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Abstract. The ageing population trend is correlated with an increased
prevalence of acquired cognitive impairments such as dementia. Although
there is no cure for dementia, a timely diagnosis helps in obtaining nec-
essary support and appropriate medication. Researchers are working ur-
gently to develop effective technological tools that can help doctors un-
dertake early identification of cognitive disorder. In particular, screening
for dementia in ageing Deaf signers of British Sign Language (BSL) poses
additional challenges as the diagnostic process is bound up with condi-
tions such as quality and availability of interpreters, as well as appropri-
ate questionnaires and cognitive tests. On the other hand, deep learning
based approaches for image and video analysis and understanding are
promising, particularly the adoption of Convolutional Neural Network
(CNN), which require large amounts of training data. In this paper,
however, we demonstrate novelty in the following way: a) a multi-modal
machine learning based automatic recognition toolkit for early stages of
dementia among BSL users in that features from several parts of the
body contributing to the sign envelope, e.g., hand-arm movements and
facial expressions, are combined, b) universality in that it is possible to
apply our technique to users of any sign language, since it is language
independent, c) given the trade-off between complexity and accuracy of
machine learning (ML) prediction models as well as the limited amount
of training and testing data being available, we show that our approach
is not over-fitted and has the potential to scale up.

Keywords: Hand Tracking, Facial Analysis, Convolutional Neural Net-
work, Machine Learning, Sign Language, Dementia

1 Introduction

British Sign Language (BSL) is a natural human language, which, like other
sign languages, uses movements of the hands, body and face for linguistic ex-
pression. Recognising dementia in the signers of BSL, however, is still an open
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research field, since there is very little information available about dementia in
this population. This is also exacerbated by the fact that there are few clini-
cians with appropriate communication skills and experience working with BSL
users. Diagnosis of dementia is subject to the quality of cognitive tests and BSL
interpreters alike. Hence, the Deaf community currently receives unequal access
to diagnosis and care for acquired neurological impairments, with consequent
poorer outcomes and increased care costs [2].

Facing this challenge, we outlined a deep learning based methodological ap-
proach and developed a toolkit capable of automatically recognising early stages
of dementia without the need for sign language translation or interpretation.
Our approach and tool were inspired by the following two key cross-disciplinary
knowledge contributors:

a) Recent clinical observations suggesting that there may be differences be-
tween signers with dementia and healthy signers with regards to the envelope
of sign space (sign trajectories/depth/speed) and expressions of the face. These
clinical observations indicate that signers who have dementia use restricted sign
space and limited facial expression compared to healthy deaf controls. In this
context, we did not focus only on the hand movements, but also on other features
from the BSL user’s body, e.g., facial expressions.

b) Recent advances in machine learning based approaches spearheaded by
CNN, also known as the Deep Learning approach. These, however, cannot be
applied without taking into consideration contextual restrictions such as avail-
ability of large amounts of training datasets, and lack of real world test data. We
introduce a deep learning based sub-network for feature extraction together with
the CNN approach for diagnostic classification, which yields better performance
and is a good alternative to handle limited data.

In this context, we proposed a multi-featured machine learning methodolog-
ical approach paving the way to the development of a toolkit. The promising
results for its application towards screening for dementia among BSL users lie
with using features other than those bound to overt cognitive testing by using
language translation and interpretation. Our methodological approach comprises
several stages. The first stage of research focuses on analysing the motion pat-
terns of the sign space envelope in terms of sign trajectory and sign speed by
deploying a real-time hand movement trajectory tracking model [17] based on
OpenPose4,5 library. The second stage involves the extraction of the facial ex-
pressions of deaf signers by deploying a real-time facial analysis model based
on dlib library6 to identify active and non-active facial expressions. The third
stage is to trace elbow joint distribution based on OpenPose library, taken as an
additional feature related to the sign space envelope. Based on the differences in
patterns obtained from facial and trajectory motion data, the further stage of
research implements both VGG16 [25] and ResNet-50 [11] networks using trans-
fer learning from image recognition tasks to incrementally identify and improve

4 https://github.com/CMU-Perceptual-Computing-Lab/openpose
5 https://github.com/ildoonet/tf-pose-estimation
6 http://dlib.net/
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recognition rates for Mild Cognitive Impairment (MCI) (i.e. pre-dementia). Per-
formance evaluation of the research work is based on datasets available from the
Deafness Cognition and Language Research Centre (DCAL) at UCL, which has
a range of video recordings of over 500 signers who have volunteered to partic-
ipate in research. It should be noted that as the deaf BSL-using population is
estimated to be around 50,000, the size of this database is equivalent to 1% of
the deaf population. Figure 1 shows the pipeline and high-level overview of the
network design. The main contributions of this paper are as follows:

