38,369 research outputs found

    Read My Lips: Continuous Signer Independent Weakly Supervised Viseme Recognition

    Full text link
    Abstract. This work presents a framework to recognise signer indepen-dent mouthings in continuous sign language, with no manual annotations needed. Mouthings represent lip-movements that correspond to pronun-ciations of words or parts of them during signing. Research on sign lan-guage recognition has focused extensively on the hands as features. But sign language is multi-modal and a full understanding particularly with respect to its lexical variety, language idioms and grammatical structures is not possible without further exploring the remaining information chan-nels. To our knowledge no previous work has explored dedicated viseme recognition in the context of sign language recognition. The approach is trained on over 180.000 unlabelled frames and reaches 47.1 % precision on the frame level. Generalisation across individuals and the influence of context-dependent visemes are analysed

    A Multi-modal Machine Learning Approach and Toolkit to Automate Recognition of Early Stages of Dementia among British Sign Language Users

    Get PDF
    The ageing population trend is correlated with an increased prevalence of acquired cognitive impairments such as dementia. Although there is no cure for dementia, a timely diagnosis helps in obtaining necessary support and appropriate medication. Researchers are working urgently to develop effective technological tools that can help doctors undertake early identification of cognitive disorder. In particular, screening for dementia in ageing Deaf signers of British Sign Language (BSL) poses additional challenges as the diagnostic process is bound up with conditions such as quality and availability of interpreters, as well as appropriate questionnaires and cognitive tests. On the other hand, deep learning based approaches for image and video analysis and understanding are promising, particularly the adoption of Convolutional Neural Network (CNN), which require large amounts of training data. In this paper, however, we demonstrate novelty in the following way: a) a multi-modal machine learning based automatic recognition toolkit for early stages of dementia among BSL users in that features from several parts of the body contributing to the sign envelope, e.g., hand-arm movements and facial expressions, are combined, b) universality in that it is possible to apply our technique to users of any sign language, since it is language independent, c) given the trade-off between complexity and accuracy of machine learning (ML) prediction models as well as the limited amount of training and testing data being available, we show that our approach is not over-fitted and has the potential to scale up

    Gesture and sign language recognition with temporal residual networks

    Get PDF

    Towards automatic sign language corpus annotation using deep learning

    No full text
    Sign classification in sign language corpora is a challenging problem that requires large datasets. Unfortunately, only a small portion of those corpora is labeled. To expedite the annotation process, we propose a gloss suggestion system based on deep learning. We improve upon previous research in three ways. Firstly, we use a proven feature extraction method called OpenPose, rather than learning end-to-end. Secondly, we propose a more suitable and powerful network architecture, based on GRU layers. Finally, we exploit domain and task knowledge to further increase the accuracy. We show that we greatly outperform the previous state of the art on the used dataset. Our method can be used for suggesting a top 5 of annotations given a video fragment that is selected by the corpus annotator. We expect that it will expedite the annotation process to the benefit of sign language translation research

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI
    corecore