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Abstract

Gesture and sign language recognition in a continuous

video stream is a challenging task, especially with a large

vocabulary. In this work, we approach this as a framewise

classification problem. We tackle it using temporal con-

volutions and recent advances in the deep learning field

like residual networks, batch normalization and exponen-

tial linear units (ELUs). The models are evaluated on

three different datasets: the Dutch Sign Language Corpus

(Corpus NGT), the Flemish Sign Language Corpus (Cor-

pus VGT) and the ChaLearn LAP RGB-D Continuous Ges-

ture Dataset (ConGD). We achieve a 73.5% top-10 accu-

racy for 100 signs with the Corpus NGT, 56.4% with the

Corpus VGT and a mean Jaccard index of 0.316 with the

ChaLearn LAP ConGD without the usage of depth maps.

1. Introduction

Sign language recognition (SLR) systems have many dif-

ferent use cases: corpus annotation, in hospitals, as a per-

sonal sign language learning assistant or translating daily

conversations between signers and non-signers to name a

few. Unfortunately, unconstrained SLR remains a big chal-

lenge. Sign language uses multiple communication chan-

nels in parallel with high visible intra-sign and low inter-

sign variability compared to common classification tasks.

In addition, publicly available annotated corpora are scarce

and not intended for building classifiers in the first place.

A common approach in SLR is to get around the high

dimensionality of image-based data by engineering features

to detect joint trajectories [2], facial expressions [16] and

hand shapes [19] as an intermediate step. Data gloves [20],

colored gloves [29] or depth cameras [1] are often deployed

in order to obtain a reasonable identification accuracy.

In recent years, deep neural networks achieve state-of-

the-art performance in many research domains including

image classification [26], speech recognition [9] and human

pose estimation [21]. We start seeing its integration into the

SLR field with the recognition of isolated signs using 3D

convolutional neural networks (CNNs) [23] and continuous

SLR using recurrent CNNs [6].

A task that is closely related to SLR is gesture recog-

nition. Deep neural networks have proven to be success-

ful for this problem, given a small vocabulary (20 gestures)

[22, 30] and/or with a multi-modal approach [24, 18].

In this work, we investigate large vocabulary gesture

recognition and SLR using deep neural networks with up-

to-date architectures, regularization techniques and training

methods. To achieve this, we approach the problem as a

continuous framewise classification task, where the tempo-

ral locations of gestures and signs are not given during eval-

uation. The models are tested on the Dutch Sign Language

Corpus (Corpus NGT) [4, 5], the Flemish Sign Language

Corpus (Corpus VGT) [27] and the ChaLearn LAP RGB-D

Continuous Gesture Dataset (ConGD) [28].

2. Methodology

Given a video file, we want to produce predictions for

every frame. With a sliding window, a number of frames

are fed into the model and output a prediction for either the

middle frame (many-to-one) or all input frames (many-to-

many). The input frames undergo some minimal prepro-

cessing before feeding it to the model: the RGB channels

are converted to gray-scale, resized to 128x128 pixels and

the previous frame is subtracted from the current frame to

remove static information (Figure 1).

The models are inherently CNNs [15] with recent im-

Figure 1. Left: Original RGB-data. Right: Model input. The RGB

channels are converted to gray-scale, resized to 128x128 pixels

and the previous frame is subtracted from the current frame to re-

move static information.
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Figure 2. The residual building-block used in the deep neural net-

works for both models.

provements to facilitate the classification problem. CNNs

are models that allow to learn a hierarchy of layered fea-

tures instead of manually extracting them. They are among

the most successful techniques in deep learning and have

proven to be very successful at recognizing patterns in high

dimensional data such as images, videos and audio. Our

models also make use of temporal convolutions and recur-

rence to cope with the spatiotemporal nature of the data.

2.1. Residual Building-Block

The models in this paper use a residual network layout

[10] consisting of so-called residual building blocks. Our

adapted residual block is depicted in Figure 2.

The first two operations in the residual block are spa-

tial convolutions with filter size 3x3 followed by temporal

convolutions with filter size 3. This enables the extraction

of hierarchies of motion features and thus the capturing of

temporal information from the first layer on, instead of de-

pending on higher layers to form spatiotemporal features.

Performing three-dimensional convolutions is one approach

to achieve this. However, this leads to a significant increase

in the number of parameters in every layer, making this

method more prone to overfitting. Therefore, we decide to

factorize this operation into two-dimensional spatial convo-

lutions and one-dimensional temporal convolutions. This

leads to fewer parameters and optionally more nonlinearity

if one decides to activate both operations. We opt to not

include a bias or another nonlinearity in the spatial convo-

lution step.