Fig. 1. The Proposed Pipeline for Dementia Screening

1. We outline a methodology for the prelimnary identification of early stage
dementia among BSL users based on sign language independent features
such as:
– an accurate and robust real-time hand trajectory tracking model, in which
both sign trajectory to extract sign space envelope and sign speed to iden-
tify acquired neurological impairment associated with motor symptoms are
tracked.
– a real-time facial analysis model that can identify and differentiate active
and non-active facial expressions of a signer.
– an elbow distribution model that can identify the motion characteristics
of the elbow joint during signing.

2. We present an automated screening toolkit for early stage dementia assess-
ment with good test set performance of 87.88% in accuracy, 0.93 in ROC,
0.87 in F1 Score for positive MCI/dementia screening results. As the pro-
posed system uses normal 2D videos without requiring any ICT/medical
facilities setup, it is economical, simple, flexible, and adaptable.

The paper is structured as follows: Section 2 gives an overview of the related
work. Section 3 outlines the methodological approach followed by section 4 with
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the discussion of experimental design and results. A conclusion provides a sum-
mary of the key contributions and results of this paper.

2 Related Work

Recent advances in computer vision and greater availability in medical imaging
with improved quality have increased the opportunities to develop deep learn-
ing approaches for automated detection and quantification of diseases, such as
Alzhermer and dementia [23]. Many of these techniques have been applied to the
classification of MR imaging, CT scan imaging, FDG-PET scan imaging or the
combined imaging of above, by comparing MCI patients to healthy controls, to
distinguish different types or stages of MCI and accelerated features of ageing
[28, 26, 18, 12]. Jo et al. in [14] reviewed the deep learning papers on Alzheimer
(published between January 2013 and July 2018) with the conclusion that four of
the studies used combination of deep learning and traditional machine learning
approaches, and twelve used deep learning approaches. Due to currently limited
dataset, we also found that ensemble the deep learning approaches for diag-
nostic classification with the traditional machine learning methods for feature
extraction yielded a better performance.

In terms of dementia diagnosis [1], there have been increasing applications
of various machine learning approaches, most commonly with imaging data for
diagnosis and disease progression [20, 8, 13] and less frequently in non-imaging
studies focused on demographic data, cognitive measures [4], and unobtrusive
monitoring of gait patterns over time [9]. In [9], walking speed and its daily
variability may be an early marker of the development of MCI. These and
other real-time measures of function may offer novel ways of detecting tran-
sition phases leading to dementia, which could be another potential research
extension to our toolkit, since the real-time hand trajectory tracking sub-model
has the potential to track a patient’s daily walking pattern and pose recognition
as well. AVEID, an interesting method introduced in [22], uses an automatic
video system for measuring engagement in dementia, focusing on behaviour on
observational scales and emotion detection. AVEID focused on passive engage-
ment on gaze and emotion detection, while our method focuses on sign and facial
motion analysis in active signing conversation.

3 Methodology

In this paper, we present a multi-modal feature extraction sub-network inspired
by practical clinical needs, together with the experimental findings associated
with the sub-network. Each feature extraction model is discussed in greater
detail in the following sub-sections and for each method we assume that the
subjects are in front of the camera with only the face, upper body, and arms
visible. The input to the system is short-term clipped videos. Different extracted
motion features will be fed into the CNN network to classify a BSL signer as
healthy or atypical. We present the first phase work on automatic assessment
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of early stage dementia based on real-time hand movement trajectory motion
patterns and focusing on performance comparisons between the VGG16 and
ResNet-50 networks. Performance evaluation of the research work is based on
datasets available from the BSL Corpus7 at DCAL UCL, a collection of 2D video
clips of 250 Deaf signers of BSL from 8 regions of the UK; and two additional
datasets: a set of data collected for a previous funded project8, and a set of
signer data collected for the present study.

