1,326 research outputs found

    Sigma-Delta modulation based distributed detection in wireless sensor networks

    Get PDF
    We present a new scheme of distributed detection in sensor networks using Sigma-Delta modulation. In the existing works local sensor nodes either quantize the observation or directly scale the analog observation and then transmit the processed information independently over wireless channels to a fusion center. In this thesis we exploit the advantages of integrating modulation as a local processor into sensor design and propose a novel mixing topology of parallel and serial configurations for distributed detection system, enabling each sensor to transmit binary information to the fusion center, while preserving the analog information through collaborative processing. We develop suboptimal fusion algorithms for the proposed system and provide both theoretical analysis and various simulation results to demonstrate the superiority of our proposed scheme in both AWGN and fading channels in terms of the resulting detection error probability by comparison with the existing approaches

    Programmable CMOS Analog-to-Digital Converter Design and Testability

    Get PDF
    In this work, a programmable second order oversampling CMOS delta-sigma analog-to-digital converter (ADC) design in 0.5µm n-well CMOS processes is presented for integration in sensor nodes for wireless sensor networks. The digital cascaded integrator comb (CIC) decimation filter is designed to operate at three different oversampling ratios of 16, 32 and 64 to give three different resolutions of 9, 12 and 14 bits, respectively which impact the power consumption of the sensor nodes. Since the major part of power consumed in the CIC decimator is by the integrators, an alternate design is introduced by inserting coder circuits and reusing the same integrators for different resolutions and oversampling ratios to reduce power consumption. The measured peak signal-to-noise ratio (SNR) for the designed second order delta-sigma modulator is 75.6dB at an oversampling ratio of 64, 62.3dB at an oversampling ratio of 32 and 45.3dB at an oversampling ratio of 16. The implementation of a built-in current sensor (BICS) which takes into account the increased background current of defect-free circuits and the effects of process variation on ΔIDDQ testing of CMOS data converters is also presented. The BICS uses frequency as the output for fault detection in CUT. A fault is detected when the output frequency deviates more than ±10% from the reference frequency. The output frequencies of the BICS for various model parameters are simulated to check for the effect of process variation on the frequency deviation. A design for on-chip testability of CMOS ADC by linear ramp histogram technique using synchronous counter as register in code detection unit (CDU) is also presented. A brief overview of the histogram technique, the formulae used to calculate the ADC parameters, the design implemented in 0.5µm n-well CMOS process, the results and effectiveness of the design are described. Registers in this design are replaced by 6T-SRAM cells and a hardware optimized on-chip testability of CMOS ADC by linear ramp histogram technique using 6T-SRAM as register in CDU is presented. The on-chip linear ramp histogram technique can be seamlessly combined with ΔIDDQ technique for improved testability, increased fault coverage and reliable operation

    Fiber Optics

    Get PDF
    Optical fibers in metrology, telecommunications, sensors, manufacturing, and health science have gained massive research interest. The number of applications is increasing at a fast pace. This book aims to present a collection of recent advances in fiber optics, addressing both fundamental and industrial applications. It covers the current progress and latest breakthroughs in emergent applications of fiber optics. The book includes five chapters on recent developments in optical fiber communications and fiber sensors, as well as the design, simulation, and fabrication of novel fiber concepts

    Non-Coherent UWB Communications

    Get PDF

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    Digital Signal Processing Techniques Applied to Radio over Fiber Systems

    Get PDF
    The dissertation aims to analyze different Radio over Fiber systems for the front-haul applications. Particularly, analog radio over fiber (A-RoF) are simplest and suffer from nonlinearities, therefore, mitigating such nonlinearities through digital predistortion are studied. In particular for the long haul A-RoF links, direct digital predistortion technique (DPDT) is proposed which can be applied to reduce the impairments of A-RoF systems due to the combined effects of frequency chirp of the laser source and chromatic dispersion of the optical channel. Then, indirect learning architecture (ILA) based structures namely memory polynomial (MP), generalized memory polynomial (GMP) and decomposed vector rotation (DVR) models are employed to perform adaptive digital predistortion with low complexities. Distributed feedback (DFB) laser and vertical capacity surface emitting lasers (VCSELs) in combination with single mode/multi-mode fibers have been linearized with different quadrature amplitude modulation (QAM) formats for single and multichannel cases. Finally, a feedback adaptive DPD compensation is proposed. Then, there is still a possibility to exploit the other realizations of RoF namely digital radio over fiber (D-RoF) system where signal is digitized and transmits the digitized bit streams via digital optical communication links. The proposed solution is robust and immune to nonlinearities up-to 70 km of link length. Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible to take only the advantages from both methods and implement a more recent form knows as Sigma Delta Radio over Fiber (S-DRoF) system. Second Order Sigma Delta Modulator and Multi-stAge-noise-SHaping (MASH) based Sigma Delta Modulator are proposed. The workbench has been evaluated for 20 MHz LTE signal with 256 QAM modulation. Finally, The 6x2 GSa/s sigma delta modulators are realized on FPGA to show a real time demonstration of S-DRoF system. The demonstration shows that S-DRoF is a competitive competitor for 5G sub-6GHz band applications
    corecore