380 research outputs found

    Real-Time structural health monitoring for concrete beams: a cost-effective 'Industry 4.0' Solution using Piezo Sensors

    Get PDF
    Purpose: This research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost effective non-destructive technologies. In so doing, the work illustrates how a coalescence of low-cost digital technologies can seamlessly integrate to solve practical construction problems. Methodology: A mixed philosophies epistemological design is adopted to implement the empirical quantitative analysis of ‘real-time’ data collected via sensor-based technologies streamed through a Raspberry Pi and uploaded onto a cloud-based system. Data was analysed using a hybrid approach that combined both vibration characteristic based method and linear variable differential transducers (LVDT). Findings: The research utilises a novel digital research approach for accurately detecting and recording the localisation of structural cracks in concrete beams. This nondestructive low-cost approach was shown to perform with a high degree of accuracy and precision, as verified by the LVDT measurements. This research is testament to the fact that as technological advancements progress at an exponential rate, the cost of implementation continues to reduce to produce higher accuracy ‘mass-market’ solutions for industry practitioners. Originality: Accurate structural health monitoring of concrete structures necessitates expensive equipment, complex signal processing and skilled operator. The concrete industry is in dire need of a simple but reliable technique that can reduce the testing time, cost and complexity of maintenance of structures. This was the first experiment of its kind that seeks to develop an unconventional approach to solve the maintenance problem associated with concrete structures. This study merges industry 4.0 digital technologies with a novel low-cost and automated hybrid analysis for real-time structural health monitoring of concrete beams by fusing several multidisciplinary approaches in one integral technological configuration

    The application of air-coupled ultrasonic systems and signal processing to the interrogation of concrete

    Get PDF
    This thesis describes the application of ultrasound to the interrogation of concrete for the retrieval of quantitative information. In particular the use of air-coupled ultrasound is applied for the first time with recent improvement in ultrasonic technology making this possible. Broadband capacitance transducers are used in tandem with pulse compression to deliver and receive ultrasonic signals with greatly improved SNR’s. Pulse compression involves the cross correlation of a chirp signal to record accurate ultrasonic time of flights. This metric is used to makes structural inferences about concrete and to compare contact and non-contact ultrasonic systems. This comparison reveals that concrete strength estimation from ultrasonic pulse velocity (UPV), alone is inaccurate. Other metrics such as aggregate content and humidity should also be considered. A study in to the effect of humidity on the UPV is presented and a correction factor obtained that normalises UPV around a humidity that could be considered normal to a temperate climate. Images of reinforcement bars embedded in concrete are presented using the pulse compression technique. Time-frequency (t-f) analysis is applied to ultrasonic chirp signals. Extensive simulation is carried out and a comparison between three different methods presented. This ensures accurate tracking of the ultrasonic chirp signals, which allows for frequency scattering to be examined. T-f analysis is then applied to real ultrasonic signals and it is shown how frequencies spectrums of received chirps can be de-noised using the Hough transform. Images of embedded defects are then presented. The Superheterodyne technique is then described and applied to concrete interrogation. Although not overly successful it is shown how energy distributions of received tone burst signals vary with time and the need for further work is discussed

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Tool wear monitoring in machining of stainless steel

    Get PDF
    monitoring systems for automated machines must be capable of operating on-line and interpret the working condition of machining process at a given point in time because it is an automated and unmanned system. But this has posed a challenge that lead to this research study. Generally, optimization of machining process can be categorized as minimization of tool wear, minimization of operating cost, maximization of process output and optimization of machine parameter. Tool wear is a complex phenomenon, capable of reducing surface quality, increases power consumption and increased reflection rate of machined parts. Tool wear has a direct effect on the quality of the surface finish for any given work-piece, dimensional precision and ultimately the cost of parts produced. Tool wear usually occur in combination with the principal wear mode which depends on cutting conditions, tool insert geometry, work piece and tool material. Therefore, there is a need to develop a continuous tool monitoring systems that would notify operator the state of tool to avoid tool failure or undesirable circumstances. Tool wear monitoring system for macro-milling has been studied using design and analysis of experiment (DOE) approach. Regression analysis, analysis of variance (ANOVA), Box Behnken and Response Surface Methodology (RSM). These analysis tools were used to model the tool wear. Hence, further investigations were carried out on the data acquired using signal processing and Neural networks frame work to validate the model. The effects of cutting parameters are evaluated and the optimal cutting conditions are determined. The interaction of cutting parameters is established to illustrate the intrinsic relationship between cutting parameters, tool wear and material removal rate. It was observed that when working with stainless steel 316, a maximum tool wear value of 0.29mm was achieved through optimization at low values of feed about 0.06mm/rev, speed of 4050mm/min and depth of cut about 2mm
    • …
    corecore