3.1 Dataset

From the video recordings, we selected 40 case studies of signers (20M, 20F) aged
between 60 and 90 years; 21 are signers considered to be healthy cases based on
the British Sign Language Cognitive Screen (BSL-CS); 9 are signers identified
as having Mild Cognitive Impairment (MCI) on the basis of the BSL-CS; and 10
are signers diagnosed with mild MCI through clinical assessment. We consider
those 19 cases as MCI (i.e. early dementia) cases, whether identified through
the BSL-CS or clinically. Balanced datasets (21 Healthy, 19 MCI) are created
in order to decrease the risk of leading to a falsely perceived positive effect of
accuracy due to the bias towards one class. While this number may appear small,
it represents around 2% of the population of signers likely to have MCI, based on
its prevalence in the UK. As the video clip for each case is about 20 minutes in
length, we segmented each into 4-5 short video clips - 4 minutes in length - and
fed the segmented short video clip to the multi-modal feature extraction sub-
network. The feasibility study and experimental findings discussed in Section 4.2
show that the segmented video clips represent the characteristics of individual
signers. In this way, we were able to increase the size of the dataset from 40 to
162 clips. Of the 162, 79 have MCI, and 83 are cognitively healthy.

3.2 Real-time Hand Trajectory Tracking Model

OpenPose, developed by Carnegie Mellon University, is one of the state-of-the-
art methods for human pose estimation, processing images through a 2-branch
multi-stage CNN [5]. The real-time hand movement trajectory tracking model is
developed based on the OpenPose Mobilenet Thin model [21]. A detailed evalu-
ation of tracking performance is discussed in [17]. The inputs to the system are
brief clipped videos, and only 14 upper body parts in the image are outputted
from the tracking model. These are: eyes, nose, ears, neck, shoulders, elbows,
wrists, and hips. The hand movement trajectory is obtained via wrist joint mo-
tion trajectories. The curve of the hand movement trajectory is connected by
the location of the wrist joint keypoints to track left- and right-hand limb move-
ments across sequential video frames in a rapid and unique way. Figure 2 (top),
demonstrates the tracking process for the sign FARM. Figure 2 (bottom) is the

7 British Sign Language Corpus Project https://bslcorpusproject.org/.
8 Overcoming obstacles to the early identification of dementia in the signing Deaf

community
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Fig. 2. Real-time Hand Trajectory Tracking (top) and 2D Left- and Right- Hand Tra-
jectory (bottom)

left- and right-hand trajectories obtained from the tracking model plotted by
wrist location X and Y coordinates over time in a 2D plot. It shows how hand
motion changes over time, which gives a clear indication of hand movement
speed (X-axis speed based on 2D coordinate changes, and Y-axis speed based
on 2D coordinate changes). A spiky trajectory indicates more changes within a
shorter period, thus faster hand movement. Hand movement speed patterns can
be easily identified to analyse acquired neurological impairments associated with
motor symptoms (i.e. slower movement), as in Parkinson’s disease.

3.3 Real-time Facial Analysis Model

The facial analysis model was implemented based on a facial landmark detec-
tor inside the Dlib library, in order to analyse a signer’s facial expressions [15].
The face detector uses the classic Histogram of Oriented Gradients (HOG) fea-
ture combined with a linear classifier, an image pyramid, and a sliding window
detection scheme. The pre-trained facial landmark detector is used to estimate
the location of 68 (x, y) coordinates that map to facial features (Figure 3). As

Fig. 3. Facial Motion Tracking of a Signer
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shown in Figure 49, earlier psychological research [6] identified seven universal
common facial expressions: Happiness, Sadness, Fear, Disgust, Anger, Contempt
and Surprise. Facial muscle movements for these expressions include lips and
brows (Figure 4). Therefore, the facial analysis model was implemented for the
purpose of extract subtle facial muscle movement by calculating the average Eu-
clidean distance differences between the nose and right brow as d1, nose and left
brow as d2, and upper and lower lips as d3 for a given signer over a sequence
of video frames (Figure 3). The vector [d1, d2, d3] is an indicator of a signer’s
facial expression and is used to classify a signer as having an active or non-active
facial expression.

Fig. 4. Common Facial Expressions

d1, d2, d3 =

T∑
t=1

|dt+1 − dt|

T
(1)

where T = Total number of frames that facial landmarks are detected.