First, we compute spatial feature maps st for every frame

xt. A pixel at position (i, j) of the k-th feature map is de-

termined as follows:

s
(k)
tij =

N
∑

n=1

(

W
(kn)
spat ∗ x

(n)
t

)

ij
, (1)

where N is the number of input channels and Wspat are

trainable parameters. Finally, we convolve across the time

dimension for every position (i, j) and add a bias b(k):

v
(k)
tij = b(k) +

M
∑

m=1

(

W
(km)
temp ∗ s

(m)
ij

)

t
, (2)

where the variables Wtemp and b are trainable parameters

and M is the number of spatial feature maps.

The convolutions are followed by batch normalization

[12]. This method will shift the internal values to a mean of

zero and scale to a variance of one in every layer across the

mini-batch. This will prevent the change of distribution of

every layer during training, the so-called internal covariant

shift problem. We found that training with batch normaliza-

tion was crucial, because the network didn’t converge with-

out it.

The nonlinearity in the model is introduced by Expo-

nential Linear Units (ELUs) [3]. This activation function

speeds up training and achieves better regularization than

Rectified Linear Units (ReLUs) [17] or Leaky Rectified

Linear Units (LReLUs).

Following the original building block in [10], the previ-

ously described operations are stacked one more time, with

the exception of the ELU. Right before the final activation,

the input of the block is added. This addition is what makes

the model a residual network. Residual networks allow to

train deeper networks more easily, because there are short-

cut connections (the aforementioned addition) to the input

layers. This solves the degradation problem, where tradi-

tional networks see a decrease in performance when stack-

ing too many layers.

2.2. Network Architecture

Two different architectures are employed for the SLR

and the gesture recognition task. The SLR network has a

many-to-one configuration (Figure 3) and the gesture recog-

nition network has a many-to-many configuration (Figure

4). The reason for this difference is that we want to have

better control over the training labels in the SLR case. The

many-to-many configuration would try to model too much

silent (or blank) annotations, while the gesture data does not

have silent labels.

Both networks start with a three dimensional convolu-

tional layer with filter size 7x7x7 and stride 1x2x2. This

first layer allows us to use a higher spatial resolution

(128x128) without increasing computation time. Replac-

ing this layer with residual blocks would force us to use a
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Figure 3. The deep residual neural network used for sign language

recognition on the Corpus NGT [4, 5] and the Corpus VGT [27].

small mini-batch size due to memory constraints and the

computation time would increase twofold or more.

The first layer is followed by eight residual blocks, where

we decrease the feature map dimensionality every odd layer.

This results in seventeen convolutional layers in total. After

the residual blocks, we take the average of every feature

map. In the many-to-many case we only take the spatial

average.

The SLR network ends with a dropout layer and a soft-

max layer. The gesture recognition network adds a bidirec-

tional LSTM [11] (with peephole connections [8]), which

enables us to process sequences in both temporal directions.

2.3. Model Training

We train our models in an end-to-end fashion, backprop-

agating through time (BTT) for the recurrent architecture.

The network parameters are optimized by minimizing the

cross-entropy loss function using mini-batch gradient de-

scent with the Adam update rule [14]. Adam is an opti-

mization algorithm based on adaptive estimates of lower-

order moments of the gradients. We found that Adam works

great in practice, especially when experimenting with very

different layer types in the same model. Leaving the pro-

posed hyper-parameters of Adam untouched, we observed

improved training convergence in comparison to SGD with

Nesterov momentum. All our models are trained the same

way with early stopping, a mini-batch size of 24, a learning

rate of 10−3 and an exponential learning rate decay. Before

training, we initialize the weights with a random orthogonal

initialization method [25].

Lastly, it is worth mentioning that we use data augmenta-
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Figure 4. The deep residual neural network used for gesture recog-

nition on ChaLearn ConGD [28].

tion. Data augmentation has a significant impact on gener-

alization. For all our trained models, we used the same aug-

mentation parameters: [−32, 32] pixel translations, [−8, 8]
rotation degrees, [ 1

1.5 , 1.5] image scaling factors and ran-

dom horizontal flips. From each of these intervals, we sam-

ple a random value for each video fragment and apply the

transformations online using the CPU.

3. Experiments

3.1. Sign Language Recognition

The two corpora used to explore SLR (Corpus VGT [27]

and Corpus NGT [4, 5]) have similar camera setups and

use very similar annotation rules with identical software

(ELAN). Both corpora consist of Deaf signers that perform

tasks such as retelling comic strips, discuss an event and

debating on chosen topics. For each corpus, the 100 most

frequently used signs are extracted together with their gloss.

