noise sampling strategy and the combined
data combination method for the cINN, and the shift seed noise sampling strategy and the fine-tune data
combination method for the cVAE

strategy for the cINN as well as the shift seed noise sampling strategy and the fine-tune
data combination method for the cVAE.

Figure 8 shows the RMSE skill score for the three forecasting models and different
amounts of available target data. Based on these results, we make three observations.
First, we observe considerable accuracy improvements with the LSFE for all three fore-
casting models when only a small amount of target data is available. Second, comparing
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Fig.9 The mean RMSE and the band comprising the minimum and maximum RMSE for the three seed noise
sampling strategies (random, around, and shift), the two generative models (cINN and cVAE), and different
amounts of available target data (MT _124). The used forecasting model is the FCN and the LSFE is applied
with the combined data combination strategy for the cINN and the fine-tune data combination strategy for
the cVAE

the cINN and the cVAE with the best strategies, the improvements in the RMSE of both
generative models are similar. Third, the LSFE generally improves the forecasting accu-
racy regardless of the selected forecasting model but the extent of improvement varies.
For example, the cINN achieves the strongest improvement with the FCN and the cVAE
with the CNN.

Influence of initialisation
To examine whether the initialisation of the generative model influences the accuracy
improvement by the LSFE, we apply the LSFE three times with the combined data com-
bination strategy for the cINN and the fine-tune data combination strategy for the cVAE.
Figure 9 shows the mean RMSE and the band comprising the minimum and maxi-
mum RMSE for the three seed noise sampling strategies, the two generative models, and
different amounts of available target data. In these results, we make two observations.
First, the width of the band is smaller when using cINNs than cVAEs for each seed noise
sampling strategy, except for the shift strategy. For this strategy, the bands have a similar
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width for the cINN and the cVAE. Second, with an increasing amount of available target
data, the width of the band becomes smaller. However, for the shift data sampling strat-
egy, there exists a peak at week eight. Note that the band width, which describes the dif-

ference between maximum and minimum RMSE, is always greater than zero.

Benchmarking

To assess the performance of the LSFE, we compare it with other methods in coping
with small amounts of available data in STLFE. For the comparison, we use the LSFE in
the best configuration as determined in the previous experiments, i.e. with a cINN as
generative model, the around seed noise sampling strategy, the combined data combina-
tion strategy, and the FCN as forecasting model.

For comparison, we select the following three common benchmark models. The first
benchmark is a forecasting model that is trained only on the available real target data.
The second benchmark realises the weight initialisation transfer learning approach.
This approach first trains the forecasting model on the source data. Afterwards, the
model is fine-tuned on the available target data. The last benchmark implements data
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augmentation using normally distributed noise. For this benchmark, we repeatedly draw
noise from N(0,0.1) and add it to the available target data until we also have 15000
training data samples.

Figure 10 shows the RMSE skill score of the LSFE and the three benchmark models
for different amounts of available target data and the three considered target data. As
RMSEy,se, we use the persistence forecast. In this figure, we make three observations.
First, the best performing model is the LSFE using the cINN. For all three selected target
data, it outperforms all benchmark models when limited data is available. If not enough
data is available all models perform similarly. Moreover, as indicated by the positive
RMSE skill score, the LSFE is able to outperform the persistence forecast when at least
eight weeks of data are available, much earlier than all benchmarks. When using less
than eight weeks of data, the persistence forecast obtains better results for some targets.
Second, the performance of the LSFE consistently improves with an increasing amount
of available target data, whereas the transfer learning and the noise augmentation bench-
mark models show an abrupt improvement after a half and one year, respectively.

Discussion

This section discusses the influence of the LSFE’s components, the influence of the LSFE
on the performed forecast, the benchmark results, and the limitations and benefits of
the LSFE.

Influence of the LSFE’s components

Regarding the influence of the LSFE’s components, we discuss three aspects in the fol-
lowing. First, we find that, depending on the used generative model, the around and the
shift seed noise sampling strategies cover the latent space representation of the target
data the best. In line with this finding, the cINN obtains the best quantitative results with
the around and the cVAE with the shift seed noise sampling strategy. These observations
indicate that the latent space data representation differs depending on the selected gen-
erative method. Therefore, for each generative method, a suitable seed noise sampling
strategy has to be determined. Second, we find that, depending on the used generative
model, the influence of the data combination strategy differs. While all data combination
strategies lead to comparable results of the LSFE for the cINN, the selected data combi-
nation strategy influences the results for the cVAE. This finding indicates that the cINN
generates synthetic data that are more similar to the real data of the target than the data
generated by the cVAE. Third, we assume that the bijective mapping is the reason why
the cINN performs better than the cVAE because it ensures that each pattern can be
generated from the latent space.