3.4 Elbow Distribution Model

The elbow distribution model extracts and represents the motion characteris-
tics of elbow joint movement during signing, based on OpenPose upper body
keypoints. The Euclidean distance d is calculated between the elbow joint coor-
dinate and a relative midpoint of the body in a given frame. This is illustrated
in Figure 5(a), where the midpoint location on the frame is made up of the x-
coordinate of the neck and the y-coordinate of the elbow joint. If J te,n represents
distances of joints elbow and neck (e,n) at time t, such as J te,n = [Xt

e,n, Y
t
e,n]

then d calculates the distance descriptor:

d =
√

(Xt
n −Xt

e)
2 + (Y t

n − Y t
e )2 (2)

for each frame, resulting in N distances d, where N is the number of frames. In
order to get a distribution representation of elbow motion, a virtual coordinate

9 https://www.eiagroup.com/knowledge/facial-expressions/
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Fig. 5. (a) Elbow tracking distance from the midpoint. (b) Shifted coordinate with
mean distance calculated

origin is created, which is the mean distance calculated as dµ =

∑N
i d

N
, which

can be seen as the resting position of the elbow. Then a relative distance is
calculated from this origin dµ to the elbow joint for each frame, resulting in
the many distances shown in Figure 5(b) as orange dots. If the relative distance
is < 0 it is closer to the body than the resting distance, and if it is > 0, it
is further away. This is a much better representation of elbow joint movement
as it distinguishes between near and far elbow motion. These points can be
represented by a histogram which can then be fed into the CNN model as an
additional feature.

3.5 CNN Models

In this section, we summarise the architecture of the VGG16 and ResNet-50 im-
plemented for the early dementia classification, focusing on data pre-processing,
architecture overview, and transfer learning in model training.

Data Preprocessing Prior to classification, we first vertical stack a signer’s
left-hand trajectory image over the associated right-hand trajectory image ob-
tained from the real-time hand trajectory tracking model, and label the 162
stacked input trajectory images as pairs

(X,Y ) = {(X1, Y1), ..., (Xi, Yi), ..., (XN , YN )} (N = 162) (3)

where Xi is the i-th observation (image dimension: 1400 × 1558 × 3) from the
MCI and Healthy datasets. The classification has the corresponding class label
Y i ∈ {0, 1}, with early MCI (Dementia) as class 0 and Healthy as class 1. The
input images are further normalized by subtracting the ImageNet data mean and
changed the input shape dimensions to 224×224×3 to be ready for the Keras
deep learning CNN networks.

VGG16 and ResNet-50 Architecture In our approach, we have used VGG16
and ResNet-50 as the base models with transfer learning to transfer the parame-
ters pre-trained for 1000 object detection task on ImageNet dataset to recognise
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hand movement trajectory images for early MCI screening. Figure 6 shows the
network architecture that we implemented by fine tuning VGG16 and training
ResNet-50 as a classifier alone.

1) VGG16 Architecture: The VGG16 network [25] with 13 convolutional and
3 fully connected (FC) layers, i.e. 16 trainable weight layers, were the basis of
the Visual Geometry Group (VGG) submission to the ImageNet Challenge 2014,
achieving 92.7% top-5 test accuracy, and securing first and second places in the
classification and localization track respectively. Due to the very small dataset,
we fine tune the VGG 16 network by freezing the Convolutional (Covn) layers
and two Fully Connected (FC) layers, and only retrain the last two layers, with
524,674 parameters trainable in total (see Figure 6). Subsequently, a softmax
layer for binary classification is applied to discriminate the two labels: Healthy
and MCI, producing two numerical values of which the sum becomes 1.0.

Several strategies are used to combat overfitting. A dropout layer is imple-
mented after the last FC [27], randomly dropping 40% of the units and their
connections during training. An intuitive explanation of its efficacy is that each
unit learns to extract useful features on its own with different sets of randomly
chosen inputs. As a result, each hidden unit is more robust to random fluctu-
ations and learns a generally useful transformation. Moreover, EarlyStopping
is used to halt the training of the network at the right time to avoid overfit-
ting. EarlyStopping callback is configured to monitor the loss on the validation
dataset with the patience argument set to 15. The training process is stopped
after 15 epochs when there is no improvement on the validation dataset.

2) ResNet-50 Architecture: Residual Networks (ResNets) [11] introduce skip
connections to skip blocks of convolutional layers, forming a residual block. These
stacked residual blocks greatly improve training efficiency and largely resolve
the vanishing gradient problem present in deep networks. This model won the
ImageNet challenge in 2015; the top 5 accuracy for ResNet-50 is 93.29%. As
complex models with many parameters are more prone to overfitting with a
small dataset, we train ResNet-50 as a classifier alone rather than fine tune it
(see Figure 6). Only a softmax layer for binary classification is applied, which
introduces 4098 trainable parameters. EarlyStopping callback is also configured
to halt the training of the network in order to avoid overfitting.