A gloss is the written form of a sign.

As Figure 5 shows, there is a class imbalance for both

corpora. This means that accuracy measures will be highly

skewed. For example, only predicting the most common

sign (which is “ME”) for every sample across the whole

dataset already results in 30.9% and 11.2% accuracy for the

Corpus NGT and the Corpus VGT respectively.

The SLR data is split into three sets (for each corpus):

70% training set, 20% test set and 10% validation set. The

training set is used to optimize the neural networks, the val-
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Figure 5. The relative frequency for the five most common signs in

both corpora. The class imbalance is significant in both corpora,

but is especially prevalent for the Corpus NGT [4, 5].

idation set is used for evaluation during training and the test

set is used to evaluate the final models.

The model takes an input of 16 frames, sampled at 25

frames per second with a resolution of 128x128 pixels. The

network makes predictions for the 8th frame, as it has a

many-to-one configuration. During training, random frag-

ments of 16 frames are sampled. During evaluation a slid-

ing window across the entire video file is employed. Only

frames of known signs are considered for evaluation to

eliminate the dependency on the amount of silences (which

can be detected by motion vectors) and unknown signs.

3.1.1 Corpus NGT

The Corpus NGT [4, 5] (Figure 6) contains Deaf signers

using Dutch Sign Language from the Netherlands. This

project was executed by the sign language group at the Rad-

boud University Nijmegen. Every narrative or discussion

fragment forms a clip of its own, with more than 2000 clips.

We extracted a total of 55224 video-gloss pairs from 78 dif-

ferent Deaf signers.

The top-N accuracy is a measure indicating the proba-

bility that the correct answer is within the model’s N best

guesses. The framewise top-N accuracies of the test set

for the Corpus NGT are depicted in Figure 8. The model

Figure 6. A sample from the Corpus NGT (Radboud University

Nijmegen) [4, 5], filmed from two viewpoints.

achieves a top-1, top-3, top-5 and top-10 accuracy of 39.9%,

57.9%, 64.4% and 73.3% respectively for 100 signs. This

is especially interesting for automatic corpus annotation,

where providing a list with the N best guesses is appropri-

ate.

The confusion matrix shows the fraction of true positives

for each class (each sign) on the diagonal. It also tells us

which classes it gets confused with. To have a better insight

into the model’s performance, we show the confusion ma-

trix in Figure 9. Not surprisingly, almost all classes get con-

fused with frequently occurring ones. The network learned

to bet on common glosses when it is unsure about a certain

input, because more often than not it will get rewarded for

that. Other misclassification is due to signs that are hard to

distinguish from each other.

3.1.2 Corpus VGT

The Corpus VGT [27] (Figure 7) uses Flemish Sign

Language. The project started in Juli 2012 and ended

in November 2015 at Ghent University, in collaboration

with the Linguistics Group VGT of KU Leuven Campus

Antwerp, and promoted by Prof. Dr. Mieke Van Her-

reweghe (Ghent University) and Prof. Dr. Myriam Ver-

meerbergen (KU Leuven Campus Antwerp). The corpus

contains 140 hours of video and a small fraction is anno-

tated. After cleaning the data, we extracted a total of 12599

video-gloss pairs from 53 different Deaf signers.

To cope with the smaller amount of annotations for the

Corpus VGT compared to the Corpus NGT, we transfer all

the parameters from the Corpus NGT model and use them

as initial weights. This is a form of transfer learning or

pretraining, where the knowledge of one or more domains

(in this case the Corpus NGT) is useful for other domains.

Our motivation is that the learned features for both domains

should be similar, except for the softmax classifier. All sign

languages have similar visual features: they consist of hand,

arm, face and body expressions. We hope to capture these

generic building blocks in order to boost the performance

for the Corpus VGT.

In Figure 10, the top-N accuracies are shown. It achieves

a top-1, top-3, top-5 and top-10 accuracy of 18.2%, 32.3%,

Figure 7. A sample from the Corpus VGT (Ghent University) [27],

filmed from three viewpoints.

3089



10 20 50 100
Most frequently occurring signs

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Top-1 Top-3 Top-5 Top-10

Figure 8. Corpus NGT [4, 5] top-N accuracies, indicating the

probability of the correct answer being within the model’s N best

guesses.

41.4% and 55.7% respectively for 100 signs. The resulting

confusion matrix is shown in Figure 11. The errors are more

spread out than the ones for the Corpus NGT, because the

class imbalance is less prevalent.