Influence on the forecast

With regard to the influence of the LSFE on the forecast, we discuss four aspects in the
following. First, we observe that the LSFE improves the forecasts, especially for peri-
ods that differ from the available data. We assume that there are two reasons for this
improvement. Using conditional information enables the LSFE to provide data for
periods that differ from available data. Additionally, the seed noise sampling strategy
ensures that the generated synthetic data matches the target. Second, we find that the
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LSFE improves the forecasts of different neural network-based forecasting models. This
finding indicates that the LSFE solves the cold-start problem in STLF regardless of the
selected forecasting model. Additionally, the good performance of the persistent fore-
casting model suggests that it could be applied in the first weeks until the LSFE obtains
better results. Third, we observe that the results of the LSFE using the cINN with differ-
ent initialisations are similar because the distances between the best and worst achieved
RMSE are small. This observation indicates that the LSFE reliably improves STLF when
limited training data is available, which is essential for smart grid applications. Fourth,
when analysing the initialisations, we observe that the RMSE peaks slightly around week
8 for both models and multiple sampling strategies. This behaviour is unexpected, and
further experiments should be conducted to determine whether it is due to the sampling

strategy or an artefact in the data.

Benchmarking

Concerning the benchmarking results, we discuss two properties that we assume to be
key contributors to the superior performance of the LSFE. First, the generative model
applied in the LSFE learns structural information from multiple source data. Second, the
conditioning mechanism enables the generative method to generate synthetic data with
specific calendar information. Together with the seed noise sampling strategy, these two
properties help the LSFE to generate synthetic data with varying calendar information
that matches the target. Noise-based data augmentation strategies, however, only repeat
the available target data. Therefore, the resulting synthetic data fits the target but does
not have varying calendar information. Additionally, transfer learning strategies may
provide training data with varying calendar information but this data often does not fit
the target.

Limitations and benefits

Lastly, we discuss three potential limitations and three benefits of the LSFE. The first
limitation is that the around seed noise sampling strategy requires additional parame-
ters. More precisely, one has to specify o to sample around existing data points. While
the o = 0.1 used in the evaluation leads to good results, an optimisation of this param-
eter could further improve the results. The second limitation is that the shift seed noise
sampling strategy assumes a linear relationship between the latent space data distribu-
tion of the source and the target data. In general, however, this relationship is not nec-
essarily linear. The third limitation is that we only examine a selection of possible seed
noise sampling and data combination strategies that require at least some available tar-
get data. Therefore, future work should investigate these limitations.

A benefit of the LSFE is that it is not bound to a certain forecasting model. Rather, it
can be used to improve the accuracy of any forecasting models. Lastly, the LSFE is also
not bound to a specific aggregation level. Consequently, it can also be applied to load
forecasting for new building areas and neighbourhood planning.
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Conclusion

The present paper proposes a method combining transfer learning and data augmen-
tation to enhance STLF when training data is limited. Using the latent space repre-
sentation of source data and available target data from a generative method, the LSFE
uses a seed noise sampling strategy and calendar information to create synthetic data
that fits the target. The resulting synthetic data is then combined with the available
real target data based on a data combination strategy and is finally used to train a
forecasting model.

The evaluation of the LSFE’s components shows that the LSFE using a cINN works
best with the around seed noise sampling strategy and all of the considered data com-
bination strategies, whereas the cVAE performs best with the shift seed noise sam-
pling strategy and the fine-tune data combination strategy. The evaluation also shows
that the LSFE generally improves the accuracy of short-term load forecasts, regard-
less of the used generative model, the applied forecasting model, and its initialisation.
Moreover, the LSFE outperforms all considered benchmark models.

Future work could incorporate additional information, depending on the applica-
tion area, such as the size of the building when forecasting individual buildings or
the number of buildings in the case of neighbourhoods. Additionally, other generative
methods could be tested such as a conditional BIGAN. Lastly, further seed noise sam-
pling strategies and data combination strategies could be analysed.