4 Experiments and Analysis

4.1 Implementation

The networks mentioned above were constructed using Python 3.6.8, OpenCV
3.4.2, and Tensorflow 1.12. VGG16 and ResNet-50 were built with the Keras
deep learning library [7], using Tensorflow as backend. We employed a Windows
desktop with two Nvidia GeForce GTX 1080Ti adapter cards and 3.3 GHz Intel
Core i9-7900X CPU with 16 GB RAM. During training, dropout was deployed
in fully connected layers and EarlyStopping was used to avoid overfitting. To
accelerate the training process and avoid local minimums, we used Adam algo-
rithm with its default parameter setting (learning rate=0.001, beta 1=0.9, beta
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Fig. 6. VGG16 and ResNet-50 Architecture

2=0.999) as the training optimizer [16]. Batch size was set to 3 when training
VGG16 network and 1 when training ResNet-50 network, as small mini-batch
sizes provide more up-to-date gradient calculations and yield more stable and
reliable training [3, 19]. In training it took several ms per epoch, with ResNet-50
quicker than the other because of less in training parameters. As an ordinary
training schedule contains 100 epochs, in most cases, the training loss would
converge in 40 epochs for VGG16 and 5 epochs for ResNet-50. During train-
ing, the parameters of the networks were saved via Keras callbacks to monitor
EarlyStopping to save the best weights. These parameters were used to run the
test and validation sets later. During test and validation, accuracies and Receiver
Operating Characteristic (ROC) curves of the classification were calculated, and
the network with the highest accuracy and area under ROC was chosen as the
final classifier.

4.2 Results and Discussion

Experiment Findings In Figure 7, feature extraction results show that in a
greater number of cases a signer with MCI produces a sign trajectory that resem-
bles a straight line rather than the spiky trajectory characteristic of a healthy
signer. In other words, signers with MCI produced more static poses/pauses
during signing, with a reduced sign space envelope as indicated by smaller am-
plitude differences between the top and bottom peaks of the X, Y trajectory
lines. At the same time, the Euclidean distance d3 of healthy signers is larger
than that of MCI signers, indicating active facial movements by healthy signers.
This proves the clinical observation concept of differences between signers with
MCI and healthy signers in the envelope of sign space and face movements, with
the former using smaller sign space and limited facial expression. In addition
to space and facial expression, the elbow distribution model demonstrates re-
stricted movement around the elbow axis with a lower standard deviation and
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Fig. 7. Experiment Finding

a skewed distribution for the MCI signer compared to the healthy signer where
the distribution is normal (Figure 8).

Fig. 8. The top row shows signing space for a healthy (left) and an MCI (right) signer.
The bottom row shows the acquired histograms and normal probability plots for both
hands. For data protection purposes both faces have been covered.

Performance Evaluation In this section, we have performed a comparative
study of VGG16 and ResNet-50 networks. Videos of 40 participants have been
segmented into short clips with 162 segmented cases in the training processes.
Those segmented samples are randomly partitioned into two subsets with split-
ting into 80% for the training set and 20% for the test set. To validate the model
performance, we also kept 6 cases separate (1 MCI and 5 healthy signers) that
have not been used in the training process, segmented into 24 cases for perfor-
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mance validation. The validation samples is skewed as a result of limited in MCI
samples but richer in health samples. More MCI samples are kept in the train-
ing/test processes than in the validation. Table 1 shows effectiveness results over
46 participants from different networks. The ROC curves are further illustrated

Table 1. Performance Evaluation over VGG16 and RestNet-50 for early MCI screening

Method
40 Participants

21 Healthy, 19 Early MCI
6 Participants

5 Healthy, 1 Early MCI
Train Result

(129 segmented cases)
Test Result

(33 segmented cases)
Validation Result

(24 segmented cases)
ACC ACC ROC ACC ROC

VGG 16 87.5969% 87.8788% 0.93 87.5% 0.96

ResNet-50 69.7674% 69.6970% 0.72 66.6667% 0.73

in Figure 9 and Figure 10 based on test set performance. The best performance
metrics are achieved by VGG16 with accuracy of 87.8788%; a micro ROC of
0.93; F1 score for MCI: 0.87, for Healthy: 0.89. Therefore, VGG16 was selected
as the baseline classifier and validation was further performed on 24 sub-cases
from 6 participants. Table 2 summarises validation performance over the base-
line classifier VGG16, and its ROC in Figure 11. In Table 2, there are two false
positive and one false negative based on sub-case prediction, but the model has
a correct high confidence prediction rate on most of the sub-cases. If prediction
confidence is averaged over all of the sub-cases from a participant, and predict
the result, the model achieved 100% accuracy in validation performance.