3.2. ChaLearn LAP ConGD

The ChaLearn LAP RGB-D Continuous Gesture Dataset

(ConGD) [28] is a large-scale gesture dataset and has been

used for two rounds of classification challenges (2016 and

2017). The gestures come from multiple sources, including

sign language, underwater signs, helicopter and traffic sig-

nals, pantomimes and symbolic gestures, Italian gestures,

and body language (Figure 12) The database consists of 249

different gesture classes performed by 21 individuals. Each

individual belongs to either the training, the validation or

the test set. The videos are recorded with a Microsoft Kinect
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Figure 9. Corpus NGT [4, 5] confusion matrix indicating the clas-

sification performance of the deep neural network.
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Figure 10. Corpus VGT [27] top-N accuracies, indicating the

probability of the correct answer being within the model’s N best

guesses.

RGB-D camera. Each class occurs at least 200 times with

47933 gestures in 22535 videos files. Each video contains

one or more gestures and are annotated with the start and

end frames.

The challenge is approached in a similar fashion as SLR.

We only consider the RGB channels and discard the depth

map, as we want to contribute by using a model that does

not need a depth sensor, although we realize we throw away

a lot of useful information. The difference with the SLR is

that the model takes an input of 32 frames, sampled at 10

frames per second. Furthermore, the network has a many-

to-many configuration (Figure 4) with a bidirectional LSTM

stacked on top of the residual network.

Lastly, a postprocessing modus-filter of size 39 is applied

on the final framewise predictions. The modus of a series of
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Figure 11. Corpus VGT [27] confusion matrix indicating the clas-

sification performance of the deep neural network.
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Figure 12. A few samples from the ChaLearn LAP ConGD chal-

lenge [28].

integers is the most frequently occurring one. This smooths

out the noisy predictions of the model. This method is based

on the fact that annotations do not change more than once

over a time-window of about 20 frames.

We follow the ChaLearn LAP 2017 Challenge score to

measure the performance of our model. The score is based

on the Jaccard index, which is defined as follows:

Js,n =
As,n ∩Bs,n

As,n ∪Bs,n

. (3)

The binary ground truth for gesture category n in sequence

s is denoted as the binary vector As,n, whereas Bs,n de-

notes the binary predictions. The Jaccard index Js,n can be

seen as the overlap rate between As,n and Bs,n. To obtain

the final score, the mean Jaccard index among all categories
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Figure 13. ChaLearn ConGD [28] confusion matrix indicating

the classification performance of the deep neural network.

Round 2 (2017) [13]

Rank Team MJI MJI

Valid Test

1 ICT NHCI 0.5163 0.6103

2 AMRL 0.5957 0.5950

3 PaFiFA 0.3646 0.3744

4 Ours (RGB) 0.3190 0.3164

Round 1 (2016) [7]

Rank Team MJI Method

1 ICT NHCI 0.2869 appearance model

+ RNN + RGB-D

2 TARDIS 0.2692 C3D + sliding

window + RGB-D

3 AMRL 0.2655 QOM+CNN+depth

- Baseline[28] 0.1464 MFSK

Table 1. ChaLearn LAP ConGD Challenge Round 1 [7] and 2 [13]

final results. MJI: Mean Jaccard Index.

and sequences is computed:

Jmean =
1

N

N
∑

n=1

S
∑

s=1

Js,n

ls
, (4)

where N = 249 is the number of categories, S the number

of sequences in the current set and ls the number of gestures

in sequence s.

Our model achieves a mean Jaccard index of 0.3164 on

the test set. The comparison with other teams can be found

in Table 1. The model is able to surpass all methods used in

the first round without using depth information. The confu-

sion matrix is depicted in Figure 13. Looking at the diag-

onal, we can see that there are quite a few similar gestures

which are difficult to distinguish from one another, as well

as classes with good accuracy.

4. Conclusion and Future Work

We showed in this paper that deep residual networks are

capable of learning patterns in continuous gesture and sign

language videos with virtually no preprocessing and with

the use standard RGB cameras. Our models were evalu-

ated on two different sign language corpora and the largest

known gesture dataset. We observed a top-10 framewise

accuracy of 73.3% with the Corpus NGT [4, 5] and 55.7%

with the Corpus VGT [27]. We achieved a mean Jaccard

index of 0.3164 with the ChaLearn LAP ConGD Challenge

[28].

These results have a lot of room for improvement. We

suspect a big increase in performance when using depth

sensors. The disadvantage is that a lot of datasets or appli-

cations don’t have depth maps available. Another accuracy
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boost would be gained from unsupervised feature learning

and/or pretrained weights from large image datasets. Also,

improvements would be gained from the integration of a

hand and arm tracking method. A last suggested addition

would be to employ a language model in the SLR case, as

nearby predicted glosses are often related.
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