Author contributions

BH Conceptualisation, Investigation, Methodology, Software, Validation, Visualisation, Writing—original draft. LM: Con-
ceptualisation, Investigation, Software, Writing—original draft. MT: Conceptualisation, Writing—original draft, Writing—
review and editing. KP: Conceptualisation, Writing—original draft, Writing—review and editing. BS: Conceptualisation,
Writing—review and editing. RM: Funding acquisition, Supervision, Writing—review and editing. VH: Funding acquisi-
tion, Supervision, Writing—review and editing. All authors read and approved the final manuscript.

About this supplement

This article has been published as part of Energy Informatics Volume 5 Supplement 1, 2022: Proceedings of the 11th
DACH+ Conference on Energy Informatics. The full contents of the supplement are available online at https://energyinfo
rmatics.springeropen.com/articles/supplements/volume-5-supplement-1.

Funding

This project is funded by the Helmholtz Association’s Initiative and Networking Fund through Helmholtz Al, the Helm-
holtz Association under the Program “Energy System Design’, the Helmholtz Association under grant no. VH-NG-1727,
and the German Research Foundation (DFG) as part of the Research Training Group 2153 “Energy Status Data: Informatics
Methods for its Collection, Analysis and Exploitation”.

Availability of data and materials

The source code of the LSFE is publicly available GitHub at https://github.com/KIT-IAl/LatentForecastEnhancer. The data
from the “ElectricityLoadDiagrams20112014 Data Set” used for the evaluation is openly available in the UCI Machine
Learning Repository at https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.

Declarations

Competing interests
The authors declare that they have no competing interests.

Published: 7 September 2022

References
Ardizzone L, Lith C, Kruse J, Rother C, Kéthe U (2019) Guided image generation with conditional invertible neural
networks. arXiv:1907.02392


https://energyinformatics.springeropen.com/articles/supplements/volume-5-supplement-1
https://energyinformatics.springeropen.com/articles/supplements/volume-5-supplement-1
https://github.com/KIT-IAI/LatentForecastEnhancer
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
http://arxiv.org/abs/1907.02392

Heidrich et al. Energy Informatics 2022, 5(Suppl 1):20 Page 19 of 20

Alrawi O, Bayram IS, Al-Ghamdi SG, Koc M (2019) High-resolution household load profiling and evaluation of rooftop PV
systems in selected houses in Qatar. Energies 12(20):3876

Chollet F et al. (2015) Keras . https://keras.io

Do H, Cetin KS (2018) Residential building energy consumption: a review of energy data availability, characteristics, and
energy performance prediction methods. Curr Sustain/Renew Energy Rep 5(1):76-85

Dua D, Graff C (2019) UCI machine learning repository. http://archive.ics.uci.edu/ml

Fan C, Chen M, Wang X, Wang J, Huang B (2021) A review on data preprocessing techniques toward efficient and reliable
knowledge discovery from building operational data. Front Energy Res 9:652801

Fan C, Chen M, Tang R, Wang J (2022) A novel deep generative modeling-based data augmentation strategy for improv-
ing short-term building energy predictions. Build Simul 15(2):197-211

Gomez-Rosero S, Capretz MAM, Mir S (2021) Transfer learning by similarity centred architecture evolution for multiple
residential load forecasting. Smart Cities 4(1):217-240

Gonzélez Ordiano JA, Waczowicz S, Hagenmeyer V, Mikut R (2018) Energy forecasting tools and services. Wiley Interdiscipl
Rev Data Mining Know! Discov 8(2):1235

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer, New York

Heidrich B, Bartschat A, Turowski M, Neumann O, Phipps K, Meisenbacher S, Schmieder K, Ludwig N, Mikut R, Hagen-
meyerV (2021) pyWATTS: Python workflow automation tool for time series. arXiv:2106.10157

Heidrich B, Turowski M, Phipps K, Schmieder K, SUB W, Mikut R, Hagenmeyer V (2022) Controlling non-stationarity and
periodicities in time series generation using conditional invertible neural networks. Appl Intell

Hinton G, Srivastava N, Swersky K (2012) Neural networks for machine learning lecture: lecture 6a overview of mini-batch
gradient descent. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Hippert HS, Pedreira CE, Souza RC (2001) Neural networks for short-term load forecasting: a review and evaluation. IEEE
Trans Power Syst 16(1):44-55

Hooshmand A, Sharma R (2019) Energy predictive models with limited data using transfer learning. In: The Tenth ACM
International Conference on Future Energy Systems (e-Energy 2019), pp. 12-16

Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: 3rd International Conference on Learning
Representations (ICLR 2015)

Kingma DP, Dhariwal P (2018) Glow: generative flow with invertible 1x1 convolutions. In: Bengio S, Wallach H, Larochelle
H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Advances in neural information processing systems, vol. 31, pp.
10215-10224

