3,094 research outputs found

    Recognition of variations using automatic Schenkerian reduction.

    Get PDF
    Experiments on techniques to automatically recognise whether or not an extract of music is a variation of a given theme are reported, using a test corpus derived from ten of Mozart's sets of variations for piano. Methods which examine the notes of the 'surface' are compared with methods which make use of an automatically derived quasi-Schenkerian reduction of the theme and the extract in question. The maximum average F-measure achieved was 0.87. Unexpectedly, this was for a method of matching based on the surface alone, and in general the results for matches based on the surface were marginally better than those based on reduction, though the small number of possible test queries means that this result cannot be regarded as conclusive. Other inferences on which factors seem to be important in recognising variations are discussed. Possibilities for improved recognition of matching using reduction are outlined

    Comparison Of Modified Dual Ternary Indexing And Multi-Key Hashing Algorithms For Music Information Retrieval

    Full text link
    In this work we have compared two indexing algorithms that have been used to index and retrieve Carnatic music songs. We have compared a modified algorithm of the Dual ternary indexing algorithm for music indexing and retrieval with the multi-key hashing indexing algorithm proposed by us. The modification in the dual ternary algorithm was essential to handle variable length query phrase and to accommodate features specific to Carnatic music. The dual ternary indexing algorithm is adapted for Carnatic music by segmenting using the segmentation technique for Carnatic music. The dual ternary algorithm is compared with the multi-key hashing algorithm designed by us for indexing and retrieval in which features like MFCC, spectral flux, melody string and spectral centroid are used as features for indexing data into a hash table. The way in which collision resolution was handled by this hash table is different than the normal hash table approaches. It was observed that multi-key hashing based retrieval had a lesser time complexity than dual-ternary based indexing The algorithms were also compared for their precision and recall in which multi-key hashing had a better recall than modified dual ternary indexing for the sample data considered.Comment: 11 pages, 5 figure

    IDENTIFICATION OF COVER SONGS USING INFORMATION THEORETIC MEASURES OF SIMILARITY

    Get PDF
    13 pages, 5 figures, 4 tables. v3: Accepted version13 pages, 5 figures, 4 tables. v3: Accepted version13 pages, 5 figures, 4 tables. v3: Accepted versio

    Music ranking techniques evaluated

    Get PDF
    In a music retrieval system, a user presents a piece of music as a query and the system must identify from a corpus of performances other pieces with a similar melody. Several techniques have been proposed for matching such queries to stored music. In previous work, we found that local alignment, a technique derived from bioinformatics, was more effective than the n-gram methods derived from information retrieval; other researchers have reported success with n-grams, but have not compared against local alignment. In this paper we explore a broader range of n-gram techniques, and test them with both manual queries and queries automatically extracted from MIDI files. Our experiments show that n-gram matching techniques can be as effective as local alignment; one highly effective technique is to simply count the number of n-grams in common between the query and the stored piece of music. N-grams are particularly effective for short queries and manual queries, while local alignment is superior for automatic queries

    Towards an All-Purpose Content-Based Multimedia Information Retrieval System

    Full text link
    The growth of multimedia collections - in terms of size, heterogeneity, and variety of media types - necessitates systems that are able to conjointly deal with several forms of media, especially when it comes to searching for particular objects. However, existing retrieval systems are organized in silos and treat different media types separately. As a consequence, retrieval across media types is either not supported at all or subject to major limitations. In this paper, we present vitrivr, a content-based multimedia information retrieval stack. As opposed to the keyword search approach implemented by most media management systems, vitrivr makes direct use of the object's content to facilitate different types of similarity search, such as Query-by-Example or Query-by-Sketch, for and, most importantly, across different media types - namely, images, audio, videos, and 3D models. Furthermore, we introduce a new web-based user interface that enables easy-to-use, multimodal retrieval from and browsing in mixed media collections. The effectiveness of vitrivr is shown on the basis of a user study that involves different query and media types. To the best of our knowledge, the full vitrivr stack is unique in that it is the first multimedia retrieval system that seamlessly integrates support for four different types of media. As such, it paves the way towards an all-purpose, content-based multimedia information retrieval system

    Music Similarity Estimation

    Get PDF
    Music is a complicated form of communication, where creators and culture communicate and expose their individuality. After music digitalization took place, recommendation systems and other online services have become indispensable in the field of Music Information Retrieval (MIR). To build these systems and recommend the right choice of song to the user, classification of songs is required. In this paper, we propose an approach for finding similarity between music based on mid-level attributes like pitch, midi value corresponding to pitch, interval, contour and duration and applying text based classification techniques. Our system predicts jazz, metal and ragtime for western music. The experiment to predict the genre of music is conducted based on 450 music files and maximum accuracy achieved is 95.8% across different n-grams. We have also analyzed the Indian classical Carnatic music and are classifying them based on its raga. Our system predicts Sankarabharam, Mohanam and Sindhubhairavi ragas. The experiment to predict the raga of the song is conducted based on 95 music files and the maximum accuracy achieved is 90.3% across different n-grams. Performance evaluation is done by using the accuracy score of scikit-learn
    corecore