4 research outputs found

    Interferometric SAR signal analysis in the presence of squint

    Get PDF
    This paper develops an analysis of the SAR impulse response function from the interferometric point of view, with the intention of studying its phase behavior in the presence of high squint angle values. It will be pointed out that in this case, a phase ramp is present in the range direction, which, in combination with a certain degree of misregistration between the two images induces an offset in the generated interferometric phase. This behavior, if not compensated, imposes strong limits on the performance of the interferometric techniques in a squinted case, especially for airborne SAR systems. The article proposes two new techniques, which are appropriate to correct the phase bias coming from this source. The first one is based on a modification of the azimuth compression filter, which cancels the phase ramp of the range impulse response function for one specific squint value. In case the SAR processing is performed with variable squint over range, the authors propose a second method oriented to estimating the expected misregistration and thus, the phase bias by means of an iterative approach. Simulated data as well as real corner reflector responses are used to show that the correct topography can be recovered precisely even in the presence of phase bias coming from the squinted geometry.Peer Reviewe

    An imaging algorithm for spaceborne high-squint L-band SAR based on time-domain rotation

    Get PDF
    For spaceborne high-squint L-band synthetic aperture radar (SAR), the long wavelength and high-squint angle result in strong coupling between the range and azimuth directions. In conventional imaging algorithms, linear range walk correction (LRWC) is commonly used to correct linear range cell migration which dominates the coupling. However, LRWC introduces spatial variation in the azimuth direction, limits the depth-of-azimuth-focus (DOAF) and affects the imaging quality. This article constructs a polynomial range model and develops a modified omega-k algorithm to achieve spaceborne high-squint L-band SAR imaging. The key to this algorithm is to rotate the two-dimensional (2-D) data after LRWC in the time domain by a proposed time-rotation (TR) operation that eliminates the DOAF degradation caused by LRWC. The proposed algorithm, which is composed of LRWC, bulk compression, TR, and modified Stolt interpolation, achieves well-focused results at a 1-m resolution and a swath of 4 km × 4 km at a squint angle of 45°

    Digital beam-forming for high resolution wide swath real and synthetic aperture radar [online]

    Get PDF
    corecore