Kroposki B, Johnson B, Zhang Y, Gevorgian V, Denholm P, Hodge B-M, Hannegan B (2017) Achieving a 100% renewable
grid: operating electric power systems with extremely high levels of variable renewable energy. IEEE Power Energy
Mag 15(2):61-73

Li A, Xiao F, Fan C, Hu M (2021) Development of an ANN-based building energy model for information-poor buildings
using transfer learning. Build Simul 14:89-101

Lin W, Wu D (2021) Residential electric load forecasting via attentive transfer of graph neural networks. In: Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence (JCAI-21), pp. 2716-2722

Maalej A, Rebai C (2021) Sensor data augmentation strategy for load forecasting in smart grid context. In: 2021 18th
International Multi-Conference on Systems, Signals & Devices (SSD), pp. 979-983

Mabel MC, Fernandez E (2008) Analysis of wind power generation and prediction using ANN: a case study. Renew Energy
33(5):986-992

Moon J, Kim J, Kang P, Hwang E (2020) Solving the cold-start problem in short-term load forecasting using tree-based
methods. Energies 13(4):886

Ozer |, Efe SB, Ozbay H (2021) A combined deep learning application for short term load forecasting. Alex Eng J
60(4):3807-3818

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A,
Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an impera-
tive style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, D’Alché-Buc F, Fox E,
Garnett R (eds) Advances in neural information processing systems, vol 32, pp. 8024-8035

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vander-
plas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J
Mach Learn Res 12:2825-2830

Ribeiro M, Grolinger K, ElYamany HF, Higashino WA, Capretz MAM (2018) Transfer learning with seasonal and trend adjust-
ment for cross-building energy forecasting. Energy Build 165:352-363

Rodrigues F, Trindade A (2018) Load forecasting through functional clustering and ensemble learning. Know! Inf Syst
57(1):229-244

Sohn K, Yan X, Lee H (2015) Learning structured output representation using deep conditional generative models. In:
Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information processing systems, vol.
28, pp. 3483-3491

Tian'Y, Sehovac L, Grolinger K (2019) Similarity-based chained transfer learning for energy forecasting with big data. IEEE
Access 7:139895-139908

Upadhaya D, Thakur R, Singh NK (2019) A systematic review on the methods of short term load forecasting. In: 2019 2nd
International Conference on Power Energy, Environment and Intelligent Control (PEEIC), pp. 6-11

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(86):2579-2605

VoR M, Bender-Saebelkampf C, Albayrak S (2018) Residential short-term load forecasting using convolutional neural
networks. In: 2018 IEEE International Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm)

Wu L, Shahidehpour M (2010) A hybrid model for day-ahead price forecasting. IEEE Trans Power Syst 25(3):1519-1530

Xu X, Meng Z (2020) A hybrid transfer learning model for short-term electric load forecasting. Electr Eng
102(3):1371-1381


https://keras.io
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2106.10157
http://www.cs.toronto.edu/%7etijmen/csc321/slides/lecture_slides_lec6.pdf

Heidrich et al. Energy Informatics 2022, 5(Suppl 1):20 Page 20 of 20

Yona A, Senjyu T, Saber AY, Funabashi T, Sekine H, Kim CH (2008) Application of neural network to 24-hour-ahead gener-
ating power forecasting for pv system. In: 2008 IEEE Power and Energy Society General Meeting—Conversion and
Delivery of Electrical Energy in the 21st Century

Zhang Y, Luo G (2015) Short term power load prediction with knowledge transfer. Inf Syst 53:161-169

Zhou D, Ma S, Hao J, Han D, Huang D, Yan S, Li T (2020) An electricity load forecasting model for Integrated Energy Sys-
tem based on BiGAN and transfer learning. Energy Rep 6:3446-3461

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Boost short-term load forecasts with synthetic data from transferred latent space information
	Abstract 
	Introduction
	Latent space-based forecast enhancer
	Generative method
	Seed noise sampling strategy
	Data combination strategy

	Experimental setting
	Data
	Used generative models
	Used forecasting models
	Metrics

	Influence of the LSFE’s components
	Seed noise sampling strategy
	Data combination strategy

	Influence on the forecast
	Accuracy improvement
	Influence of forecasting model
	Influence of initialisation

	Benchmarking
	Discussion
	Influence of the LSFE’s components
	Influence on the forecast
	Benchmarking
	Limitations and benefits

	Conclusion
	References


