3,019 research outputs found

    Alphabet Sign Language Recognition Using Leap Motion Technology and Rule Based Backpropagation-genetic Algorithm Neural Network (Rbbpgann)

    Full text link
    Sign Language recognition was used to help people with normal hearing communicate effectively with the deaf and hearing-impaired. Based on survey that conducted by Multi-Center Study in Southeast Asia, Indonesia was on the top four position in number of patients with hearing disability (4.6%). Therefore, the existence of Sign Language recognition is important. Some research has been conducted on this field. Many neural network types had been used for recognizing many kinds of sign languages. However, their performance are need to be improved. This work focuses on the ASL (Alphabet Sign Language) in SIBI (Sign System of Indonesian Language) which uses one hand and 26 gestures. Here, thirty four features were extracted by using Leap Motion. Further, a new method, Rule Based-Backpropagation Genetic Al-gorithm Neural Network (RB-BPGANN), was used to recognize these Sign Languages. This method is combination of Rule and Back Propagation Neural Network (BPGANN). Based on experiment this pro-posed application can recognize Sign Language up to 93.8% accuracy. It was very good to recognize large multiclass instance and can be solution of overfitting problem in Neural Network algorithm

    Sign language recognition with transformer networks

    Get PDF
    Sign languages are complex languages. Research into them is ongoing, supported by large video corpora of which only small parts are annotated. Sign language recognition can be used to speed up the annotation process of these corpora, in order to aid research into sign languages and sign language recognition. Previous research has approached sign language recognition in various ways, using feature extraction techniques or end-to-end deep learning. In this work, we apply a combination of feature extraction using OpenPose for human keypoint estimation and end-to-end feature learning with Convolutional Neural Networks. The proven multi-head attention mechanism used in transformers is applied to recognize isolated signs in the Flemish Sign Language corpus. Our proposed method significantly outperforms the previous state of the art of sign language recognition on the Flemish Sign Language corpus: we obtain an accuracy of 74.7% on a vocabulary of 100 classes. Our results will be implemented as a suggestion system for sign language corpus annotation

    Gesture and sign language recognition with temporal residual networks

    Get PDF

    Machine learning methods for sign language recognition: a critical review and analysis.

    Get PDF
    Sign language is an essential tool to bridge the communication gap between normal and hearing-impaired people. However, the diversity of over 7000 present-day sign languages with variability in motion position, hand shape, and position of body parts making automatic sign language recognition (ASLR) a complex system. In order to overcome such complexity, researchers are investigating better ways of developing ASLR systems to seek intelligent solutions and have demonstrated remarkable success. This paper aims to analyse the research published on intelligent systems in sign language recognition over the past two decades. A total of 649 publications related to decision support and intelligent systems on sign language recognition (SLR) are extracted from the Scopus database and analysed. The extracted publications are analysed using bibliometric VOSViewer software to (1) obtain the publications temporal and regional distributions, (2) create the cooperation networks between affiliations and authors and identify productive institutions in this context. Moreover, reviews of techniques for vision-based sign language recognition are presented. Various features extraction and classification techniques used in SLR to achieve good results are discussed. The literature review presented in this paper shows the importance of incorporating intelligent solutions into the sign language recognition systems and reveals that perfect intelligent systems for sign language recognition are still an open problem. Overall, it is expected that this study will facilitate knowledge accumulation and creation of intelligent-based SLR and provide readers, researchers, and practitioners a roadmap to guide future direction
    corecore