7,094 research outputs found

    Nipple discharge: the state of the art

    Get PDF
    Over 80% of females experience nipple discharge during their life. Differently from lactational (milk production) and physiological (white, green, or yellow), which are usually bilateral and involving multiple ducts, pathologic nipple discharge (PND) is a spontaneous commonly single-duct and unilateral, clear, serous, or bloody secretion. Mostly caused by intraductal papilloma(s) or ductal ectasia, in 5-33% of cases is due to an underlying malignancy. After clinical history and physical examination, mammography is the first step after 39, but its sensitivity is low (7–26%). Ultrasound shows higher sensitivity (63–100%). Nipple discharge cytology is limited by a false negative rate over 50%. Galactography is an invasive technique that may cause discomfort and pain; it can be performed only when the duct discharge is demonstrated at the time of the study, with incomplete/failed examination rate up to 15% and a difficult differentiation between malignant and benign lesions. Ductoscopy, performed under local anesthesia in outpatients, provides a direct visualization of intraductal lesions, allowing for directed excision and facilitating a targeted surgery. Its sensitivity reaches 94%; however, it is available in only few centers and most clinicians are unfamiliar with its use. PND has recently emerged as a new indication for contrast-enhanced breast MRI, showing sensitivity superior to galactography, with an overall sensitivity up to 96%, also allowing tailored surgery. Surgery no longer can be considered the standard approach to PND. We propose a state-of-the art flowchart for the management of nipple discharge, including ductoscopy and breast MRI as best options

    Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for Multimodal Medical Diagnosis

    Full text link
    Driven by the large foundation models, the development of artificial intelligence has witnessed tremendous progress lately, leading to a surge of general interest from the public. In this study, we aim to assess the performance of OpenAI's newest model, GPT-4V(ision), specifically in the realm of multimodal medical diagnosis. Our evaluation encompasses 17 human body systems, including Central Nervous System, Head and Neck, Cardiac, Chest, Hematology, Hepatobiliary, Gastrointestinal, Urogenital, Gynecology, Obstetrics, Breast, Musculoskeletal, Spine, Vascular, Oncology, Trauma, Pediatrics, with images taken from 8 modalities used in daily clinic routine, e.g., X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Digital Subtraction Angiography (DSA), Mammography, Ultrasound, and Pathology. We probe the GPT-4V's ability on multiple clinical tasks with or without patent history provided, including imaging modality and anatomy recognition, disease diagnosis, report generation, disease localisation. Our observation shows that, while GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy, it faces significant challenges in disease diagnosis and generating comprehensive reports. These findings underscore that while large multimodal models have made significant advancements in computer vision and natural language processing, it remains far from being used to effectively support real-world medical applications and clinical decision-making. All images used in this report can be found in https://github.com/chaoyi-wu/GPT-4V_Medical_Evaluation

    Influence of study design on digital pathology image quality evaluation : the need to define a clinical task

    Get PDF
    Despite the current rapid advance in technologies for whole slide imaging, there is still no scientific consensus on the recommended methodology for image quality assessment of digital pathology slides. For medical images in general, it has been recommended to assess image quality in terms of doctors’ success rates in performing a specific clinical task while using the images (clinical image quality, cIQ). However, digital pathology is a new modality, and already identifying the appropriate task is difficult. In an alternative common approach, humans are asked to do a simpler task such as rating overall image quality (perceived image quality, pIQ), but that involves the risk of nonclinically relevant findings due to an unknown relationship between the pIQ and cIQ. In this study, we explored three different experimental protocols: (1) conducting a clinical task (detecting inclusion bodies), (2) rating image similarity and preference, and (3) rating the overall image quality. Additionally, within protocol 1, overall quality ratings were also collected (task-aware pIQ). The experiments were done by diagnostic veterinary pathologists in the context of evaluating the quality of hematoxylin and eosin-stained digital pathology slides of animal tissue samples under several common image alterations: additive noise, blurring, change in gamma, change in color saturation, and JPG compression. While the size of our experiments was small and prevents drawing strong conclusions, the results suggest the need to define a clinical task. Importantly, the pIQ data collected under protocols 2 and 3 did not always rank the image alterations the same as their cIQ from protocol 1, warning against using conventional pIQ to predict cIQ. At the same time, there was a correlation between the cIQ and task-aware pIQ ratings from protocol 1, suggesting that the clinical experiment context (set by specifying the clinical task) may affect human visual attention and bring focus to their criteria of image quality. Further research is needed to assess whether and for which purposes (e.g., preclinical testing) task-aware pIQ ratings could substitute cIQ for a given clinical task

    Image standards in Tissue-Based Diagnosis (Diagnostic Surgical Pathology)

    Get PDF
    © 2008 Kayser et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives

    Get PDF
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQIntroduction: Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) combine magnetic resonance imaging (MRI) techniques and diffusion measures. In DWI, the contrast is defined by microscopic motion of water protons. Nowadays, DWI has become important for early diagnostic of acute stroke. DTI images are calculated from DWI images acquired in at least six directions, which give information of diffusion directionality, making it possible to reconstruct axonal or muscle fiber images. Both techniques have been applied to study body structures in healthy and pathological conditions. Currently, it is known that these images and derived parameters are quite sensitive to factors related to acquisition and processing. Magnetic field inhomogeneity, susceptibility, chemical shift, radiofrequency (RF) interference, eddy currents and low signal-to-noise ratio (SNR) can have a more harmful effect in diffusion data than in T1- or T2-weighted image data. However, even today there are not reference phantoms and guidelines for DWI or DTI quality control (QC). Review: Proposals for construction and use of DWI and DTI QC phantoms can be found in literature. DWI have been evaluated using containers filled by gel or liquid with tissue-like MRI properties, as well as using microfabricated devices. DTI acquisitions also have been checked with these devices or using natural or artificial fiber structures. The head phantom from American College of Radiology (ACR) is also pointed out as an alternative for DTI QC. This article brings a discussion about proposed DWI and DTI phantoms, challenges involved and future perspectives for standardization of DWI and DTI QC.332156165FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ2013/07559-3310860/2014-

    Aerospace Medicine and Biology: A continuing bibliography (supplement 160)

    Get PDF
    This bibliography lists 166 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1976

    Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    Get PDF
    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here

    The State of Applying Artificial Intelligence to Tissue Imaging for Cancer Research and Early Detection

    Full text link
    Artificial intelligence represents a new frontier in human medicine that could save more lives and reduce the costs, thereby increasing accessibility. As a consequence, the rate of advancement of AI in cancer medical imaging and more particularly tissue pathology has exploded, opening it to ethical and technical questions that could impede its adoption into existing systems. In order to chart the path of AI in its application to cancer tissue imaging, we review current work and identify how it can improve cancer pathology diagnostics and research. In this review, we identify 5 core tasks that models are developed for, including regression, classification, segmentation, generation, and compression tasks. We address the benefits and challenges that such methods face, and how they can be adapted for use in cancer prevention and treatment. The studies looked at in this paper represent the beginning of this field and future experiments will build on the foundations that we highlight
    • 

    corecore