Fig. 9. Test Set Confusion Matrix of VGG16 (left two) and ResNet-50 (right two)

Furthermore, since a deep learning network can easily become over-fitted
with relatively small datasets, comparison against simpler approaches such as
logistic regression and SVM is also performed. As stated in [10], logistic regres-
sion and artificial neural networks are the models of choice in many medical data
classification tasks, with one layer of hidden neurons generally sufficient for clas-
sifying most datasets. Therefore, we evaluate our datasets on a 2-layer shallow
neural network with 80 neurons in hidden layer and logistic sigmoid activation
as its output layer.
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Fig. 10. Test Set ROC of VGG16 (left) and ResNet-50 (right)

Table 2. Validation Performance over Baseline Classifier - VGG16

Participant No Sub-case
Prediction
Confidence

Prediction
Result

based on
Sub-case

Prediction
Result

based on
Participant

Ground Truth

MCI Health

1 1 1 0.63 0.37 MCI Healthy Healthy
1 2 0.43 0.57 Healthy
1 3 0.39 0.61 Healthy
1 4 0.27 0.73 Healthy
1 5 0.40 0.60 Healthy

2 2 1 0.13 0.87 Healthy Healthy Healthy
2 2 0.02 0.98 Healthy
2 3 0.56 0.44 MCI
2 4 0.23 0.77 Healthy

3 3 1 0.08 0.92 Healthy Healthy Healthy
3 2 0.02 0.98 Healthy
3 3 0.02 0.98 Healthy
3 4 0.01 0.99 Healthy

4 4 1 0.09 0.91 Healthy Healthy Healthy
4 2 0.24 0.76 Healthy
4 3 0.16 0.84 Healthy
4 4 0.07 0.93 Healthy

5 5 1 0.01 0.99 Healthy Healthy Healthy
5 2 0.01 0.99 Healthy
5 3 0.00 1.00 Healthy
5 4 0.07 0.93 Healthy

6 6 1 0.93 0.07 MCI MCI MCI
6 2 0.29 0.71 Healthy
6 3 0.91 0.09 MCI

Fig. 11. Validation Set ROC on VGG16
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Table 3. Comparing Deep Neural Network Architecture over Shallow Networks

Train Accuracy (%) Test Accuracy (%)
VGG16 87.5969 87.8788
Shallow Logistic 86.4865 86.1538
SVM 86.8725 73.8461

Our observations on comparison results in respect with accuracy between
shallow (Logistic, SVM) and deep learning CNN prediction models, presented
in Table 3, show that, for smaller datasets, shallow models are a considerable
alternative to deep learning models, since no significant improvement could be
shown. Deep learning models, however, have the potential to perform better in
the presence of larger datasets [24]. Since we aspire to train and apply our model
with increasingly larger amounts of data made available, our approach is well
justified. The comparisons also highlighted that our ML prediction model is not
over-fitted despite the fact that small amounts of training and testing data were
available.

5 Conclusions

We have outlined a multi-modal machine learning methodological approach and
developed a toolkit for an automatic dementia screening system. The toolkit uses
VGG16, while focusing on analysing features from various body parts, e.g., facial
expressions, comprising the sign space envelope of BSL users recorded in normal
2D videos. As part of our methodology, we report the experimental findings for
the multi-modal feature extractor sub-network in terms of hand sign trajectory,
facial motion, and elbow distribution, together with performance comparisons
between different CNN models in ResNet-50 and VGG16. The experiments show
the effectiveness of our machine learning based approach for early stage dementia
screening. The results are validated against cognitive assessment scores with a
test set performance of 87.88%, and a validation set performance of 87.5% over
sub-cases, and 100% over participants. Due to its key features of being economic,
simple, flexible, and adaptable, the proposed methodological approach and the
implemented toolkit have the potential for use with other sign languages, as
well as in screening for other acquired neurological impairments associated with
motor changes, such as stroke and Parkinson’s disease in both hearing and deaf
people.
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